Note on Contextual Bandits with Online Regression Oracles

Wen Sun

1 Setting

We consider the following Contextual bandit model. At round t, the environment presents a context $x_{t} \in \mathcal{X}$; the learner selects a distribution $p_{t} \in \Delta(\mathcal{A})$ over actions and samples an action $a_{t} \sim p_{t}$; the learner receives a reward signal $r_{t} \sim R\left(x_{t}, a_{t}\right)$ where $R(x, a)$ is the distribution of the reward under context-action pair (x, a). The game proceeds for T many rounds. Without loss of generality, we assume reward is always normalized in the sense that it is bounded between $[0,1]$.

We now define regret. Denote $f^{\star}(x, a)=\mathbb{E}_{r \sim R(x, a)}[r]$ as the expected reward under (x, a). The optimal policy is defined as $\pi^{\star}(x)=\arg \max _{a} f^{\star}(x, a)$. Thus, the regret is defined as follows:

$$
\text { Regret }=\sum_{t=0}^{T-1} f^{\star}\left(x_{t}, \pi^{\star}(x)\right)-\sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} f^{\star}\left(x_{t}, a_{t}\right) .
$$

Function approximation setup and online regression oracle We will use function approximation. Define $\mathcal{F} \subset \mathcal{X} \times \mathcal{A} \mapsto[0,1]$ as a class of functions which aim to capture f^{\star}.

We assume that we have an online regression oracle. More formally, at iteration t, given context x_{t}, a_{t}, before seeing the realized reward r_{t}, the regression oracle selects f_{t} and predicts reward $f_{t}\left(x_{t}, a_{t}\right)$; it then sees the reward r_{t}, and suffers loss $\left(f_{t}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}$. We assume that the online regression oracle achieves has bounded regret, i.e.,

$$
\begin{equation*}
\sum_{t=0}^{T-1}\left(f_{t}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}-\min _{f \in \mathcal{F}} \sum_{t=0}^{T-1}\left(f\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}=\operatorname{Reg}(T) \tag{1}
\end{equation*}
$$

Here $\operatorname{Reg}(T)$ typically grows sublinear. One example is that when \mathcal{F} is a discrete class, then there exists algorithm which can have $\operatorname{Reg}(T)=O(\ln (T) \ln (|\mathcal{F}|))$. Note the ln-dependence on the size of the function class, which means that the function class can be exponentially large. For continuous function class, when \mathcal{F} is convex, we can also have $\operatorname{Reg}(T)$ scaling in the order of $\ln (T)$.

2 A general algorithmic framework

First of all, using the fact that $\mathbb{E}\left[r_{t} \mid x_{t}, a_{t}\right]=f^{\star}\left(x_{t}, a_{t}\right)$ and $a_{t} \sim p_{t} \in \Delta(\mathcal{A})$, the regret on the square loss in (1) implies the following. With probability at least $1-\delta$, we have:

$$
\begin{equation*}
\forall t \leq T: \sum_{i=0}^{t-1} \mathbb{E}_{a \sim p_{t}}\left(f_{t}\left(x_{t}, a\right)-f^{\star}\left(x_{t}, a\right)\right)^{2}=O(\operatorname{Reg}(T)+\ln (1 / \delta)) \tag{2}
\end{equation*}
$$

This step is standard in minimizing square loss, and we will defer the proof to the appendix. Intuitively, this means that f_{t} is doing well compared to the Bayes optimal f^{\star}.

Now we consider the following meta algorithm which defines p_{t} in iteration t using the following min-max procedure. Given the context x_{t}, we perform

$$
\begin{equation*}
p_{t}=\underset{p \in \Delta(\mathcal{A})}{\operatorname{argmin}} \max _{f \in \mathcal{F}} \underbrace{\left(\max _{a} f\left(x_{t}, a\right)-\mathbb{E}_{a \sim p}\left[f\left(x_{t}, a\right)\right]\right)}_{\text {"Regret" under } x_{t} \text { and function } f}-\lambda \underbrace{\mathbb{E}_{a \sim p}\left(f\left(x_{t}, a\right)-f_{t}\left(x_{t}, a\right)\right)^{2}}_{\text {Regularization: constrain } f \text { near } f_{t}} \tag{3}
\end{equation*}
$$

The algorithm then will sample $a_{t} \sim p_{t}$, receive receive r_{t}, and call the online regression oracle to update function f_{t} to f_{t+1}, and then move on to the iteration $t+1$.

We define the Decision Estimation Coefficient β as follows.

$$
\begin{equation*}
\beta / \lambda:=\max _{x \in \mathcal{X}, g \in \mathcal{F}} \min _{p} \max _{f \in \mathcal{F}}\left(\max _{a} f(x, a)-\mathbb{E}_{a \sim p_{t}} f(x, a)\right)-\lambda \mathbb{E}_{a \sim p}(f(x, a)-g(x, a))^{2} \tag{4}
\end{equation*}
$$

The following theorem converts the DEC β and the online regression oracle regret $\operatorname{Reg}(T)$ into the regret of our algorithm in (3).

Theorem 1. Consider the CB algorithm which updates f_{t} using an online regression oracle, and computes p_{t} as in Eq. 3. Then with probability at least $1-\delta$, the regret of the algorithm is upper bounded by $O(\sqrt{T \beta(\operatorname{Reg}(T)+\ln (1 / \delta))})$.

Proof. The definition of DEC in (4) implies that for our choice of p_{t} at iteration t under context x_{t}, we have:

$$
\max _{f \in \mathcal{F}} \mathbb{E}_{a \sim p_{t}}\left(\max _{a} f\left(x_{t}, a\right)-f\left(x_{t}, a\right)\right)-\lambda \mathbb{E}_{a \sim p_{t}}\left(f\left(x_{t}, a\right)-f_{t}\left(x_{t}, a\right)\right)^{2} \leq \beta / \lambda
$$

Now let us revisit the CB regret definition.

$$
\begin{aligned}
\text { Regret }= & \sum_{t=0}^{T-1} \max _{a} f^{\star}\left(x_{t}, a\right)-\sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} f^{\star}\left(x_{t}, a\right) \\
= & \sum_{t=0}^{T-1}\left(\max _{a} f^{\star}\left(x_{t}, a\right)-\mathbb{E}_{a \sim p_{t}} f^{\star}\left(x_{t}, a\right)-\lambda \mathbb{E}_{a \sim p_{t}}\left(f^{\star}\left(x_{t}, a\right)-f_{t}\left(x_{t}, a\right)\right)^{2}\right) \\
& \quad+\lambda \sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}}\left(f^{\star}\left(x_{t}, a\right)-f_{t}\left(x_{t}, a\right)\right)^{2} \\
\leq & T \beta / \lambda+\lambda(\operatorname{Reg}(T)+\ln (1 / \delta))
\end{aligned}
$$

where the last inequality uses the fact that $f^{\star} \in \mathcal{F}$, and also the regret bound on $\sum_{t} \mathbb{E}_{a \sim p_{t}}\left(f^{\star}\left(x_{t}, a\right)-f_{t}\left(x_{t}, a\right)\right) \leq$ $\operatorname{Reg}(T)+\ln (1 / \delta)$.

Set $\lambda=T \beta /(\operatorname{Reg}(T)+\ln (1 / \delta))$, we have:

$$
\text { Regret } \leq 2 \sqrt{T \beta(\operatorname{Reg}(T)+\ln (1 / \delta))}
$$

3 Inverse Gap Weighting

So far we have seen that if we can solve (3) - the minmax procedure, and the DEC defined in (4) is bounded, then we achieve a \sqrt{T} regret bound (assuming $\operatorname{Reg}(T)=O(\ln (T))$). However, solving the minmax problem formed in (3) can be computationally challenging in general - a naive approach is to search over all possible $p \in \Delta(\mathcal{A})$ and all
$f \in \mathcal{F}$ which clearly is not computationally efficient. Moreover, it also seems not that straightforward to check if β in (4) is small as it involves complicated max, min, max.

Luickly, for contextual bandit, there is a simple approach to construct a distribution p_{t} which satisfies the following:

$$
\max _{x \in \mathcal{X}, g \in \mathcal{F}} \max _{f \in \mathcal{F}}\left(\max _{a} f(x, a)-\mathbb{E}_{a \sim p_{t}} f(x, a)\right)-\lambda \mathbb{E}_{a \sim p_{t}}(f(x, a)-g(x, a))^{2} \leq O\left(\frac{A}{\lambda}\right),
$$

which implies that $\beta \leq O(A)$, where $A=|\mathcal{A}|$. The way to construct such a p_{t} is through the approach called Inverse Gap Weighting (IGW). IGW is formally defined as follows. Given any function $g \in \mathcal{F}$ and context x, $\operatorname{IGW}(g, x) \in \Delta(\mathcal{A})$ is a distribution over actions defined as follows. Denote $\tilde{a}=\operatorname{argmax}_{a \in \mathcal{A}} g(x, a)$.

$$
\operatorname{IGW}(g, x)[a]=\frac{1}{A+\lambda(g(x, \tilde{a})-g(x, a))}, \quad \operatorname{IGW}(g, x)[\tilde{a}]=1-\sum_{a \neq \tilde{a}} \operatorname{IGW}(g, x)[a] .
$$

Using IGW, we can compupte p_{t} in iteration t as follows: $p_{t}=\operatorname{IGW}\left(f_{t}, x_{t}\right)$. Note that p_{t} is not necessarily the minimizer in (3), instead, it should be considered as an approximated minimizer.

The following lemma shows that using IGW, we indeed can upper bound the $\operatorname{DEC} \beta$ by A.
Lemma 2. For any $x \in \mathcal{X}$ and any $g \in \mathcal{G}$, define $p=\operatorname{IGW}(g, x)$, we must have:

$$
\max _{f \in \mathcal{F}}\left[\left(\max _{a} f(x, a)-\mathbb{E}_{a \sim p} f(x, a)\right)-\lambda \mathbb{E}_{a \sim p}(f(x, a)-g(x, a))^{2}\right] \leq(4 A) / \lambda,
$$

for all $\lambda \in \mathbb{R}^{+}$.
Proof. Let us consider any $f \in \mathcal{F}$ and show that the above holds for $f \in \mathcal{F}$.
Denote $a^{\star}=\arg \max _{a} f(x, a)$ and recall $\tilde{a}=\arg \max _{a} g(x, a)$. For the regret on x and f, we have:

$$
\begin{aligned}
& \mathbb{E}_{a \sim p}\left(f\left(x, a^{\star}\right)-f(x, a)\right)=\sum_{a \neq a^{\star}} p(a)\left(f\left(x, a^{\star}\right)-f(x, a)\right) \\
& =\sum_{a \neq a^{\star}} p(a)[\underbrace{f\left(x, a^{\star}\right)-g\left(x, a^{\star}\right)}_{T_{1}}+\underbrace{g\left(x, a^{\star}\right)-g(x, \tilde{a})}_{T_{2}}+\underbrace{g(x, \tilde{a})-g(x, a)}_{T_{3}}+\underbrace{g(x, a)-f(x, a)}_{T_{4}}]
\end{aligned}
$$

Let us first bound T_{4}. For T_{4}, apply AM-GM we have:

$$
\begin{align*}
& \sum_{a \neq a^{\star}}\left[\frac{p(a)}{4 \lambda}+p(a) \lambda(g(x, a)-f(x, a))^{2}\right]=\frac{1-p\left(a^{\star}\right)}{4 \lambda}+\lambda \sum_{a \neq a^{\star}} p(a)(g(x, a)-f(x, a))^{2} \tag{5}\\
& \leq \frac{1}{4 \lambda}+\lambda \sum_{a \neq a^{\star}} p(a)(g(x, a)-f(x, a))^{2} . \tag{6}
\end{align*}
$$

Now let us apply AM-GM on T_{1}. We have:

$$
\begin{align*}
& \left(1-p\left(a^{\star}\right)\right)\left(f\left(x, a^{\star}\right)-g\left(x, a^{\star}\right)\right) \leq \frac{\left(1-p\left(a^{\star}\right)\right)^{2}}{4 \lambda p\left(a^{\star}\right)}+\lambda p\left(a^{\star}\right)\left(f\left(x, a^{\star}\right)-g\left(x, a^{\star}\right)\right)^{2} \tag{7}\\
& \leq \frac{1}{4 \lambda p\left(a^{\star}\right)}+\lambda p\left(a^{\star}\right)\left(f\left(x, a^{\star}\right)-g\left(x, a^{\star}\right)\right)^{2} \tag{8}
\end{align*}
$$

The $\frac{1}{4 \lambda p\left(a^{\star}\right)}$ term will be used together with the term T_{2} below. The $\lambda p\left(a^{\star}\right)\left(f\left(x, a^{\star}\right)-g\left(x, a^{\star}\right)\right)^{2}$ term can be combined together with the term $\lambda \sum_{a \neq a^{\star}} p(a)(g(x, a)-f(x, a))^{2}$ in Eq. 6, to cancel out the $\lambda \mathbb{E}_{a \sim p}(f(x, a)-$ $g(x, a))^{2}$ term in the key inequality in the lemma.

Now let us bound the term T_{3}.

$$
\sum_{a \neq a^{\star}} p(a)(g(x, \tilde{a})-g(x, a))=\sum_{a \neq a^{\star}} \frac{1}{A+\lambda(g(x, \tilde{a})-g(x, a))}(g(x, \tilde{a})-g(x, a)) \leq \frac{A-1}{\lambda} .
$$

Now let us consider term T_{2}, combined it with the term $1 /\left(4 \lambda p\left(a^{\star}\right)\right)$ left from Eq. 8.

$$
\left(1-p\left(a^{\star}\right)\right)\left(g\left(x, a^{\star}\right)-g(x, \tilde{a})\right)+\frac{1}{4 \lambda p\left(a^{\star}\right)} .
$$

To proceed, we consider two cases below.
First case: when $a^{\star} \neq \tilde{a}$, then we have

$$
\begin{aligned}
& \left(1-p\left(a^{\star}\right)\right)\left(g\left(x, a^{\star}\right)-g(x, \tilde{a})\right)+\frac{1}{4 \lambda p\left(a^{\star}\right)} \\
& =\left(1-\frac{1}{A+\lambda\left(g(x, \tilde{a})-g\left(x, a^{\star}\right)\right)}\right)\left(g\left(x, a^{\star}\right)-g(x, \tilde{a})\right)+\frac{A+\lambda\left(g(x, \tilde{a})-g\left(x, a^{\star}\right)\right)}{4 \lambda} \\
& \leq\left(g\left(x, a^{\star}\right)-g(x, \tilde{a})\right)+\frac{1}{\lambda}+\frac{A}{4 \lambda}+\frac{g(x, \tilde{a})-g\left(x, a^{\star}\right)}{4} \leq \frac{1}{\lambda}+\frac{A}{4 \lambda} .
\end{aligned}
$$

where the first inequality comes from the fact that $\frac{1}{A+\lambda\left(g(x, \tilde{a})-g\left(x, a^{\star}\right)\right)}\left(g(x, \tilde{a})-g\left(x, a^{\star}\right)\right) \leq 1 / \lambda$.
Second case: when $a^{\star}=\tilde{a}$, then $p\left(a^{\star}\right)=p(\tilde{a})=1-\sum_{a \neq \tilde{a}} \frac{1}{A+\lambda(g(x, \tilde{a})-g(x, a))} \geq 1 / A$. Then,

$$
\left(1-p\left(a^{\star}\right)\right)\left(g\left(x, a^{\star}\right)-g(x, \tilde{a})\right)+\frac{1}{4 \lambda p\left(a^{\star}\right)} \leq \frac{A}{4 \lambda} .
$$

So combine all these terms together, we arrive that:

$$
\mathbb{E}_{a \sim \rho}\left(f\left(x, a^{\star}\right)-f(x, a)\right) \leq \lambda \mathbb{E}_{a \sim p}(g(x, a)-f(x, a))^{2}+\frac{1}{4 \lambda}+\frac{A-1}{\lambda}+\frac{1}{\lambda}+\frac{A}{4 \lambda},
$$

which implies that:

$$
\mathbb{E}_{a \sim \rho}\left(f\left(x, a^{\star}\right)-f(x, a)\right)-\lambda \mathbb{E}_{a \sim p}(g(x, a)-f(x, a))^{2} \leq \frac{4 A}{\lambda}
$$

The above lemma shows that $\beta \leq 4 A$. Plug in this into the general theorem, we see that our algorithm which uses IGW gives a regret bound $O(\sqrt{T A(\operatorname{Reg}(T)+\ln (1 / \delta))})$.

A Appendix

Here we show that the regret bound in (1) leads to (2)
The regret form in (1) and the realizability condition $f^{\star} \in \mathcal{F}$ implies that:

$$
\sum_{t=0}^{T-1}\left(\left(f_{t}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}-\left(f^{\star}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}\right)=\operatorname{Reg}(T)
$$

Denote $z_{t}:=\left(f_{t}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}-\left(f^{\star}\left(x_{t}, a_{t}\right)-r_{t}\right)^{2}$. Note that f_{t} and p_{t} does not depend on a_{t} and r_{t} (i.e., a_{t} and r_{t} are generated given f_{t} and p_{t}). Denote \mathbb{E}_{t} as the condition expectation which conditions on history $x_{0}, a_{0}, r_{0}, \ldots, x_{t-1}, a_{t-1}, r_{t-1}, x_{t}$ (so conditioned on this history, the only randomness here is from $a_{t} \sim p_{t}$ and $\left.r_{t} \sim R\left(x_{t}, a_{t}\right)\right)$.

$$
\begin{aligned}
\mathbb{E}_{t}\left[z_{t}\right] & =\mathbb{E}_{t}\left[\left(f_{t}\left(x_{t}, a_{t}\right)-f^{\star}\left(x_{t}, a_{t}\right)\right)\left(f_{t}\left(x_{t}, a_{t}\right)+f^{\star}\left(x_{t}, a_{t}\right)-2 r_{t}\right)\right] \\
& =\mathbb{E}_{t}\left[\left(f_{t}\left(x_{t}, a_{t}\right)-f^{\star}\left(x_{t}, a_{t}\right)\right)\left(f_{t}\left(x_{t}, a_{t}\right)+f^{\star}\left(x_{t}, a_{t}\right)-2 f^{\star}\left(x_{t}, a_{t}\right)\right)\right] \\
& =\mathbb{E}_{t}\left(f_{t}\left(x_{t}, a_{t}\right)-f^{\star}\left(x_{t}, a_{t}\right)\right)^{2}=\mathbb{E}_{a \sim p_{t}}\left(f_{t}\left(x_{t}, a\right)-f^{\star}\left(x_{t}, a\right)\right)^{2}
\end{aligned}
$$

Also note that

$$
\begin{aligned}
\mathbb{E}_{t}\left[z_{t}^{2}\right] & =\mathbb{E}_{t}\left[\left(f_{t}\left(x_{t}, a_{t}\right)-f^{\star}\left(x_{t}, a_{t}\right)\right)^{2}\left(f_{t}\left(x_{t}, a_{t}\right)+f^{\star}\left(x_{t}, a_{t}\right)-2 r_{t}\right)^{2}\right] \\
& \leq 4 \mathbb{E}_{t}\left[\left(f_{t}\left(x_{t}, a_{t}\right)-f^{\star}\left(x_{t}, a_{t}\right)\right)^{2}\right] \\
& =4 \mathbb{E}_{a \sim p_{t}}\left[\left(f_{t}\left(x_{t}, a\right)-f^{\star}\left(x_{t}, a\right)\right)^{2}\right]
\end{aligned}
$$

The sequence $z_{t}-\mathbb{E}_{t}\left[z_{t}\right]$ forms a sequence of Martingale difference, which allows us to use Azuma-Bernstein's inequality, i.e., with probability at least $1-\delta$, we have:

$$
\sum_{t}\left(\mathbb{E}_{t}\left[z_{t}\right]-z_{t}\right) \leq \sqrt{8 \sum_{t} \mathbb{E}_{a \sim p_{t}}\left(f_{t}\left(x_{t}, a\right)-f^{\star}\left(x_{t}, a\right)\right)^{2} \cdot \ln (1 / \delta)}+4 \ln (1 / \delta)
$$

Now use the fact that $\sum_{t} z_{t} \leq \operatorname{Reg}_{T}$, and $\sum_{t} \mathbb{E}_{t}\left[z_{t}\right]=\sum_{t} \mathbb{E}_{a \sim p_{t}}\left(f_{t}\left(x_{t}, a\right)-f^{\star}\left(x_{t}, a\right)\right)^{2}$, we have:

$$
\sum_{t} \mathbb{E}_{t} z_{t} \leq \sqrt{8 \ln (1 / \delta) \sum_{t} \mathbb{E}_{t} z_{t}}+4 \ln (1 / \delta)+\operatorname{Reg}(T)
$$

Solve for $\sum_{t} \mathbb{E}_{t} z_{t}$, we arrive at:

$$
\sum_{t} \mathbb{E}_{t} z_{t} \leq 2 \operatorname{Reg}(T)+16 \ln (1 / \delta)
$$

References

