Model-based Offline RL with Partial Coverage

Wen Sun CS 6789: Foundations of Reinforcement Learning

Robotics manipulation:

[Kalashnikov et.al, 18]

Robotics manipulation:

Autonomous driving:

[Kalashnikov et.al, 18]

[Codevilla et.al, 18]

Robotics manipulation:

Autonomous driving:

[Kalashnikov et.al, 18]

[Codevilla et.al, 18]

Stratospheric balloon navigation

[Bellemare et.al,21, Nature]

Robotics manipulation:

Autonomous driving:

[Kalashnikov et.al, 18] [Codevilla et.al, 18]

AND healthcare applications! (See Levine et.al for a list of applications and existing works) Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

Stratospheric balloon navigation

[Bellemare et.al,21, Nature]

Let's contrast it to traditional Supervised Learning

[ImageNet]

- Let's contrast it to traditional Supervised Learning
 - e.g., image classification

[ImageNet]

- Let's contrast it to traditional Supervised Learning
 - e.g., image classification

Let's contrast it to traditional Supervised Learning

e.g., image classification

[ImageNet]

Training distribution = Testing distribution

In RL, we are facing **distribution shift**!

In RL, we are facing **distribution shift**!

In RL, we are facing **distribution shift**!

How should we tackle offline RL (e.g., settings, goals) when offline data has insufficient coverage?

2. Can we achieve the goal?

Outline:

1. Rethinking the goal in offline RL: Robustness

Finite Horizon MDPs

agent

Policy: state to action

Reward & Next State $r(s,a), s' \sim P^{\star}(\cdot \mid s,a)$

Finite Horizon MDPs

agent 19.36 29.3

- Reward & Next State
- $r(s,a), s' \sim P^{\star}(\cdot \mid s,a)$

Finite Horizon MDPs

Objective: max $J(\pi; P^*, r)$, where $J(\pi; P^*, r)$

Reward & Next State

 $r(s,a), s' \sim P^{\star}(\cdot \mid s,a)$

$$\pi; P^{\star}, r) := \mathbb{E}\left[\sum_{h=0}^{H-1} r(s_h, a_h) \,|\, a \sim \pi, P^{\star}\right]$$

Behavior Policy π_b

Induced state-action distribution of π_b : $d^{\pi_b} \in \Delta(S \times A)$

Induced state-action distribution of π_b : $d^{\pi_b} \in \Delta(S \times A)$

 $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P^*(\cdot | s, a)$

 $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P^*(\cdot | s, a)$ i.i.d triples

Induced state-action distribution of π_h : $d^{\pi_b} \in \Delta(S \times A)$

- $d^{\pi_b} \in \Delta(S \times A)$
- $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P(\cdot | s, a)$

- $d^{\pi_b} \in \Delta(S \times A)$
- $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P(\cdot | s, a)$

Optimal policy π^* 's (s, a)-distribution

- $d^{\pi_b} \in \Delta(S \times A)$
- $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P(\cdot \mid s, a)$

Optimal policy π^* 's (s, a)-distribution

Finding π^* seems hopeless!

(s,a)

- $d^{\pi_b} \in \Delta(S \times A)$
- $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P(\cdot | s, a)$

- $d^{\pi_b} \in \Delta(S \times A)$
- $\mathcal{D} = \{s, a, s'\}, \text{ where } s, a \sim d^{\pi_b}, s' \sim P(\cdot \mid s, a)$

New Goal: Find the best among those covered by d^{π_b}

Learning goal in Offline RL: Generalization

Supervised Learning:

Offline RL:

Learning goal in Offline RL: Generalization

Supervised Learning:

Offline RL:

Learning goal in Offline RL: Generalization

Supervised Learning:

Offline RL:
Supervised Learning:

Sample complexity depends on **complexity of** F (e.g., VC-dim, Rademacher, covering dim) Offline RL:

Supervised Learning:

Offline RL:

Supervised Learning:

Polynomial Dependency of # of unique images

Offline RL:

Supervised Learning:

Polynomial Dependency of # of unique images

Supervised Learning:

Polynomial Dependency of # of unique images

Identify a high quality policy w/ # of offline samples scaling wrt complexity of \mathcal{F}

Learning goal in Offline RL: Robustness & Generalization

(a) compete against the best policy among those covered by d^{π_b} ,

- Can we
- (b) w/ # of offline samples scaling polynomially wrt the complexity of \mathcal{F} ?

2. Can we achieve the goal?

Outline:

Certainty Equivalence:

Certainty Equivalence:

Certainty Equivalence:

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' \mid s, a)$ 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

Certainty Equivalence:

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' \mid s, a)$ 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

Certainty Equivalence:

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s, a, s' \in \mathscr{D}} \ln P(s' | s, a)$ 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

 \hat{P} could be arbitrarily wrong in the right sub-tree

Certainty Equivalence:

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s, a, s' \in \mathscr{D}} \ln P(s' | s, a)$ 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

 \hat{P} could be arbitrarily wrong in the right sub-tree

Certainty Equivalence:

- 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a)$

 \hat{P} could be

the right sub-tree

 $\hat{\pi} = \{ \text{right, left, right} \}$

Certainty Equivalence:

- 2. Plan inside $\hat{P}: \hat{\pi} = OP(\hat{P}, r)$

1. Fit model by MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a)$

 \hat{P} could be arbitrarily wrong in

the right sub-tree

 $\hat{\pi} = \{ \text{right, left, right} \}$

In real P^{\star} , $\hat{\pi}$ not only miss r(15), also miss good policies inside the green!

1. MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a)$

1. MLE: $\hat{P} = \max$ $P \in \mathscr{P}$

2. Constrained Pessimistic Policy Optimization

$\pi P \in \mathscr{P}$ s.t., $\frac{1}{|\mathcal{D}|} \sum_{s, a \in \mathcal{D}} \left\| P(\cdot | s, a) - \hat{P}(\cdot | s, a) \right\|_{1} \le \delta$

$$\sum_{s,a,s'\in\mathscr{D}} \ln P(s'|s,a)$$

 $\max \min J(\pi; P)$

1. MLE: $\hat{P} = \max_{P \in \mathscr{P}}$

2. Constrained Pessimistic Policy Optimization

$\max_{\pi} m = \frac{1}{P \in S}$ s.t., $\frac{1}{|\mathcal{D}|} \sum_{s,a \in \mathcal{D}} \| P(\cdot | s, a)$

$$\sum_{s,a,s'\in\mathscr{D}} \ln P(s'|s,a)$$

 $\max_{\pi} \min_{P \in \mathscr{P}} J(\pi; P)$

$$a) - \hat{P}(\cdot \mid s, a) \parallel_{1} \leq \delta$$

1. MLE: $\hat{P} = \max$ $P \in \mathscr{P}$

$$\max_{\pi} \min_{P \in \mathscr{P}} J(\pi; P)$$

s.t., $\frac{1}{|\mathscr{D}|} \sum_{s,a \in \mathscr{D}} \left\| P(\cdot | s, a) - \hat{P}(\cdot | s, a) \right\|_{1} \leq \delta$
 $\left(\text{or } \frac{1}{|\mathscr{D}|} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a) \geq \frac{1}{|\mathscr{D}|} \sum_{s,a,s' \in \mathscr{D}} \ln \hat{P}(s' | s, a) - \delta \right)$

$$\sum_{s,a,s'\in\mathscr{D}} \ln P(s'|s,a)$$

1. MLE: $\hat{P} = \max$ $P \in \mathscr{P}$

$$\max_{\pi} \min_{P \in \mathscr{P}} J(\pi; P)$$
s.t.,
$$\frac{1}{|\mathscr{D}|} \sum_{s, a \in \mathscr{D}} \left\| P(\cdot | s, a) - \hat{P}(\cdot | s, a) \right\|_{1} \leq \delta$$

$$\left(\text{or } \frac{1}{|\mathscr{D}|} \sum_{s, a, s' \in \mathscr{D}} \ln P(s' | s, a) \geq \frac{1}{|\mathscr{D}|} \sum_{s, a, s' \in \mathscr{D}} \ln \hat{P}(s' | s, a) - \delta \right)$$

$$\sum_{s,a,s'\in\mathscr{D}} \ln P(s'|s,a)$$

1. MLE: $\hat{P} = \max$ $P \in \mathscr{P}$

$$\max_{\pi} \max_{P \in \mathbb{R}} \prod_{s, a \in \mathcal{D}} \|P(\cdot | s, s)\|$$

or $\frac{1}{|\mathcal{D}|} \sum_{s, a, s' \in \mathcal{D}} \ln P(s' | s, a) \geq 1$

$$\sum_{s,a,s'\in\mathscr{D}} \ln P(s'|s,a)$$

 $C_{\pi}^{\dagger} = \sup_{P' \in \mathscr{P}} \frac{\mathbb{E}_{(s,a) \sim d^{\pi}} \left[\|P'(\cdot \mid s, a) - P^{\star}(\cdot \mid s, a)\|_{1}^{2} \right]}{\mathbb{E}_{(s,a) \sim d^{\pi_{b}}} \left[\|P'(\cdot \mid s, a) - P^{\star}(\cdot \mid s, a)\|_{1}^{2} \right]}$

- 1. Definition of offline data coverage
 - Given a policy π , define:

- 1. Definition of offline data coverage
 - Given a policy π , define:

- 1. Definition of offline data coverage
 - Given a policy π , define:

- 1. Definition of offline data coverage
 - Given a policy π , define:

$$\cdot | s, a) - P^{\star}(\cdot | s, a) \|_{1}^{2}$$

ark 1:
$$C_{\pi}^{\dagger} \leq \sup_{s,a} \frac{d^{\pi}(s,a)}{d^{\pi_b}(s,a)}$$

- 1. Definition of offline data coverage
 - Given a policy π , define:

$$\frac{|s,a) - P^{\star}(\cdot |s,a)\|_{1}^{2}}{|s,a) - P^{\star}(\cdot |s,a)\|_{1}^{2}}$$

ark 1: $C_{\pi}^{\dagger} \leq \sup_{s,a} \frac{d^{\pi}(s,a)}{d^{\pi}(s,a)}$

Remark 2: when $P = P^*, \forall P \in \mathcal{P}$, we have $C_{\pi}^{\dagger} = 1$

- 1. Definition of offline data coverage
 - Given a policy π , define:

- 2. CPPO's Sample Complexity:
- Given *n* (i.i.d) offline data points, with high probability:

The cost we pay if want to compete w/ less covered policy π^*

- 2. CPPO's Sample Complexity:
- Given *n* (i.i.d) offline data points, with high probability:

The cost we pay if want to compete w/ less covered policy π^*

Robustness!

- 2. CPPO's Sample Complexity:
- Given *n* (i.i.d) offline data points, with high probability:

The cost we pay if want to compete w/ less covered policy π^*

Robustness!

- 2. CPPO's Sample Complexity:
- Given *n* (i.i.d) offline data points, with high probability:

Statistical complexity of \mathcal{P} ; no poly dependence on |S|, |A|

The cost we pay if want to compete w/ less covered policy π^*

Robustness!

- 2. CPPO's Sample Complexity:
- Given *n* (i.i.d) offline data points, with high probability:

Statistical complexity of \mathcal{P} ; no poly dependence on |S|, |A|

SL-style Generalization!

CPPO and its general bound applies to many examples...

The non-parametric kernel model

$$s_{t+1} = f^{\star}(s_t, a_t)$$

where f^* is from some RKHS w/ kernel $k([s, a], [s', a']) = \langle \phi(s, a), \phi(s', a') \rangle$

 $+\epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2 I),$

CPPO and its general bound applies to many examples...

The non-parametric kernel model

$$s_{t+1} = f^{\star}(s_t, a_t)$$

Coverage def is reduced to a relative condition number:

$$C_{\pi}^{\dagger} = \max_{x} \frac{x^{\top} \mathbb{E}_{s,a}}{x^{\top} \mathbb{E}_{s,a}}$$

 $+\epsilon,\epsilon \sim \mathcal{N}(0,\sigma^2 I),$

where f^* is from some RKHS w/ kernel $k([s, a], [s', a']) = \langle \phi(s, a), \phi(s', a') \rangle$

 $a \sim d^{\pi} \phi(s, a) \phi(s, a)^{\mathsf{T}} x$ $a \sim d^{\pi} b \phi(s, a) \phi(s, a)^{\mathsf{T}} x$

CPPO and its general bound applies to many examples...

The non-parametric kernel model

$$s_{t+1} = f^{\star}(s_t, a_t)$$

Coverage def is reduced to a relative condition number:

$$C_{\pi}^{\dagger} = \max_{x} \frac{x^{\top} \mathbb{E}_{s,a}}{x^{\top} \mathbb{E}_{s,a'}}$$

 $+\epsilon,\epsilon \sim \mathcal{N}(0,\sigma^2 I),$

where f^* is from some RKHS w/ kernel $k([s, a], [s', a']) = \langle \phi(s, a), \phi(s', a') \rangle$

 $a \sim d^{\pi} \phi(s, a) \phi(s, a)^{\mathsf{T}} x$ $= \sum_{v \sim d^{\pi_b}} \phi(s, a) \phi(s, a)^{\mathsf{T}} x$

i.e., measuring coverage using subspace..

CPPO for Low-rank MDPs

Transition matrix $P \in \mathbb{R}^{SA \times S}$ has rank *d*

 $\exists \mu^{\star}, \phi^{\star} : \quad \forall s, a, s', P^{\star}(s' | s, a) = \mu^{\star}(s')^{\mathsf{T}} \phi^{\star}(s, a)$

 $\exists \mu^{\star}, \phi^{\star} : \quad \forall s, a, s', P^{\star}(s' \mid s, a) = \mu^{\star}(s')^{\mathsf{T}} \phi^{\star}(s, a)$

In low-rank MDP, neither μ^* nor ϕ^* is known

- Two Function classes $\Gamma \& \Phi$
- Realizability: $\mu^* \in \Gamma$, $\phi^* \in \Phi$

$$C_{\pi}^{\dagger} = \max_{x} \frac{x^{\top} \mathbb{E}_{s,a^{\sim}}}{x^{\top} \mathbb{E}_{s,a^{\sim}}}$$

- Two Function classes $\Gamma \& \Phi$
- Realizability: $\mu^* \in \Gamma$, $\phi^* \in \Phi$
- Coverage def: relative condition number under ground truth (unknown) ϕ^{\star}

 $\sum_{a \sim d^{\pi} \phi} (s, a) \phi^{\star}(s, a)^{\mathsf{T}} x$ $\sum_{a \sim d^{\pi} b} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\mathsf{T}} x$

$$C_{\pi}^{\dagger} = \max_{x} \frac{x^{\top} \mathbb{E}_{s,a \sim d^{\pi}} \phi^{\star}(s,a) \phi^{\star}(s,a)^{\top} x}{x^{\top} \mathbb{E}_{s,a \sim d^{\pi_{b}}} \phi^{\star}(s,a) \phi^{\star}(s,a)^{\top} x}$$
$$\forall \pi^{*}; V_{P^{\star}}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} = O\left(H^{2} \sqrt{\frac{dC_{\pi^{*}}^{\dagger} \ln(|\Gamma||\Phi|/\delta)}{n}}\right)$$

- Two Function classes $\Gamma \& \Phi$
- Realizability: $\mu^* \in \Gamma$, $\phi^* \in \Phi$
- Coverage def: relative condition number under ground truth (unknown) ϕ^{\star}

$$C_{\pi}^{\dagger} = \max_{x} \frac{x^{\top} \mathbb{E}_{s,a}}{x^{\top} \mathbb{E}_{s,a}}$$
$$\pi^{*}; V_{P^{\star}}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} = O$$

- Two Function classes $\Gamma \& \Phi$
- Realizability: $\mu^* \in \Gamma$, $\phi^* \in \Phi$
- Coverage def: relative condition number under ground truth (unknown) ϕ^{\star}
 - $\sum_{a} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\mathsf{T}} x$ $\sum_{a} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\mathsf{T}} x$
 - $\frac{dC_{\pi^*}^{\dagger}\ln(|\Gamma||\Phi|/\delta)}{n}$
 - (Many more interesting examples: linear mixture MDP, factored MDP, etc)

Implementation

1. MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a)$

2: Treat constraint as a penalty w/ Lagrangian multiplier:

Implementation

 $\max_{\pi} \min_{P} J(\pi; P) + \max_{\lambda \le 0} \lambda \left(\frac{1}{|\mathcal{D}|} \sum_{s, a, s' \in \mathcal{D}} I \right)$

1. MLE: $\hat{P} = \max_{P \in \mathscr{P}} \sum_{s,a,s' \in \mathscr{D}} \ln P(s' | s, a)$

2: Treat constraint as a penalty w/ Lagrangian multiplier:

$$\ln P(s'|s,a) - \frac{1}{|\mathcal{D}|} \sum_{s,a,s' \in \mathcal{D}} \ln \hat{P}(s'|s,a) +$$

Practical version of CPPO (Rigter et al. Neurips22)

"Uehara et al. (2021) provides the theoretical motivation for solving Problem 1. In this work, we focus on developing a practical approach to solving Problem 1:-"

Practical version of CPPO			O	urs	Model-based baselines				Model-free baselines		
			RAMBO		RepB-SD	E COMBO	МОРО	MOReL	CQL	IQL	TD3+BC
	Random	HalfCheetah	40.0 ± 2.3		32.9	38.8	35.4	25.6	19.6	-	11.0
		Hopper	21.6 ± 8.0		8.6	17.9	4.1	53.6	6.7	-	8.5
		Walker2D	11.5 ± 10.5		21.1	7.0	4.2	37.3	2.4	-	1.6
	Medium	HalfCheetah	77.6 ± 1.5		49.1	54.2	69.5	42.1	49.0	47.4	48.3
		Hopper	92.8 ± 6.0		34.0	94.9	48.0	95.4	66.6	66.3	59.3
		Walker2D	86.9 ± 2.7		72.1	75.5	-0.2	77.8	83.8	78.3	83.7
	Medium Replay	HalfCheetah	68.9 ± 2.3		57.5	55.1	68.2	40.2	47.1	44.2	44.6
		Hopper	96.6 ± 7.0		62.2	73.1	39.1	93.6	97.0	94.7	60.9
		Walker2D	85.0 ± 15.0		49.8	56.0	69.4	49.8	88.2	73.9	81.8
	Medium Expert	HalfCheetah	93.7 ± 10.5	-	55.4	90.0	72.7	53.3	90.8	86.7	90.7
		Hopper	83.3 ± 9.1		82.6	111.1	3.3	108.7	106.8	91.5	98.0
		Walker2D	68.3 ± 20.6		88.8	96.1	-0.3	95.6	109.4	109.6	110.1
	MuJoCo-v2 Total:		826.2 ± 33.8	line annes annes annes annes	614.1	769.7	413.4	773.0	767.4	692.6*	698.5
			SOTA								

Summary

- Rethinking offline RL's learning objective:
- Generalization & Robustness

Like SL, learning via function approximation, i.e., generalization rather than memorization / numeration

Summary

- Rethinking offline RL's learning objective:
- Generalization & Robustness

Like SL, learning via function approximation, i.e., generalization rather than memorization / numeration

Summary

- Rethinking offline RL's learning objective:
- Generalization & Robustness

- Expecting offline data has global \bullet coverage is too much;
- Learning to compete the best \bullet among those covered