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1 Setting

We consider the following Contextual bandit model. At round t, the environment presents a context xt ∈ X ; the
learner selects a distribution pt ∈ ∆(A) over actions and samples an action at ∼ pt; the learner receives a reward
signal rt ∼ R(xt, at) where R(x, a) is the distribution of the reward under context-action pair (x, a). The game
proceeds for T many rounds. Without loss of generality, we assume reward is always normalized in the sense that it
is bounded between [0, 1].

We now define regret. Denote f?(x, a) = Er∼R(x,a)[r] as the expected reward under (x, a). The optimal policy
is defined as π?(x) = arg maxa f

?(x, a). Thus, the regret is defined as follows:

Regret =

T−1∑
t=0

f?(xt, π
?(x))−

T−1∑
t=0

Ea∼ptf?(xt, at).

Function approximation setup and online regression oracle We will use function approximation. Define
F ⊂ X ×A 7→ [0, 1] as a class of functions which aim to capture f?.

We assume that we have an online regression oracle. More formally, at iteration t, given context xt, at, before
seeing the realized reward rt, the regression oracle selects ft and predicts reward ft(xt, at); it then sees the reward
rt, and suffers loss (ft(xt, at)− rt)2. We assume that the online regression oracle achieves has bounded regret, i.e.,

T−1∑
t=0

(ft(xt, at)− rt)2 −min
f∈F

T−1∑
t=0

(f(xt, at)− rt)2 = Reg(T ). (1)

Here Reg(T ) typically grows sublinear. One example is that when F is a discrete class, then there exists algorithm
which can have Reg(T ) = O(ln(T ) ln(|F|)). Note the ln-dependence on the size of the function class, which means
that the function class can be exponentially large. For continuous function class, when F is convex, we can also
have Reg(T ) scaling in the order of ln(T ).

2 A general algorithmic framework

First of all, using the fact that E[rt|xt, at] = f?(xt, at) and at ∼ pt ∈ ∆(A), the regret on the square loss in (1)
implies the following. With probability at least 1− δ, we have:

∀t ≤ T :

t−1∑
i=0

Ea∼pt (ft(xt, a)− f?(xt, a))2 = O (Reg(T ) + ln(1/δ)) . (2)

This step is standard in minimizing square loss, and we will defer the proof to the appendix. Intuitively, this means
that ft is doing well compared to the Bayes optimal f?.
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Now we consider the following meta algorithm which defines pt in iteration t using the following min-max
procedure. Given the context xt, we perform

pt = argmin
p∈∆(A)

max
f∈F

(
max
a

f(xt, a)− Ea∼p[f(xt, a)]
)

︸ ︷︷ ︸
“Regret" under xt and function f

−λEa∼p (f(xt, a)− ft(xt, a))2︸ ︷︷ ︸
Regularization: constrain f near ft

(3)

The algorithm then will sample at ∼ pt, receive receive rt, and call the online regression oracle to update function
ft to ft+1, and then move on to the iteration t+ 1.

We define the Decision Estimation Coefficient β as follows.

β/λ := max
x∈X ,g∈F

min
p

max
f∈F

(
max
a

f(x, a)− Ea∼ptf(x, a)
)
− λEa∼p (f(x, a)− g(x, a))2 (4)

The following theorem converts the DEC β and the online regression oracle regret Reg(T ) into the regret of our
algorithm in (3).

Theorem 1. Consider the CB algorithm which updates ft using an online regression oracle, and computes pt as in
Eq. 3. Then with probability at least 1−δ, the regret of the algorithm is upper bounded byO(

√
Tβ(Reg(T ) + ln(1/δ))).

Proof. The definition of DEC in (4) implies that for our choice of pt at iteration t under context xt, we have:

max
f∈F

Ea∼pt
(

max
a

f(xt, a)− f(xt, a)
)
− λEa∼pt (f(xt, a)− ft(xt, a))2 ≤ β/λ.

Now let us revisit the CB regret definition.

Regret =
T−1∑
t=0

max
a

f?(xt, a)−
T−1∑
t=0

Ea∼ptf?(xt, a)

=
T−1∑
t=0

(
max
a

f?(xt, a)− Ea∼ptf?(xt, a)− λEa∼pt(f?(xt, a)− ft(xt, a))2
)

+ λ
T−1∑
t=0

Ea∼pt(f?(xt, a)− ft(xt, a))2

≤ Tβ/λ+ λ(Reg(T ) + ln(1/δ))

where the last inequality uses the fact that f? ∈ F , and also the regret bound on
∑

t Ea∼pt(f?(xt, a)− ft(xt, a)) ≤
Reg(T ) + ln(1/δ).

Set λ = Tβ/(Reg(T ) + ln(1/δ)), we have:

Regret ≤ 2
√
Tβ(Reg(T ) + ln(1/δ)).

3 Inverse Gap Weighting

So far we have seen that if we can solve (3) – the minmax procedure, and the DEC defined in (4) is bounded, then
we achieve a

√
T regret bound (assuming Reg(T ) = O(ln(T ))). However, solving the minmax problem formed in

(3) can be computationally challenging in general – a naive approach is to search over all possible p ∈ ∆(A) and all
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f ∈ F which clearly is not computationally efficient. Moreover, it also seems not that straightforward to check if β
in (4) is small as it involves complicated max,min,max.

Luickly, for contextual bandit, there is a simple approach to construct a distribution pt which satisfies the
following:

max
x∈X ,g∈F

max
f∈F

(
max
a

f(x, a)− Ea∼ptf(x, a)
)
− λEa∼pt (f(x, a)− g(x, a))2 ≤ O(

A

λ
),

which implies that β ≤ O(A), where A = |A|. The way to construct such a pt is through the approach called
Inverse Gap Weighting (IGW). IGW is formally defined as follows. Given any function g ∈ F and context x,
IGW(g, x) ∈ ∆(A) is a distribution over actions defined as follows. Denote ã = argmaxa∈A g(x, a).

IGW(g, x)[a] =
1

A+ λ(g(x, ã)− g(x, a))
, IGW(g, x)[ã] = 1−

∑
a6=ã

IGW(g, x)[a].

Using IGW, we can compupte pt in iteration t as follows: pt = IGW(ft, xt). Note that pt is not necessarily the
minimizer in (3), instead, it should be considered as an approximated minimizer.

The following lemma shows that using IGW, we indeed can upper bound the DEC β by A.

Lemma 2. For any x ∈ X and any g ∈ G, define p = IGW(g, x), we must have:

max
f∈F

[
(max

a
f(x, a)− Ea∼pf(x, a))− λEa∼p(f(x, a)− g(x, a))2

]
≤ (4A)/λ,

for all λ ∈ R+.

Proof. Let us consider any f ∈ F and show that the above holds for f ∈ F .
Denote a? = arg maxa f(x, a) and recall ã = arg maxa g(x, a). For the regret on x and f , we have:

Ea∼p(f(x, a?)− f(x, a)) =
∑
a6=a?

p(a)(f(x, a?)− f(x, a))

=
∑
a6=a?

p(a)

f(x, a?)− g(x, a?)︸ ︷︷ ︸
T1

+ g(x, a?)− g(x, ã)︸ ︷︷ ︸
T2

+ g(x, ã)− g(x, a)︸ ︷︷ ︸
T3

+ g(x, a)− f(x, a)︸ ︷︷ ︸
T4


Let us first bound T4. For T4, apply AM-GM we have:∑

a6=a?

[
p(a)

4λ
+ p(a)λ(g(x, a)− f(x, a))2

]
=

1− p(a?)
4λ

+ λ
∑
a6=a?

p(a)(g(x, a)− f(x, a))2 (5)

≤ 1

4λ
+ λ

∑
a6=a?

p(a)(g(x, a)− f(x, a))2. (6)

Now let us apply AM-GM on T1. We have:

(1− p(a?))(f(x, a?)− g(x, a?)) ≤ (1− p(a?))2

4λp(a?)
+ λp(a?)(f(x, a?)− g(x, a?))2 (7)

≤ 1

4λp(a?)
+ λp(a?)(f(x, a?)− g(x, a?))2. (8)
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The 1
4λp(a?) term will be used together with the term T2 below. The λp(a?)(f(x, a?) − g(x, a?))2 term can be

combined together with the term λ
∑

a6=a? p(a)(g(x, a) − f(x, a))2 in Eq. 6, to cancel out the λEa∼p(f(x, a) −
g(x, a))2 term in the key inequality in the lemma.

Now let us bound the term T3.∑
a6=a?

p(a)(g(x, ã)− g(x, a)) =
∑
a6=a?

1

A+ λ(g(x, ã)− g(x, a))
(g(x, ã)− g(x, a)) ≤ A− 1

λ
.

Now let us consider term T2, combined it with the term 1/(4λp(a?)) left from Eq. 8.

(1− p(a?))(g(x, a?)− g(x, ã)) +
1

4λp(a?)
.

To proceed, we consider two cases below.
First case: when a? 6= ã, then we have

(1− p(a?))(g(x, a?)− g(x, ã)) +
1

4λp(a?)

= (1− 1

A+ λ(g(x, ã)− g(x, a?))
)(g(x, a?)− g(x, ã)) +

A+ λ(g(x, ã)− g(x, a?))

4λ

≤ (g(x, a?)− g(x, ã)) +
1

λ
+
A

4λ
+
g(x, ã)− g(x, a?)

4
≤ 1

λ
+
A

4λ
.

where the first inequality comes from the fact that 1
A+λ(g(x,ã)−g(x,a?))(g(x, ã)− g(x, a?)) ≤ 1/λ.

Second case: when a? = ã, then p(a?) = p(ã) = 1−
∑

a6=ã
1

A+λ(g(x,ã)−g(x,a)) ≥ 1/A. Then,

(1− p(a?))(g(x, a?)− g(x, ã)) +
1

4λp(a?)
≤ A

4λ
.

So combine all these terms together, we arrive that:

Ea∼ρ(f(x, a?)− f(x, a)) ≤ λEa∼p(g(x, a)− f(x, a))2 +
1

4λ
+
A− 1

λ
+

1

λ
+
A

4λ
,

which implies that:

Ea∼ρ(f(x, a?)− f(x, a))− λEa∼p(g(x, a)− f(x, a))2 ≤ 4A

λ
.

The above lemma shows that β ≤ 4A. Plug in this into the general theorem, we see that our algorithm which
uses IGW gives a regret bound O(

√
TA(Reg(T ) + ln(1/δ))).

A Appendix

Here we show that the regret bound in (1) leads to (2)
The regret form in (1) and the realizability condition f? ∈ F implies that:

T−1∑
t=0

(
(ft(xt, at)− rt)2 − (f?(xt, at)− rt)2

)
= Reg(T ).
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Denote zt := (ft(xt, at) − rt)
2 − (f?(xt, at) − rt)

2. Note that ft and pt does not depend on at and rt (i.e.,
at and rt are generated given ft and pt). Denote Et as the condition expectation which conditions on history
x0, a0, r0, . . . , xt−1, at−1, rt−1, xt (so conditioned on this history, the only randomness here is from at ∼ pt and
rt ∼ R(xt, at)).

Et[zt] = Et [(ft(xt, at)− f?(xt, at))(ft(xt, at) + f?(xt, at)− 2rt)]

= Et [(ft(xt, at)− f?(xt, at))(ft(xt, at) + f?(xt, at)− 2f?(xt, at))]

= Et (ft(xt, at)− f?(xt, at))2 = Ea∼pt (ft(xt, a)− f?(xt, a))2

Also note that

Et[z2
t ] = Et

[
(ft(xt, at)− f?(xt, at))2(ft(xt, at) + f?(xt, at)− 2rt)

2
]

≤ 4Et[(ft(xt, at)− f?(xt, at))2]

= 4Ea∼pt
[
(ft(xt, a)− f?(xt, a))2

]
.

The sequence zt − Et[zt] forms a sequence of Martingale difference, which allows us to use Azuma-Bernstein’s
inequality, i.e., with probability at least 1− δ, we have:

∑
t

(Et[zt]− zt) ≤
√

8
∑
t

Ea∼pt(ft(xt, a)− f?(xt, a))2 · ln(1/δ) + 4 ln(1/δ).

Now use the fact that
∑

t zt ≤ RegT , and
∑

t Et[zt] =
∑

t Ea∼pt(ft(xt, a)− f?(xt, a))2, we have:

∑
t

Etzt ≤
√

8 ln(1/δ)
∑
t

Etzt + 4 ln(1/δ) + Reg(T ).

Solve for
∑

t Etzt, we arrive at: ∑
t

Etzt ≤ 2Reg(T ) + 16 ln(1/δ).
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