
Note on Spectral learning for Hidden Markov Models (HMMs)

Wen Sun

1 Problem Definition

HMM Consider a discrete hidden Markov model with m latent states and n observations where we assume n ≥ m.
We will denote s as the latent state and o as the observation. We denote T ∈ Rm×m as the Markovian transition
in latent states, i.e., T [i, j] = P (s′ = i|s = j) – the probability of the next latent state s′ being i given the current
latent state s being j. We denote O ∈ Rn×m as the observation matrix, where O[i, j] = P (o = i|s = j) denotes
the probability of observing i given latent state being j. Finally, we define the initial latent state distribution as
µ ∈ ∆(m). Note that µ, T,O together fully specify the HMM.

Learning setting We are given a dataset of i.i.d trajectories (consisting of observations only) with length 3, i.e.,
D = {oi1, oi2, oi3}Ni=1, where each trajectory is sampled as follows: s1 ∼ µ, o1 ∼ O(·|s1), s2 ∼ T (·|s1), o2 ∼
O(·|s2), s3 ∼ T (·|s2), o3 ∼ O(·|s3).

Our goal is to learn to compute the following quantities: P (o1, . . . , ot), for any observation trajectory o1, o2, . . . , ot
for t ∈ Z+,

Challenge The unknown parameters of the HMM are T and O (for simplicity, let us assume µ is given). To learn
them, we can use Maximum Likelihood estimation, i.e., searching for T and O which maximizes the likelihood of
training dataset D. This is straightforward to do. However, due to the existence of latent states, the log-likelihood
objective is non-convex. While in practice, one can use a gradient ascent style approach or a classic algorithm called
Expectation-Maximization (EM), these algorithms cannot guarantee to find global optimality.

Is there an algorithm that can find the global optimal solution?

Notations For a given matrix A ∈ Rn×m, we will write A[i, :] ∈ R1×m as the i-th row of the matrix, and
A[:, i] ∈ Rn as the i-th column. We denote span(A) as the column span of the matrix A.

2 Spectral Learning for HMMs

In this algorithm, we explain the spectral learning algorithm from Hsu et al. (2012).

2.1 Observable operator

Let us define observable operator Ao ∈ Rm×m, for all o ∈ [n].

Ao = Tdiag (O[o|1], . . . , O[o|m])

In other words, Ao[i, j] := P (s′ = i, o|s = j) = O(o|s = j)T (s′ = i|s = j), i.e., the probability of seeing
observation o at the current step, and transiting to i in the next step, conditioned on being at latent state j at the
current step.

The following lemma shows that we can write P (o1, . . . , ot) using these observable operators.

1

Lemma 1. For any t ∈ Z+, and any observations o1, . . . , ot, we have:

P (o1, . . . , ot) = 1>AotAot−1 . . . Ao1µ

where we denote 1 as a m-dim vector consisting of all ones.

Proof. Let us consider P (s2, o1). It is not hard to verify that

P (s2, o1) =
∑
s1

P (s1)O(o1|s2)T (s2|s1) = µ>Ao1 [s2, :]
>.

We can continue to compute P (s3, o2, o1), which is:

P (s3, o2, o1) =
∑
s2

P (s3, s2, o2, o1) =
∑
s2

P (s2, o1)P (s3, o2|s2, o1)

=
∑
s2

P (s2, o1)T (s3|s2)O(o2|s2)

=
∑
s2

(
µ>Ao1 [s2, :]

>
)
Ao2 [s3, s2] = µ>A>o1(Ao2 [s3, ·])>.

Repeat the above process, we can have:

P (o1, o2, . . . , ot, st+1) = µ>A>o1 . . . (Aot [st+1, :])
>.

Note that P (o1, . . . , ot) =
∑

i∈[m] P (o1, . . . , ot, st+1 = i) · 1, we must have:

P (o1, . . . , ot) = µ>A>o1 . . . A
>
ot1.

This concludes the proof.

2.2 Learning equivalent representations of observable operators

So far, the observable operators Ao still consist of unknown transition T and O which both depend on latent states.
What we are going to do next is to find a full-rank matrix C ∈ Rm×m (thus invertible), and re-write P (o1, . . . , ot)
as:

P (o1, o2, . . . , ot) = 1>C−1CAotC
−1CAot−1C

−1C . . . C−1CAo1C
−1Cµ.

We denote
Bo = CAoC

−1, b>∞ = 1>C−1, b1 = Cµ,

and we will show that with a properly designed C, we can directly learn Bo, b∞, b1 from the dataset that only
contains observations.

We first state the following key assumption.

Assumption 2. Assume n ≥ m, i.e., more observations than latent states, and T and O are full column rank.

Remark 3. The condition where n ≥ m and O are full rank is typically called 1-observability. This roughly means
that knowing the distribution of the next observation is equivalent to knowing the current latent state distribution.
More formally, denote p ∈ ∆(m) as the distribution over the current latent states. Then the distribution q ∈ ∆(n)
of the current observation can be written as q = Op. Since O is full rank, we have O†O = I , which means that
p = O†q. Thus it means that even though we do not know the distribution q since latent states are never observed,
if we know the distribution of the observation q (which can be estimated accurately from observable data), this is
equivalent to knowing p up to a linear transformation.

2

We will define the following observable vectors/matrices:

P1[i] = P (o1 = i);P2,1[i, j] = P (o2 = i, o1 = j), P3,o,1[i, j] = P (o3 = i, o2 = o, o1 = j), ∀o ∈ [m]. (1)

Note that these matrices can be directly estimated using the dataset D, for example, P (o2 = i, o1 = j) can be
estimated by

∑N
i=1 1(oi2 = i, oi1 = j)/N . We know that when N → ∞, these estimations converge to the exact

probabilities (finite sample error is also easily computable like we did for quantifying the transition error in learning
tabular MDPs). The key message is that these quantities do not depend on latent states.

Denote the SVD of P2,1 as P2,1 = UΣV > where U ∈ Rm×n, Σ ∈ Rn×n is a diagonal matrix consisting of
singular values. We will set C = U>O. First, we show that U>O is full rank and thus invertible.

Lemma 4. Let U be the left singular vectors of P2,1. We have U>O is full rank.

Proof. Using the property of the HMM, we can first write P2,1 = OTdiag(µ)O>. This implies that span(P2,1) ⊆
span(O), which implies that span(U) ⊆ span(O). To verify that P2,1 = OTdiag(µ)O>, we can see that for any
pair of i, j, we have P2,1[i, j] =

∑
s2∈[n]O[i|s2]

∑
s1∈[n] T [s2|s1]µ(s1)O[j|s1].

On the other hand, the assumption that O ∈ Rn×m is full column rank implies that OT is also full column rank,
with the fact that n ≥ m, we have (O>)(O>)+ = I , which means that P2,1(O

>)+diag(µ)−1T−1 = O. This means
that span(O) ⊆ span(P2,1) = span(U).

Together, we have shown that span(U) = span(O). Now to show that U>O is full rank, take any vector x ∈ Rn

where x 6= 0. We have Ox ∈ span(O) = span(U), which means that there exists α ∈ Rn with α 6= 0, such that
Ox = Uα. Note that then U>Ox = U>Uα = α 6= 0. This means that U>O does not have null space, which
implies that U>O is full rank.

Now we show that b1, b∞, Bo can be represented by observable quantities P1, P2,1 and P3,o,1, ∀o ∈ [n].

Lemma 5. We have b1 = U>P1.

Proof. Recall that b1 = Cµ. Plug in C = U>O, we have:

b1 = U>(Oµ) = U>P1,

where we use the fact that P1[i] = P (o1 = i) =
∑

s1
O[o1 = i|s1]µ(s1) = O[i, :]µ, which means that P1 =

Oµ.

Lemma 6. We have Bo = U>P3,o,1(U
>P2,1)

+, ∀o ∈ [n].

Proof. Recall that Bo = CAoC
−1. Using the definition of C = U>O, we have:

Bo = U>OAo(U
>O)−1

Note that for P3,o,1 we first have:

P3,o,1[i, j] =
∑

s3,s2,s1

O(i|s3)T (s3|s2)O(o|s2)T (s2|s1)µ(s1)O(j|s1)

which means that P3,o,1 = OAoTdiag(µ)O. Now we have:

P3,o,1 = OAoTdiag(µ)O> = OAo(U
>O)−1(U>O)Tdiag(µ)O> = OAo(U

>O)−1U>(OTdiag(µ)O>)

= OAo(U
>O)−1U>P2,1.

SinceU>P2,1 = ΣV > where recallP2,1 = U>ΣV >, we haveU>P2,1 being full row rank. Thus (U>P2,1)(U
>P2,1)

+

is equal to identity. Thus, we have:

P3,o,1(U
>P2,1)

+ = OAo(U
>O)−1.

This means that Bo = U>OAo(U
>O)−1 = U>P3,o,1(U

>P2,1)
+.

3

Finally, we show that b∞ can also be computed by observable quantities.

Lemma 7. We have b>∞ = P>1 (U>P2,1)
+.

Proof. Recall that b>∞ = 1>C−1. Using the definition of C, we have:

b>∞ = 1>(U>O)−1 = 1>(U>O)−1(U>P2,1)(U
>P2,1)

+

Note that P2,1 = OTdiag(µ)O>, we have:

1>(U>O)−1U>P2,1 = 1>(U>O)−1U>OTdiag(µ)O> = 1>Tdiag(µ)O> = P>1 .

Thus, we have:

b>∞ = P>1 (U>P2,1)
+.

2.3 Put things together: training algorithm and inference procedure

Let us summarize the algorithm below. The training algorithm consists of 3 steps below.

• estimate P1, P2,1, and P3,o,1 as follows:

P̂1[i] =

∑N
n=1 1(on1 = i)

N
, P̂2,1[i, j] =

∑N
n=1 1(on1 = j, on2 = i)

N
, P̂3,o,1[i, j] =

∑N
n=1 1(on3 = i, on2 = o, on1 = j)∑N

n=1 1(on2 = o)

• Perform SVD on P̂2,1, i.e., P̂2,1 = Û Σ̂V̂ >;

• Estimate b1, b∞, Bo as follows:

b̂1 = Û>P̂1; b̂
>
∞ = P̂>1 (Û>P̂2,1)

+; B̂o = Û>P̂3,o,1(Û
>P̂2,1)

+,∀o ∈ [n].

This algorithm is called spectral learning mostly because in step 2 above we performed SVD.
For inference, given any arbitary trajectory of observations o1, . . . , ot, we can estimate its probability as:

P̂ (o1, . . . , ot) = b̂>∞B̂ot . . . B̂o1 b̂1.

Note that the above whole procedure does not reason about latent state at all, and when N → ∞, we have
P̂1, P̂2,1, P̂3,o,1 converge to its corresponding population level matrices.

3 Further reading: spectral learning with kernels and PAC learning in POMDPs

The above algorithm only covers the discrete tabular setting. There was a significant amount of effort in extending
the spectral learning algorithm to HMMs w/a large number of states and observations (or even continuous state
and observation space). A representative work is from Song et al. (2010) which embeds transition and observation
operators into Reproducing Kernel Hilbert Spaces (RKHS).

HMMs are passive sequential models, i.e., there are no controls/actions and there is no reward to optimize. The
partially observable MDP (POMDP) model extends HMM to control setting by adding actions and reward functions.
Designing PAC algorithms for POMDPs turns out to be much more complicated than that for MDPs. The works
from Uehara et al. (2022) and Zhan et al. (2022) are two of the most recent works on designing algorithms for PAC
learning for POMDPs.

4

References

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov models. Journal of
Computer and System Sciences, 78(5):1460–1480, 2012.

Le Song, Byron Boots, Sajid Siddiqi, Geoffrey J Gordon, and Alex Smola. Hilbert space embeddings of hidden
markov models. ICML, 2010.

Masatoshi Uehara, Ayush Sekhari, Jason D Lee, Nathan Kallus, and Wen Sun. Provably efficient reinforcement
learning in partially observable dynamical systems. NeurIPS, 2022.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Pac reinforcement learning for predictive state
representations. ICLR, 2022.

5

	Problem Definition
	Spectral Learning for HMMs
	Observable operator
	Learning equivalent representations of observable operators
	Put things together: training algorithm and inference procedure

	Further reading: spectral learning with kernels and PAC learning in POMDPs

