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Potential Applications of Offline RL

Robotics manipulation:

[Kalashnikov et.al, 18] 

Autonomous driving:

[Codevilla et.al, 18] 

Stratospheric balloon navigation

[Bellemare et.al,21, Nature] AND healthcare applications!
(See Levine et.al for a list of applications and existing works)

Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems 
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Today:

How should we tackle offline RL (e.g., settings, goals)  

when offline data has insufficient coverage? 



Outline:

1. Rethinking the goal in offline RL: Robustness

2. Can we achieve the goal? 
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Finite Horizon MDPs

Policy: state to action 

π(s) → a

Reward & Next State
r(s, a), s′ ∼ P⋆( ⋅ |s, a)

Objective: max
π

J(π; P⋆, r), where J(π; P⋆, r) := 𝔼 [
H−1

∑
h=0

r(sh, ah) |a ∼ π, P⋆]

H steps
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Behavior Policy  πb

dπb ∈ Δ(S × A)
Induced state-action distribution of :πb

𝒟 = {s, a, s′ },  where s, a ∼ dπb, s′ ∼ P⋆( ⋅ |s, a)

i.i.d triples
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Offline Data Coverage

dπb ∈ Δ(S × A)

𝒟 = {s, a, s′ },  where s, a ∼ dπb, s′ ∼ P( ⋅ |s, a)

Offline data 
distribution:  dπb(s, a)

(s, a)

New Goal: 

Find the best among those 
covered by dπb

π1

π2

π3
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Learning goal in Offline RL: Robustness

π⋆r(10) = 0.9
r(15) = 1

π̃

Able to compete against 
whatever is covered by the 

offline data
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Rich Function 
Approximation

Sample complexity depends on 
complexity of  (e.g., VC-dim, 

Rademacher, covering dim)
ℱ
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Learning goal in Offline RL: Generalization

f 2 F

Supervised Learning: Offline RL:

Rich Function 
Approximation

f 2 F

Rich Function 
Approximation

Identify a high quality policy w/ # of offline 
samples scaling wrt complexity of ℱ

Polynomial Dependency of # 
of unique images



Learning goal in Offline RL: Robustness & Generalization

Can we  

(a) compete against the best policy among those covered by  

(b) w/ # of offline samples scaling polynomially wrt the complexity of ?

dπb,

ℱ



Outline:

1. Rethinking the goal in offline RL: Robustness + Generalization

2. Can we achieve the goal ? 
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A Naive Model-based Approach
Certainty Equivalence:

1. Fit model by MLE: ̂P = max
P∈𝒫 ∑

s,a,s′ ∈𝒟

ln P(s′ |s, a)

2. Plan inside :  ̂P ̂π = OP( ̂P, r)

 could be 
arbitrarily wrong in 
the right sub-tree

̂P

In real ,  not 
only miss , also 
miss good policies 
inside the green!

P⋆ ̂π
r(15)̂π = {right, left, right}
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Constrained Pessimistic Policy Optimization (CPPO)

1. MLE: ̂P = max
P∈𝒫 ∑

s,a,s′ ∈𝒟

ln P(s′ |s, a)

2. Constrained Pessimistic Policy Optimization

max
π

min
P∈𝒫

J(π; P)

s.t.,
1

|𝒟 | ∑
s,a∈𝒟

P( ⋅ |s, a) − ̂P( ⋅ |s, a)
1

≤ δ
P⋆

Select the least 
favorable model!

̂P or 
1

|𝒟 | ∑
s,a,s′ ∈𝒟

ln P(s′ |s, a) ≥
1

|𝒟 | ∑
s,a,s′ ∈𝒟

ln ̂P(s′ |s, a) − δ
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Formal Theoretical Guarantee for CPPO
1. Definition of offline data coverage

C†
π = sup

P′ ∈𝒫

𝔼(s,a)∼dπ [∥P′ ( ⋅ ∣ s, a) − P⋆( ⋅ ∣ s, a)∥2
1]

𝔼(s,a)∼dπb [∥P′ ( ⋅ ∣ s, a) − P⋆( ⋅ ∣ s, a)∥2
1]

Given a policy , define:π’s state-action 
distribution

π

offline state-action 
distribution Remark 1:  C†

π ≤ sup
s,a

dπ(s, a)
dπb(s, a)

π

πb

Remark 2:  when  we have P = P⋆, ∀P ∈ 𝒫, C†
π = 1
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Formal Theoretical Guarantee for CPPO

2. CPPO’s Sample Complexity:

Given  (i.i.d) offline data points, with high probability:n

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = O H2 C†
π* ln( |𝒫 | /δ)

n

The cost we pay if want to 
compete w/ less covered policy π*

Statistical complexity of ; no 
poly dependence on 

𝒫
|S | , |A |

Robustness! SL-style Generalization!
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The non-parametric kernel model

st+1 = f ⋆(st, at) + ϵ, ϵ ∼ 𝒩(0,σ2I),

where  is from some RKHS w/ kernel f ⋆ k([s, a], [s′ , a′ ]) = ⟨ϕ(s, a), ϕ(s′ , a′ )⟩

i.e., measuring coverage using subspace..

C†
π = max

x

x⊤𝔼s,a∼dπϕ(s, a)ϕ(s, a)⊤x
x⊤𝔼s,a∼dπbϕ(s, a)ϕ(s, a)⊤x

Coverage def is reduced to a relative condition number:
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=
P⋆(s′ |s, a) ϕ⋆(s, a)

(s, a)(s, a)

s′ s′ 

μ⋆(s′ )

∃μ⋆, ϕ⋆ : ∀s, a, s′ , P⋆(s′ |s, a) = μ⋆(s′ )⊤ϕ⋆(s, a)

Transition matrix 
 has 

rank 
P ∈ ℝSA×S

d

In low-rank MDP, neither  nor  is knownμ⋆ ϕ⋆
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Realizability: μ⋆ ∈ Γ, ϕ⋆ ∈ Φ

C†
π = max

x

x⊤𝔼s,a∼dπϕ⋆(s, a)ϕ⋆(s, a)⊤x
x⊤𝔼s,a∼dπbϕ⋆(s, a)ϕ⋆(s, a)⊤x

Coverage def: relative condition number under ground truth (unknown) ϕ⋆

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = O H2 dC†
π* ln( |Γ | |Φ | /δ)

n

(Many more interesting examples: linear mixture MDP, factored MDP, etc)
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Implementation

1. MLE: ̂P = max
P∈𝒫 ∑

s,a,s′ ∈𝒟

ln P(s′ |s, a)

max
π

min
P

J(π; P) + max
λ≤0

λ
1

|𝒟 | ∑
s,a,s′ ∈𝒟

ln P(s′ |s, a) −
1

|𝒟 | ∑
s,a,s′ ∈𝒟

ln ̂P(s′ |s, a) + δ

2: Treat constraint as a penalty w/ Lagrangian multiplier:
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Practical version of CPPO (Rigter et al. Neurips22) 

Practical version 

of CPPO

SOTA

CPPO

“Uehara et al. (2021) provides the theoretical motivation for solving Problem 1. In 
this work, we focus on developing a practical approach to solving Problem 1. ” 
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Summary 

Rethinking offline RL’s learning objective:

Generalization  &  Robustness

Like SL, learning via function 
approximation, i.e., generalization 

rather than memorization / 
numeration  

• Expecting offline data has global 
coverage is too much;  

• Learning to compete the best 
among those covered


