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Regret

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: no-regret, i.e., RegretT /T → 0, as T → ∞

μ⋆ = max
i∈[K]

μi
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Optimism in the face of uncertainty
Denote the optimal arm ; recall I⋆ = arg max

i∈[K]
μi It = arg max

i∈[K]
̂μt(i) +

ln(KT/δ)
Nt(i)

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) +
ln(TK/δ)

Nt(It)
− μIt

≤ 2
ln(TK/δ)

Nt(It)



Today:

MAB w/ K arms has regret O( KT)

What if there are infinitely many actions?

Introducing structures in the reward function
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3. Regret analysis of LinUCB
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Linear Bandit Setting

We have an action set D ⊂ ℝd

Expected reward of each action  is linear: x ∈ D

𝔼[r |x] = (μ⋆)⊤x

Every time we pick an action , we observe a noisy rewardx ∈ D

r = μ⋆ ⋅ x + η
Zero mean i.i.d noise
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Learning protocol and goal:

For t = 1 to T:

Leaner selects  (based on history)xt ∈ D

Learner observes a noisy reward, i.e., rt = μ⋆ ⋅ xt + ηt

Goal: minimize regret

Regret := Tμ⋆ ⋅ x⋆ −
T−1

∑
t=0

μ⋆ ⋅ xt

x⋆ = arg max
x∈D

μ⋆ ⋅ x
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LinUCB algorithm

Overall idea: 

Ridge linear regression for learning  + design exploration bonusμ⋆
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LinUCB algorithm
In iteration t:

1. Perform Ridge LR on data :{xi, ri}t−1
i=0

Set ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

2: Set exploration bonus: bt(x) = β x⊤Σ−1
t x

3: Play optimistically, i.e., xt = arg max
x∈D

̂μ⊤
t xt + bt(x)
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̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

( ̂μt − μ⋆)⊤Σt( ̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

≤ λ∥μ⋆∥+ ???
Self-normalized Martingale bound



Self-normalized Bound for Vector-valued Martingales

Suppose  are mean zero random variables, and ;{ηi}∞
i=0 |ηi | ≤ σ

Let  be any sequence of random vectors with , then w/ 
prob , for all , 

{xi}∞
i=0 ∥xi∥ ≤ 1

1 − δ t ≥ 1

Σ−1/2
t

t−1

∑
i=0

xiηi

2

≤ σ2d ⋅ (ln ( t
λ

+ 1) + ln(1/δ))



Analysis of Ridge Linear Regression (Continue)

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

( ̂μt − μ⋆)⊤Σt( ̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

≲ λ + σ d ⋅ ln(T/(λδ))



Summary for Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

( ̂μt − μ⋆)⊤Σt( ̂μt − μ⋆) ≲ λ + σ d ln(T/(λδ))
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( ̂μt − μ⋆)⊤Σt( ̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x | ≤ ∥ ̂μt − μ⋆∥Σt
⋅ ∥x∥Σ−1

t

≲ ( λ + σ d ln(T/(λδ))) ⋅ x Σ−1
t

bt(x) := β ⋅ ∥x∥Σ−1
t

̂μt ⋅ x

̂μt ⋅ x − β∥x∥Σ−1
t

μ⋆ ⋅ x

̂μt ⋅ x + β∥x∥Σ−1
t



Optimism
Optimism:  μ⋆ ⋅ x⋆ ≤ ̂μt ⋅ xt + β∥xt∥Σ−1

t

Proof:

̂μt ⋅ x

̂μt ⋅ x − β∥x∥Σ−1
t

μ⋆ ⋅ x

̂μt ⋅ x + β∥x∥Σ−1
t

∀x ∈ D
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t

≥ μ⋆ ⋅ (x⋆ − xt) ≥ δ

 falls in the subspace where “data is sparse”, i.e., we explored!xt

Case 2: confidence interval  is small∥xt∥Σ−1
t

Then regret at this round is small too, i.e., we exploited!



Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t



Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t

≤ β T ⋅
T−1

∑
t=0

∥xt∥2
Σ−1

t



Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t

≤ β T ⋅
T−1

∑
t=0

∥xt∥2
Σ−1

t

≲ β T ⋅ d ln(T/λ + 1) ∀λ ≥ 1
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Summary

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives us bound on on | (μ⋆ − ̂μt)⊤x |

3. Optimism in the face of uncertainty: μ⋆ ⋅ x⋆ ≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t

4. Regret is upper bounded by β∑
t

∥xt∥Σt
≤ β T ∑

t

∥xt∥2
Σ−1

t


