Note on Contextual Bandits with Online Regression Oracles
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1 Setting

We consider the following Contextual bandit model. At round ¢, the environment presents a context x; € &X’; the
learner selects a distribution p; € A(.A) over actions and samples an action a; ~ p; the learner receives a reward
signal ¢ ~ R(z¢,a;) where R(z,a) is the distribution of the reward under context-action pair (z, a). The game
proceeds for 7' many rounds. Without loss of generality, we assume reward is always normalized in the sense that it
is bounded between [0, 1].

We now define regret. Denote f*(x,a) = E,_g(s,q)[r] as the expected reward under (z, a). The optimal policy
is defined as 7*(x) = arg max, f*(z, a). Thus, the regret is defined as follows:

T—1 T—1
Regret = Z (g, m*(x)) — Z Eqmp, [* (¢, ar).
=0 =0

Function approximation setup and online regression oracle =~ We will use function approximation. Define
F C X x A |0,1] as a class of functions which aim to capture f*.

We assume that we have an online regression oracle. More formally, at iteration ¢, given context ¢, at, before
seeing the realized reward ry, the regression oracle selects f; and predicts reward f;(z¢, a;); it then sees the reward
rt, and suffers loss (fi(x¢, ar) — rt)Q. We assume that the online regression oracle achieves has bounded regret, i.e.,

T-1 T-1
>_(fiwesa)) =re)* —min > (f(wear) = re)* = Reg(T). (1)
t=0 t=0

Here Reg(T') typically grows sublinear. One example is that when F is a discrete class, then there exists algorithm
which can have Reg(7') = O(In(7T') In(|F])). Note the In-dependence on the size of the function class, which means
that the function class can be exponentially large. For continuous function class, when F is convex, we can also
have Reg(T") scaling in the order of In(7").

2 A general algorithmic framework

First of all, using the fact that E[r|z¢, a;] = f*(2¢,a:) and a; ~ p; € A(A), the regret on the square loss in (1)
implies the following. With probability at least 1 — §, we have:

t—1

VST Eanp, (filwa) — f(21,0))° = O (Reg(T) + In(1/5)). @)
=0

This step is standard in minimizing square loss, and we will defer the proof to the appendix. Intuitively, this means
that f; is doing well compared to the Bayes optimal f*.



Now we consider the following meta algorithm which defines p; in iteration ¢ using the following min-max
procedure. Given the context x;, we perform

Py = argmin max (max f(xt,a) — Equplf (a4, a)]) —AEaep (f(zy,a) — fi(ay, a,))2 (3)
pEA(A) TEF L @

. ~ . Regularization: constrain f near
‘Regret" under x; and function f g f fi

The algorithm then will sample a; ~ p;, receive receive 7y, and call the online regression oracle to update function
fi to fi4+1, and then move on to the iteration ¢ + 1.
We define the Decision Estimation Coefficient /3 as follows.

B/ = mer/r\}i]é}_m;n I}lea]}_g (mgx f(z,a) = Eqmp, f(z, a)) — AEonp (f(2,0) — g(z,a))? 4)

The following theorem converts the DEC /3 and the online regression oracle regret Reg(7") into the regret of our
algorithm in (3).

Theorem 1. Consider the CB algorithm which updates f; using an online regression oracle, and computes p; as in
Eq. 3. Then with probability at least 1—0, the regret of the algorithm is upper bounded by O(+/TB(Reg(T) + In(1/6))).

Proof. The definition of DEC in (4) implies that for our choice of p, at iteration ¢ under context x;, we have:
mo By, (max f(xr,) — f(21,0) ) = ABamp, (F(21,0) — folar, ) < /A

Now let us revisit the CB regret definition.

T-1 T-1
Regret = max [ (xg,a) — Eqmp, [* (2, a)
t=0 t=0
T-1
= (nglX f*(mtv a) - anptf*(l‘t, (Z) - AEGNPt (f*(xb CL) - ft(xh a))2>
=0

T—1
+A Z EGNPt (f*(wh a) - ft(wh a))2
t=0
<TB/X+ A(Reg(T) + In(1/4))
where the last inequality uses the fact that f* € F, and also the regret bound on ) _, Eqp, (f* (24, a) — fi(2s,a)) <

Reg(T') + In(1/9).
Set A\ =T3/(Reg(T") +1n(1/4)), we have:

Regret < 21/T3(Reg(T) + In(1/9)).

3 Inverse Gap Weighting

So far we have seen that if we can solve (3) — the minmax procedure, and the DEC defined in (4) is bounded, then
we achieve a /T regret bound (assuming Reg(7) = O(In(T))). However, solving the minmax problem formed in
(3) can be computationally challenging in general — a naive approach is to search over all possible p € A(A) and all



f € F which clearly is not computationally efficient. Moreover, it also seems not that straightforward to check if 3
in (4) is small as it involves complicated max, min, max.

Luickly, for contextual bandit, there is a simple approach to construct a distribution p; which satisfies the
following:

A

s mas (max f(z,0) ~ Eap (2,0)) =~ XBany, ((2,0) = 9(r,))” < O(F),

which implies that 3 < O(A), where A = | A|. The way to construct such a p; is through the approach called

Inverse Gap Weighting (IGW). IGW is formally defined as follows. Given any function g € F and context x,
IGW(g,x) € A(A) is a distribution over actions defined as follows. Denote & = argmax,¢ 4 ¢(z, a).

1

GWlg, o)l = o G a) =g a))

IGW(g,z)[a] = 1 — ) IGW(g,)al.
a#a

Using IGW, we can compupte p; in iteration ¢ as follows: p, = IGW( f;, x;). Note that p; is not necessarily the
minimizer in (3), instead, it should be considered as an approximated minimizer.
The following lemma shows that using IGW, we indeed can upper bound the DEC 3 by A.

Lemma 2. Forany x € X and any g € G, define p = IGW(g, x), we must have:

ma | (max f(z,0) ~ Bavy (@.)) = NBany (F(z,0) — g(w,))?] < (44)/,

forall \ € RT.

Proof. Let us consider any f € F and show that the above holds for f € F.
Denote a* = arg max, f(x,a) and recall @ = arg max, g(z, a). For the regret on z and f, we have:

Eonp(f(x,0*) = f(z,0)) = Y pla)(f(z,a*) - f(z,a))
aFa*

= Z p(a) f(a:,a*) - g(m,a*) +g($va*) - g(:L’,CNL) —|—g(:1:,&) - g(x,a) +g($aa) - f(IL‘,CL)
aFar Ty T, T T

Let us first bound T}. For T}, apply AM-GM we have:

> 4 (o) - flo )| = TR A2 e - SR O
<5+ A3 platr )~ S ©®
Now let us apply AM-GM on T;. We have:
(1= pla@) () = o) < CPEI gy ) — gl a')) ™
< + 2p(a”)(f(a,a%) = g, a))*. ®)

4\p(a*)



The 4/\p1(a*) term will be used together with the term 75 below. The Ap(a*)(f(z,a*) — g(z,a*))? term can be

combined together with the term A} .. p(a)(g(z, a) — f(z, a))? in Eq. 6, to cancel out the NEq,(f(z,a) —
g(z,a))? term in the key inequality in the lemma.
Now let us bound the term T3.

1 A—-1
. _ o < '
a;*p(a)(g(fc, i) — g(,a)) a;* AT e —smay W@ d —g(@a) < =
Now let us consider term 75, combined it with the term 1/(4Ap(a*)) left from Eq. 8.
1
4Ap(a*)

(1 —p(a*))(g(z,a*) — g(z,a)) +
To proceed, we consider two cases below.
First case: when a* # a, then we have

(1= pa oo a") = glo.0) + s

L 1 v a*) — alw. o)) 4 AT A, @) — g(x,a%))
=0 T @) — g o)) W) —9@a) + 5

* ~ 1 A g(a:,d)—g(:c,a*) 1
< - 4+ = = :

where the first inequality comes from the fact that = &1)_9(36 ) (g9(z,a) — g(z,a*)) < 1/A.

Second case: when a* = @, then p(a*) = p(a) =1 -3, ; A+)\(g(z’é)_g($,a)) > 1/A. Then,

1 A

(1 =p(a®))(g(x,a”) = g(z,a)) + Dp(a) = ax

So combine all these terms together, we arrive that:

A— A
Eomp(f(2,0) — (7,0)) < ABanp(g(m,0) — F,@))? + 15+ 0 + 5 + 2y

which implies that:

Bap(f(2,0°) — (2,)) = XEarplg(a,0) — f(2,)° < 20
O

The above lemma shows that 5 < 4A. Plug in this into the general theorem, we see that our algorithm which
uses IGW gives a regret bound O(y/T A(Reg(T) + In(1/5))).

A Appendix

Here we show that the regret bound in (1) leads to (2)
The regret form in (1) and the realizability condition f* € F implies that:

T-1

Z ((ft(xt,at) - Tt)Q — (f*(xt,a¢) — Tt)z) = Reg(T).

t=0



Denote z; := (fi(xs,as) — r¢)? — (f*(x¢,a¢) — 7¢)%. Note that f; and p; does not depend on a; and r; (i.e.,
as and 1 are generated given f; and p;). Denote E; as the condition expectation which conditions on history
20, 00,70, ---,Tt—1,0¢—1,T¢t—1, T¢ (SO conditioned on this history, the only randomness here is from a; ~ p; and
ry ~~ R(.Z’t, at)).

Et[zt] = Et [(ft(wh at) (xt7 Gt)) (.’Bt, at + f (:L't, CLt) — 27})]
= B¢ [(fe(we, ar) — f*(we, a0)) (fele, ap) + [5 (24, a0) — 2 (24, a1))]
= B¢ (fe(e,ar) — f* (@0, a0))* = Bay, (fi@r,a) — f*(21,0))?

Also note that
Eil27] = Be [(fi(we, ar) — f*(we,a0))* (felwe, an) + f* (e, ar) — 2r1)?]

< AR [(fi(e, a0) — f* (2, a0))?]
= 4Ea~pt [(ft(l't, a) - f*(l't, CL))Q} :

The sequence z; — E.[z;] forms a sequence of Martingale difference, which allows us to use Azuma-Bernstein’s
inequality, i.e., with probability at least 1 — §, we have:

> (Balz] — 2) < \/8 > Fap (frle,a) = f*(21,0))2 - In(1/6) + 41n(1/5).

t

Now use the fact that Y, z < Regp, and Y, Ei[2t] = 3, Eap, (fi (21, 0) — f*(24,a))?, we have:

ZE% \/8 In(1/6) ZEtzt +41n(1/6) + Reg(T).

Solve for ), E;z;, we arrive at:

> Eiz < 2Reg(T) + 161n(1/6).
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