Multi-armed Bandits

Wen Sun

CS 6789: Foundations of Reinforcement Learning

The need for Exploration in RL:

The Combination Lock Example (i.e., the sparse reward problem)
(1) We have reward zero everywhere except at the goal (the right end); (2) Every black node, one of the two actions will lead the agent to the dead state (red)

The need for Exploration in RL:

The Combination Lock Example (i.e., the sparse reward problem)
(1) We have reward zero everywhere except at the goal (the right end);
(2) Every black node, one of the two actions will lead the agent to the dead state (red)

What is the probability of a random policy generating a trajectory that hits the goal?

Exploration!

We need to perform systematic exploration, i.e., remember where we visited, and purposely try to visit unexplored regions..

What we will do today:

Study Exploration in a very simple MDP:

$$
\mathscr{M}=\left\{s_{0},\left\{a_{1}, \ldots, a_{K}\right\}, H=1, R\right\}
$$

i.e., MDP with one state, one-step transition, and K actions

This is also called Multi-armed Bandits

Plan for today:

1. Introduction of MAB
2. Attempt 1: Greedy Algorithm (a bad algorithm)
3. Attempt 2: Explore and Commit
4. Attempt 3: Upper Confidence Bound (UCB) Algorithm

Intro to MAB

Setting:

We have K many arms: a_{1}, \ldots, a_{K}

Intro to MAB

Setting:

We have K many arms: a_{1}, \ldots, a_{K}
Each arm has a unknown reward distribution, i.e., $\nu_{i} \in \Delta([0,1])$,

$$
\mathrm{w} / \text { mean } \mu_{i}=\mathbb{E}_{r \sim \nu_{i}}[r]
$$

Intro to MAB

Setting:

We have K many arms: a_{1}, \ldots, a_{K}
Each arm has a unknown reward distribution, i.e., $\nu_{i} \in \Delta([0,1])$,

$$
\mathrm{w} / \text { mean } \mu_{i}=\mathbb{E}_{r \sim \nu_{i}}[r]
$$

Example: a_{i} has a Bernoulli distribution $\nu_{i} \mathrm{w} /$ mean $\mu_{i}:=p$:

Intro to MAB

Setting:

We have K many arms: a_{1}, \ldots, a_{K}
Each arm has a unknown reward distribution, i.e., $\nu_{i} \in \Delta([0,1])$,

$$
\mathrm{w} / \text { mean } \mu_{i}=\mathbb{E}_{r \sim \nu_{i}}[r]
$$

Example: a_{i} has a Bernoulli distribution $\nu_{i} \mathrm{w} /$ mean $\mu_{i}:=p$:

Every time we pull arm a_{i}, we observe an i.i.d reward $r= \begin{cases}1 & \mathrm{w} / \mathrm{prob} p \\ 0 & \mathrm{w} / \mathrm{prob} 1-p\end{cases}$

Intro to MAB

Applications on online advertisement:

Online Advertising

Arms correspond to Ads
Each arm has click-through-rate
(CTR): probability of getting clicked (unknown)

Intro to MAB

Applications on online advertisement:

Online Advertising

> A learning system aims to maximize CTR in a long run:

Arms correspond to Ads
Each arm has click-through-rate (CTR): probability of getting clicked (unknown)

Intro to MAB

Applications on online advertisement:

Online Advertising

Arms correspond to Ads
Each arm has click-through-rate (CTR): probability of getting clicked (unknown)

> A learning system aims to maximize CTR in a long run:

1. Try an Ad (pull an arm)

Intro to MAB

Applications on online advertisement:

Online Advertising

Arms correspond to Ads
Each arm has click-through-rate (CTR): probability of getting clicked (unknown)

> A learning system aims to maximize CTR in a long run:

1. Try an Ad (pull an arm)
2. Observe if it is clicked (see a zero-one reward)

Intro to MAB

Applications on online advertisement:

Online Advertising

Arms correspond to Ads
Each arm has click-through-rate (CTR): probability of getting clicked (unknown)

> A learning system aims to maximize CTR in a long run:

1. Try an Ad (pull an arm)
2. Observe if it is clicked (see a zero-one reward)
3. Update: Decide what ad to recommend for next round

Intro to MAB

More formally, we have the following interactive learning process:

$$
\text { For } t=0 \rightarrow T-1
$$

Intro to MAB

More formally, we have the following interactive learning process:

$$
\begin{aligned}
& \text { For } t=0 \rightarrow T-1 \\
& \text { 1. Learner pulls arm } I_{t} \in\{1, \ldots, K\}
\end{aligned}
$$

Intro to MAB

More formally, we have the following interactive learning process:

$$
\begin{aligned}
& \text { For } t=0 \rightarrow T-1 \quad \text { (\# based on historical information) } \\
& \text { 1. Learner pulls arm } I_{t} \in\{1, \ldots, K\}
\end{aligned}
$$

Intro to MAB

More formally, we have the following interactive learning process:

$$
\text { For } t=0 \rightarrow T-1 \quad \text { (\# based on historical information) }
$$

1. Learner pulls arm $I_{t} \in\{1, \ldots, K\}$
2. Learner observes an i.i.d reward $r_{t} \sim \nu_{I_{t}}$ of arm I_{t}

Intro to MAB

More formally, we have the following interactive learning process:

$$
\begin{aligned}
& \text { For } t=0 \rightarrow T-1 \quad \text { (\# based on historical information) } \\
& \text { 1. Learner pulls arm } I_{t} \in\{1, \ldots, K\} \\
& \text { 2. Learner observes an i.i.d reward } r_{t} \sim \nu_{I_{t}} \text { of arm } I_{t}
\end{aligned}
$$

Note: each iteration, we do not observe rewards of arms that we did not try

Intro to MAB

More formally, we have the following learning objective:

$$
\operatorname{Regret}_{T}=T \mu^{\star}-\sum_{t=0}^{T-1} \mu_{I_{t}} \quad \mu^{\star}=\max _{i \in[K]} \mu_{i}
$$

Intro to MAB

More formally, we have the following learning objective:

Intro to MAB

More formally, we have the following learning objective:

Intro to MAB

More formally, we have the following learning objective:

$$
\begin{aligned}
& \qquad \operatorname{Regret}_{T}=T \mu^{\star}-\sum_{t=0}^{T-1} \mu_{I_{t}} \mu^{\star}=\max _{i \in[K]} \mu_{i} \\
& \text { Total expected reward if we } \\
& \text { Tulled best arm over T rounds }
\end{aligned} \quad \text { arms we pulled over T rounds }
$$

$$
\text { Goal: no-regret, i.e., } \operatorname{Regret}_{T} / T \rightarrow 0 \text {, as } T \rightarrow \infty
$$

Intro to MAB

Why the problem is hard?

Exploration and Exploitation Tradeoff:

Intro to MAB

Why the problem is hard?

Exploration and Exploitation Tradeoff:

Every round, we need to ask ourselves:
Should we pull arms that are less frequently tried in the past (i.e., explore), Or should we commit to the current best arm (i.e., exploit)?

Plan for today:

\author{

1. Introduction of MAB
}
2. Attempt 1: Greedy Algorithm (a bad algorithm)
3. Attempt 2: Explore and Exploit
4. Attempt 3: Upper Confidence Bound (UCB) Algorithm

Attempt 1: Greedy Algorithm

Alg: try each arm once, and then commit to the one that has the highest observed reward

Attempt 1: Greedy Algorithm

Alg: try each arm once, and then commit to the one that has the highest observed reward

Q: what could be wrong?

Attempt 1: Greedy Algorithm

Alg: try each arm once, and then commit to the one that has the highest observed reward

Q: what could be wrong?

A bad arm (i.e., low μ_{i}) may generate a high reward by chance! (recall we have $r \sim \nu$, i.i.d)

Attempt 1: Greedy Algorithm

More concretely, let's say we have two arms a_{1}, a_{2} :
Reward dist for a_{1} : w/ prob $60 \%, r=1$; else $r=0$
Reward dist for $a_{2}: \mathrm{w} /$ prob $40 \%, r=1$; else $r=0$

Attempt 1: Greedy Algorithm

More concretely, let's say we have two arms a_{1}, a_{2} :
Reward dist for a_{1} : w/ prob $60 \%, r=1$; else $r=0$
Reward dist for $a_{2}: \mathrm{w} /$ prob $40 \%, r=1$; else $r=0$
Clearly a_{1} is a better arm!

Attempt 1: Greedy Algorithm

More concretely, let's say we have two arms a_{1}, a_{2} :
Reward dist for a_{1} : w/ prob $60 \%, r=1$; else $r=0$
Reward dist for a_{2} : w/ prob $40 \%, r=1$; else $r=0$

$$
\text { Clearly } a_{1} \text { is a better arm! }
$$

But try a_{1}, a_{2} once, with probability 16%, we will observe reward pair $(0,1)$

Attempt 1: Greedy Algorithm

More concretely, let's say we have two arms a_{1}, a_{2} :
Reward dist for $a_{1}: \mathrm{w} /$ prob $60 \%, r=1$; else $r=0$
Reward dist for $a_{2}: \mathrm{w} /$ prob $40 \%, r=1$; else $r=0$

$$
\text { Clearly } a_{1} \text { is a better arm! }
$$

But try a_{1}, a_{2} once, with probability 16%, we will observe reward pair $(0,1)$
The greedy alg will pick a_{2}-loosing expected reward 0.2 every time in the future

Plan for today:

1. Introduction of MAB
2. Attempt 1: Greedy Algorithm (a bad algorithm: constant regret)
3. Attempt 2: Explore and Commit
4. Attempt 3: Upper Confidence Bound (UCB) Algorithm

What lessons we learned from the Greedy Alg:

Due to randomness in the reward distribution, trying each arm once is not enough, i.e., observed single reward may be far away from the mean

What lessons we learned from the Greedy Alg:

Due to randomness in the reward distribution, trying each arm once is not enough, i.e., observed single reward may be far away from the mean

Q: what's the fix here?

What lessons we learned from the Greedy Alg:

Due to randomness in the reward distribution, trying each arm once is not enough, i.e., observed single reward may be far away from the mean

Q: what's the fix here?

Yes, let's (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3) commit to the one that has the highest empirical mean

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)
For $k=1 \rightarrow K: \quad$ (\# Exploration phase)

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)
For $k=1 \rightarrow K: \quad$ (\# Exploration phase)
Pull arm- $k N$ times, observe $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu_{k}$

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)

For $k=1 \rightarrow K: \quad$ (\# Exploration phase)
Pull arm- $k \mathrm{~N}$ times, observe $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu}_{k}=\sum_{i=1}^{N} r_{i} / N$

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)
For $k=1 \rightarrow K: \quad$ (\# Exploration phase)
Pull arm- $k N$ times, observe $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu}_{k}=\sum_{i=1}^{N} r_{i} / N$
For $t=N K \rightarrow T-1: \quad$ (\# Exploitation phase)

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)
For $k=1 \rightarrow K: \quad$ (\# Exploration phase)
Pull arm- $k N$ times, observe $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu}_{k}=\sum_{i=1}^{N} r_{i} / N$
For $t=N K \rightarrow T-1: \quad$ (\# Exploitation phase)
Pull the best empirical arm, i.e., $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{i}$

$$
i \in[K]
$$

Alg: Explore and Commit:

Algorithm hyper parameter $N<T / K$ (we assume $T \gg K$)
For $k=1 \rightarrow K: \quad$ (\# Exploration phase)
Pull arm- $k \mathrm{~N}$ times, observe $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu}_{k}=\sum_{i=1}^{N} r_{i} / N$
For $t=N K \rightarrow T-1$: (\# Exploitation phase)
Pull the best empirical arm, i.e., $I_{t}=\arg \max \hat{\mu}_{i}$ $i \in[K]$

Statistical Tools:

1. Hoeffding inequality (optional, no need to remember or understand it)

Statistical Tools:

1. Hoeffding inequality (optional, no need to remember or understand it)

Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \mu, \mathrm{w} /$ probability at least $1-\delta$, we have:

$$
\left|\sum_{i=1}^{N} r_{i} / N-\mu\right| \leq O\left(\sqrt{\frac{\ln (1 / \delta)}{N}}\right)
$$

Statistical Tools:

1. Hoeffding inequality (optional, no need to remember or understand it)

Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \mu, \mathrm{w} /$ probability at least $1-\delta$, we have:

$$
\left|\sum_{i=1}^{N} r_{i} / N-\mu\right| \leq O\left(\sqrt{\frac{\ln (1 / \delta)}{N}}\right)
$$

i.e., this gives us a confidence interval:

Statistical Tools:

1. Hoeffding inequality (optional, no need to remember or understand it)

Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \mu, \mathrm{w} /$ probability at least $1-\delta$, we have:

$$
\left|\sum_{i=1}^{N} r_{i} / N-\mu\right| \leq O\left(\sqrt{\frac{\ln (1 / \delta)}{N}}\right)
$$

$$
\hat{\mu}+\sqrt{\ln (1 / \delta) / N}
$$

i.e., this gives us a confidence interval:

$$
\hat{\mu}-\sqrt{\ln (1 / \delta) / N} \oint^{\mu}
$$

Statistical Tools:

Statistical Tools:

Combine Hoeffding and Union Bound, we have:

Statistical Tools:

Combine Hoeffding and Union Bound, we have:
After the Exploration phase, with probability at least $1-\delta$, for all

$$
\begin{gathered}
\text { arm } k \in[K], \text { we have: } \\
\left|\hat{\mu}_{k}-\mu_{k}\right| \leq O\left(\sqrt{\frac{\ln (K / \delta)}{N}}\right)
\end{gathered}
$$

Statistical Tools:

Combine Hoeffding and Union Bound, we have:
After the Exploration phase, with probability at least $1-\delta$, for all

$$
\begin{gathered}
\text { arm } k \in[K], \text { we have: } \\
\left|\hat{\mu}_{k}-\mu_{k}\right| \leq O\left(\sqrt{\frac{\ln (K / \delta)}{N}}\right)
\end{gathered}
$$

$\hat{\mu}_{2}+\sqrt{\ln (K / \delta) / N}$

Calculate the final regret:

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$ $i \in[K]$

Calculate the final regret:

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

1. What's the worst possible regret in the exploration phase:

Calculate the final regret:

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

1. What's the worst possible regret in the exploration phase:

$$
\text { Regret }_{\text {explore }} \leq N(K-1) \leq N K
$$

Calculate the final regret:

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

1. What's the worst possible regret in the exploration phase:

$$
\operatorname{Regret}_{\text {explore }} \leq N(K-1) \leq N K
$$

2. What's the regret in the exploitation phase:

Calculate the final regret:

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

1. What's the worst possible regret in the exploration phase:

$$
\text { Regret }_{\text {explore }} \leq N(K-1) \leq N K
$$

2. What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

Calculate the final regret:

Denote empirical best arm $\hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

1. What's the worst possible regret in the exploration phase:

$$
\text { Regret }_{\text {explore }} \leq N(K-1) \leq N K
$$

2. What's the regret in the exploitation phase:

$$
\begin{aligned}
\text { Regret }_{\text {exploit }} \leq & (T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right) \\
& \text { Let's now bound Regret }{ }_{\text {exploit }}
\end{aligned}
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$

$$
i \in[K]
$$

What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i}$
What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

$$
\mu_{I^{\star}}-\mu_{\hat{I}} \leq\left[\hat{\mu}_{I^{\star}}+\sqrt{\ln (K / \delta) / N}\right]-\left[\hat{\mu}_{\hat{I}}-\sqrt{\ln (K / \delta) / N}\right]
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i}$
What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

$$
\begin{aligned}
\mu_{I^{\star}}-\mu_{\hat{I}} & \leq\left[\hat{\mu}_{I^{\star}}+\sqrt{\ln (K / \delta) / N}\right]-\left[\hat{\mu}_{\hat{I}}-\sqrt{\ln (K / \delta) / N}\right] \\
& =\hat{\mu}_{I^{\star}}-\hat{\mu}_{\hat{I}}+2 \sqrt{\ln (K / \delta) / N}
\end{aligned}
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$
What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

$$
\begin{aligned}
\mu_{I^{\star}}-\mu_{\hat{I}} & \leq\left[\hat{\mu}_{I^{\star}}+\sqrt{\ln (K / \delta) / N}\right]-\left[\hat{\mu}_{\hat{I}}-\sqrt{\ln (K / \delta) / N}\right] \\
& =\hat{\mu}_{I^{\star}}-\hat{\mu}_{\hat{I}}+2 \sqrt{\ln (K / \delta) / N} \\
& \leq 2 \sqrt{\ln (K / \delta) / N}
\end{aligned}
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$
What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

$$
\begin{aligned}
\mu_{I^{\star}}-\mu_{\hat{I}} & \leq\left[\hat{\mu}_{I^{\star}}+\sqrt{\ln (K / \delta) / N}\right]-\left[\hat{\mu}_{\hat{I}}-\sqrt{\ln (K / \delta) / N}\right] \\
& =\hat{\mu}_{I^{\star}}-\hat{\mu}_{\hat{I}}+2 \sqrt{\ln (K / \delta) / N}
\end{aligned}
$$

Q: why?

$$
\leq 2 \sqrt{\ln (K / \delta) / N}
$$

Calculate the regret in the exploitation phase

Denote empirical best $\operatorname{arm} \hat{I}=\arg \max _{i \in[K]} \hat{\mu}_{i}$, and THE best arm $I^{\star}=\arg \max _{i \in[K]} \mu_{i}$
What's the regret in the exploitation phase:

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right)
$$

$$
\begin{aligned}
\mu_{I^{\star}}-\mu_{\hat{I}} & \leq\left[\hat{\mu}_{I^{\star}}+\sqrt{\ln (K / \delta) / N}\right]-\left[\hat{\mu}_{\hat{I}}-\sqrt{\ln (K / \delta) / N}\right] \\
& =\hat{\mu}_{I^{\star}}-\hat{\mu}_{\hat{I}}+2 \sqrt{\ln (K / \delta) / N}
\end{aligned}
$$

Q: why?

$$
\leq 2 \sqrt{\ln (K / \delta) / N}
$$

$$
\text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right) \leq 2 T \sqrt{\frac{\ln (K / \delta)}{N}}
$$

Finally, combine two regret together:

$$
\begin{aligned}
& \text { Regret }_{\text {explore }} \leq N(K-1) \leq N K \\
& \text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right) \leq T \sqrt{\frac{\ln (K / \delta)}{N}}
\end{aligned}
$$

$$
\text { Regret }_{T}=\text { Regret }_{\text {explore }}+\text { Regret }_{\text {exploit }} \leq N K+2 T \sqrt{\frac{\ln (K / \delta)}{N}}
$$

Finally, combine two regret together:

$$
\begin{aligned}
& \text { Regret }_{\text {explore }} \leq N(K-1) \leq N K \\
& \text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right) \leq T \sqrt{\frac{\ln (K / \delta)}{N}}
\end{aligned}
$$

$$
\operatorname{Regret}_{T}=\operatorname{Regret}_{\text {explore }}+\operatorname{Regret}_{\text {exploit }} \leq N K+2 T \sqrt{\frac{\ln (K / \delta)}{N}}
$$

Minimize the upper bound via optimizing N :

Finally, combine two regret together:

$$
\begin{aligned}
& \text { Regret }_{\text {explore }} \leq N(K-1) \leq N K \\
& \text { Regret }_{\text {exploit }} \leq(T-N K)\left(\mu_{I^{\star}}-\mu_{\hat{I}}\right) \leq T \sqrt{\frac{\ln (K / \delta)}{N}}
\end{aligned}
$$

$$
\operatorname{Regret}_{T}=\operatorname{Regret}_{\text {explore }}+\operatorname{Regret}_{\text {exploit }} \leq N K+2 T \sqrt{\frac{\ln (K / \delta)}{N}}
$$

Minimize the upper bound via optimizing N :

$$
\begin{aligned}
& \text { Set } N=\left(\frac{T \sqrt{\ln (K / \delta)}}{2 K}\right)^{2 / 3} \text {, we have: } \\
& \text { Regret }_{T} \leq O\left(T^{2 / 3} K^{1 / 3} \cdot \ln ^{1 / 3}(K / \delta)\right)
\end{aligned}
$$

To conclude on Explore then Commit:

[Theorem] Fix $\delta \in(0,1)$, set $N=\left(\frac{T \sqrt{\ln (K / \delta)}}{2 K}\right)^{2 / 3}$, with
probability at least $1-\delta$, Explore and Commit has the following regret:

$$
\text { Regret }_{T} \leq O\left(T^{2 / 3} K^{1 / 3} \cdot \ln ^{1 / 3}(K / \delta)\right)
$$

Q: can we do better, particularly, can we get \sqrt{T} regret bound?

Plan for today:

1. Introduction of MAB
2. Attempt 1: Greedy Algorithm (a bad algorithm: constant regret)
3. Attempt 2: Explore and Commit
4. Attempt 3: Upper Confidence Bound (UCB) Algorithm

Statistics that we maintain during learning:

We maintain the following statistics during the learning process:
At the beginning of iteration t, for all $i \in[K]$, \# of times we have tried arm i,

Statistics that we maintain during learning:

We maintain the following statistics during the learning process:
At the beginning of iteration t, for all $i \in[K]$, \# of times we have tried arm i,

$$
\text { i.e., } N_{t}(i)=\sum_{\tau=0}^{t-1} \mathbf{1}\left\{I_{\tau}=i\right\}
$$

Statistics that we maintain during learning:

We maintain the following statistics during the learning process:
At the beginning of iteration t, for all $i \in[K]$, \# of times we have tried arm i,

$$
\text { i.e., } N_{t}(i)=\sum_{\tau=0}^{t-1} \mathbf{1}\left\{I_{\tau}=i\right\}
$$

and its empirical mean $\hat{\mu}_{t}(i)$ so far;

Statistics that we maintain during learning:

We maintain the following statistics during the learning process:
At the beginning of iteration t, for all $i \in[K]$, \# of times we have tried arm i,

$$
\text { i.e., } N_{t}(i)=\sum_{\tau=0}^{t-1} \mathbf{1}\left\{I_{\tau}=i\right\}
$$

and its empirical mean $\hat{\mu}_{t}(i)$ so far;

$$
\text { i.e., } \hat{\mu}_{t}(i)=\sum_{\tau=0}^{t-1} \mathbf{1}\left\{I_{\tau}=i\right\} r_{\tau} / N_{t}(i)
$$

Recall the Tool for Building Confidence Interval:

Recall the Tool for Building Confidence Interval:

Thus, we can show that for all iteration t, we have the for all $k \in[K]$, w/ prob $1-\delta$,

$$
\left|\hat{\mu}_{k}(i)-\mu_{k}\right| \leq \sqrt{\frac{\ln (K T / \delta)}{N_{t}(k)}}
$$

Recall the Tool for Building Confidence Interval:

Thus, we can show that for all iteration t, we have the for all $k \in[K], \mathrm{w} / \mathrm{prob} 1-\delta$,

$$
\left|\hat{\mu}_{k}(i)-\mu_{k}\right| \leq \sqrt{\frac{\ln (K T / \delta)}{N_{t}(k)}}
$$

Proving this result actually requires reasoning Martinalges, as samples are not i.i.d, i.e., whether or not you pull arm k in this round depends on previous random outcomes (See Ch 6 for more details)

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

Put things together: UCB Algorithm:

For $t=0 \rightarrow T-1$:

$$
I_{t}=\arg \max _{i \in[K]}\left(\hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}\right)
$$

Put things together: UCB Algorithm:

For $t=0 \rightarrow T-1$:

$$
I_{t}=\arg \max _{i \in[K]}\left(\hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}\right)
$$

(\# Upper-conf-bound of arm i)

Put things together: UCB Algorithm:

For $t=0 \rightarrow T-1$:

$$
I_{t}=\arg \max _{i \in[K]}\left(\hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}\right)
$$

(\# Upper-conf-bound of arm i)

$$
\text { "Reward Bonus": } \sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}
$$

UCB Regret:

[Theorem (informal)] With high probability, UCB has the following regret:

$$
\operatorname{Regret}_{T}=\widetilde{O}(\sqrt{K T})
$$

Intuitive Explanation of UCB

Intuitive Explanation of UCB

Intuitive Explanation of UCB

Case 1: it has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

Intuitive Explanation of UCB

Intuitive Explanation of UCB

Intuitive Explanation of UCB

Case 2: it has low uncertainty, then it is simply a good arm, i.e., it's true mean is high!

$$
\hat{\mu}_{t}(2)+\sqrt{\ln (K T / \delta) / N_{t}(2)}
$$

$$
\hat{\mu}_{t}(1)+\sqrt{\ln (K T / \delta) / N_{t}(1)}
$$

Explore and Exploration Tradeoff

Case 1: I_{t} has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

Thus, we do exploration in this case!

Explore and Exploration Tradeoff

Case 1: I_{t} has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

Thus, we do exploration in this case!

Case 2: I_{t} has small conf-interval, then it is simply a good arm, i.e., it's true mean is pretty high!
Thus, we do exploitation in this case!

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}}
$$

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\begin{aligned}
& \text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}} \\
& \qquad \leq \widehat{\mu}_{t}\left(I_{t}\right)+\sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}-\mu_{I_{t}}
\end{aligned}
$$

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}}
$$

$$
\begin{aligned}
& \text { Q: why? } \\
& \qquad \leq \hat{\mu}_{t}\left(I_{t}\right)+\sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}-\mu_{I_{t}}
\end{aligned}
$$

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}}
$$

Q: why?

$$
\begin{aligned}
& ? \\
& \leq \widehat{\mu}_{t}\left(I_{t}\right)+\sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}-\mu_{I_{t}} \\
& \leq 2 \sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}
\end{aligned}
$$

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}}
$$

$$
\begin{aligned}
& \text { Q: why? } \\
& \qquad \begin{array}{c}
\\
\\
\quad \leq 2 \sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}
\end{array} .=\sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}-\mu_{I_{t}} \\
&
\end{aligned}
$$

Case 1: $N_{t}\left(I_{t}\right)$ is small (i.e., uncertainty about I_{t} is large);

We pay regret, BUT we explore here, as we just tried I_{t} at iter t !

Let's formalize the intuition

Denote the optimal $\operatorname{arm} I^{\star}=\arg \max _{i \in[K]} \mu_{i} ;$ recall $I_{t}=\arg \max _{i \in[K]} \hat{\mu}_{t}(i)+\sqrt{\frac{\ln (K T / \delta)}{N_{t}(i)}}$

$$
\begin{aligned}
& \text { Regret-at-t }=\mu^{\star}-\mu_{I_{t}} \\
& \leq \widehat{\mu}_{t}\left(I_{t}\right)+\sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}}-\mu_{I_{t}} \\
& \leq 2 \sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}} \quad \begin{array}{c}
\text { Case 2: } N_{t}\left(I_{t}\right) \text { is large, i.e., conf-interval of } \\
I_{t} \text { is small, }
\end{array} \\
& \leq \begin{array}{c}
\text { (the gap between } \mu^{\star} \& \mu_{I_{t}} \text { is small)! }
\end{array}
\end{aligned}
$$

Let's formalize the intuition

Finally, let's add all per-iter regret together:

$$
\begin{aligned}
& \text { Regret }_{T}=\sum_{t=0}^{T-1}\left(\mu^{\star}-\mu_{I_{t}}\right) \\
& \quad \leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}} \\
& \quad \leq 2 \sqrt{\ln (T K / \delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}\left(I_{t}\right)}}
\end{aligned}
$$

Let's formalize the intuition

Finally, let's add all per-iter regret together:

$$
\begin{aligned}
& \text { Regret }_{T}=\sum_{t=0}^{T-1}\left(\mu^{\star}-\mu_{I_{t}}\right) \\
& \quad \leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln (T K / \delta)}{N_{t}\left(I_{t}\right)}} \quad \text { Lemma: } \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}\left(I_{t}\right)}} \leq O(\sqrt{K T}) \\
& \quad \leq 2 \sqrt{\ln (T K / \delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}\left(I_{t}\right)}}
\end{aligned}
$$

Summary

1. Setting of Multi-armed Bandit: MDP with one state, and K actions, $\mathrm{H}=1$
2. Need to carefully balance exploration and exploitation
3. The Principle of Optimism in the face of Uncertainty
