Policy Gradient: Optimality

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Recap

Policy Gradient Deriviation

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

$$\pi_{\theta}(a \mid s) = \pi(a \mid s; \theta)$$
 $J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right]$

$$\theta_{t+1} = \theta_t + \eta \nabla_{\theta} J(\pi_{\theta}) |_{\theta = \theta_t}$$

Main question for today's lecture: how to compute the gradient?

$$\nabla_{\theta} J(\theta) := \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a) \right]$$

Derivation of unbiased Stochastic Policy Gradient

$$\nabla_{\theta} J(\theta) := \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a) \right]$$

Draw $h \propto \gamma^h$, roll-in π_θ to generate $s_h, a_h \sim \mathbb{P}_h^{\pi_\theta}$

Roll-out π_{θ} from (s_h, a_h) : terminate with prob $1 - \gamma$, $\widetilde{Q}^{\pi_{\theta}}(s_h, a_h) = \sum_{\tau=h}^{t \geq h} r_{\tau}$

Unbiased estimate: $\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \widetilde{Q}^{\pi_{\theta}}(s_h, a_h)$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

2. Softmax linear Policy (e.g., for linear MDPs):

Feature vector $\phi(s,a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

3. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

Convergence to Stationary Point

 $J(\pi_{\theta})$ is non-convex (see example in the monograph)

Def of β -smooth:

$$\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$$

$$\left| J(\theta) - J(\theta_0) - \nabla_{\theta} J(\theta_0)^{\mathsf{T}} (\theta - \theta_0) \right| \leq \frac{\beta}{2} \|\theta - \theta_0\|_2^2, \forall \theta, \theta_0$$

[Theorem] If $J(\theta)$ is β -smooth, and we run SGA: $\theta_{t+1} = \theta_t + \eta \overset{\sim}{\nabla}_{\theta} J(\theta_t)$

where
$$\mathbb{E}\left[\widetilde{\nabla}_{\theta}J(\theta_t)\right] = \nabla_{\theta}J(\theta_t)$$
, $\mathbb{E}\left[\|\widetilde{\nabla}_{\theta}J(\theta_t)\|_2^2\right] \leq \sigma^2$,

then:

$$\mathbb{E}\left[\frac{1}{T}\sum_{t}\|\nabla_{\theta}J(\theta_{t})\|_{2}^{2}\right] \leq O\left(\sqrt{\beta\sigma^{2}/T}\right)$$

Today (+future):

When do PG methods converge to a global optima? (+ what about function approximation?)

Today:

- Let's consider using exact gradients.
 - This allows us to ignore estimation issues
 - Let's focus on "complete" parameterizations (e.g. the "tabular" case) Π contains all stochastic policies (e.g. softmax)
- I: Landscape of the problem
 - As a general non-convex optimization problem: do small gradients imply good performance?
 - what about "exploration"?
- II: Global convergence results

PG as non-convex optimization

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

• Def of a β -smooth function F: $\|\nabla_{\theta}F(\theta)-\nabla_{\theta}F(\theta_0)\|_2 \leq \beta\|\theta-\theta_0\|_2$ which implies:

$$\left| F(\theta) - F(\theta_0) - \nabla_{\theta} F(\theta_0)^{\mathsf{T}} (\theta - \theta_0) \right| \leq \frac{\beta}{2} \|\theta - \theta_0\|_2^2$$

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

• Def of a β -smooth function F: $\|\nabla_{\theta}F(\theta)-\nabla_{\theta}F(\theta_0)\|_2 \leq \beta\|\theta-\theta_0\|_2$ which implies:

$$\left| F(\theta) - F(\theta_0) - \nabla_{\theta} F(\theta_0)^{\mathsf{T}} (\theta - \theta_0) \right| \leq \frac{\beta}{2} \|\theta - \theta_0\|_2^2$$

• Proposition: (stationary point convergence) Assume $F(\theta)$ is β -smooth. Suppose we run gradient ascent: $\theta_{t+1} = \theta_t + \eta \, \nabla_\theta F(\theta_t)$, with $\eta = 1/(2\beta)$. Then:

$$\min_{t \le T} \|\nabla_{\theta} F(\theta_t)\|_2^2 \le \frac{2\beta \left(\max_{\theta} F(\theta) - F(\theta_0)\right)}{T}$$

Convergence to Stationary Point

Proposition: (stationary point convergence) Assume $F(\theta)$ is β -smooth.

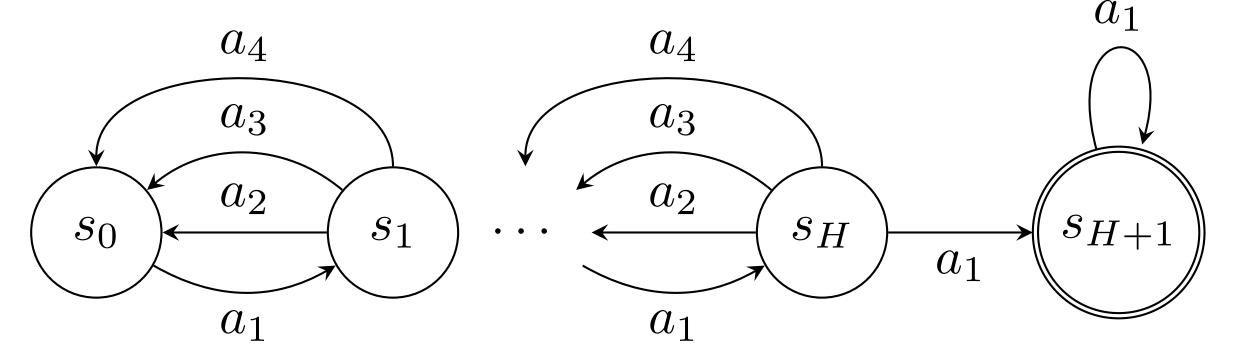
Suppose we run gradient ascent: $\theta_{t+1} = \theta_t + \eta \nabla_{\theta} F(\theta_t)$, with $\eta = 1/(2\beta)$. Then:

$$\min_{t \le T} \|\nabla_{\theta} F(\theta_t)\|_2^2 \le \frac{2\beta \left(F(\theta^*) - F(\theta_0)\right)}{T}$$

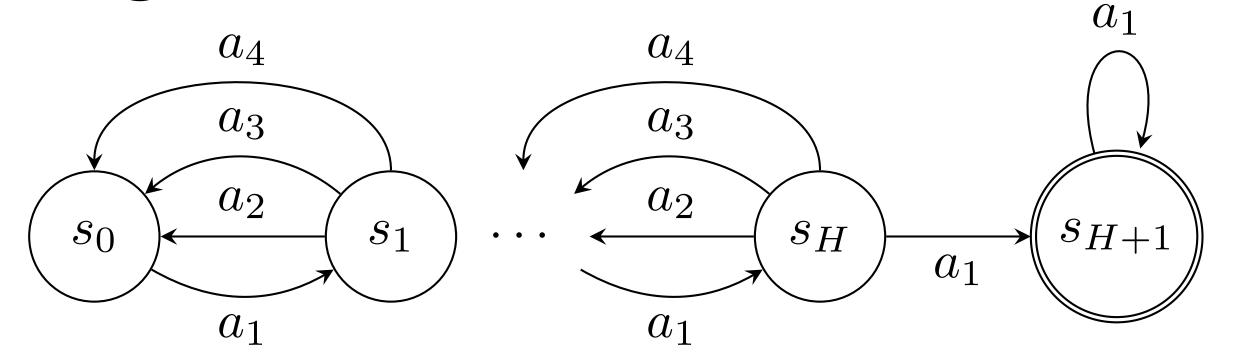
$$\begin{split} \left| F(\theta_{t+1}) - F(\theta_t) - \nabla_{\theta} F(\theta_t)^{\mathsf{T}} (\theta_{t+1} - \theta_t) \right| &\leq \frac{\beta}{2} \|\theta_{t+1} - \theta_t\|^2 \\ \Rightarrow \left| F(\theta_{t+1}) - F(\theta_t) - \eta \nabla_{\theta} F(\theta_t)^{\mathsf{T}} \nabla_{\theta} F(\theta_t) \right| &\leq \frac{\beta}{2} \eta^2 \|\nabla_{\theta} F(\theta_t)\|^2 \\ \Rightarrow \eta \|\nabla_{\theta} F(\theta_t)\|^2 &\leq F(\theta_{t+1}) - F(\theta_t) + \frac{\beta}{2} \eta^2 \|\nabla_{\theta} F(\theta_t)\|_2^2 \\ \Rightarrow \frac{1}{2\beta} \|\nabla_{\theta} F(\theta_t)\|^2 &\leq F(\theta_{t+1}) - F(\theta_t) \quad \text{using } \eta \leq \frac{1}{\beta} \\ \Rightarrow \min_{t \leq T} \|\nabla_{\theta} F(\theta_t)\|^2 &\leq \frac{1}{T} \sum_{t} \|\nabla_{\theta} F(\theta_t)\|^2 \leq \sum_{t} \left(F(\theta_{t+1}) - F(\theta_t) \right) \leq \frac{2\beta(F(\theta^*) - F(\theta_0))}{T} \end{split}$$

A "landscape" result (and "exploration")

Vanishing Gradients and Saddle Points



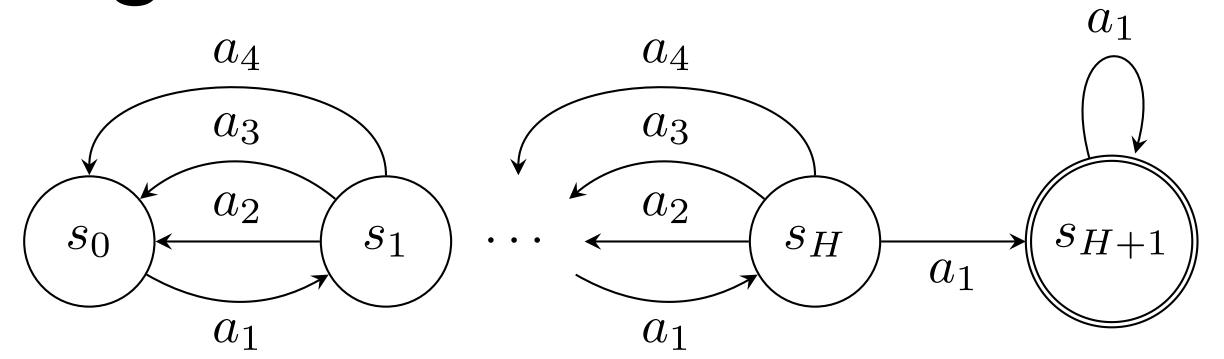
Vanishing Gradients and Saddle Points



Set $\gamma = H/(H+1)$. Policy param:

for $a=a_1,a_2,a_3,\ \pi_\theta(a\,|\,s)=\theta_{s,a},\$ and $\pi_\theta(a_4\,|\,s)=1-\theta_{s,a_1}-\theta_{s,a_2}-\theta_{s,a_3}$ (this a "direct" param, which is valid inside the simplex)

Vanishing Gradients and Saddle Points



Set $\gamma = H/(H+1)$. Policy param:

for $a=a_1,a_2,a_3,\ \pi_\theta(a\,|\,s)=\theta_{s,a},\$ and $\pi_\theta(a_4\,|\,s)=1-\theta_{s,a_1}-\theta_{s,a_2}-\theta_{s,a_3}$ (this a "direct" param, which is valid inside the simplex)

Theorem: For $0 < \theta < 1$ (componentwise) and $\theta_{s,a_1} < 1/4$ (for all states s).

For all $k \leq O(H/\log(H))$, we have that

$$\|\nabla_{\theta}^{k} V^{\pi_{\theta}}(s_{0})\| \leq (1/3)^{H/4}$$

(where $\|\nabla_{\theta}^k V^{\pi_{\theta}}(s_0)\|$ is the operator norm of the tensor $\nabla_{\theta}^k V^{\pi_{\theta}}(s_0)$.

"Vanilla" PG for the Softmax

Let's consider having a staring state distribution with "coverage"

Let's consider having a staring state distribution with "coverage"

• Given our a starting distribution ρ over states, recall our objective is: $\max_{\theta \in \Theta} V^{\pi_{\theta}}(\rho)$.

where $\{\pi_{\theta} | \theta \in \Theta \subset \mathbb{R}^d\}$ is some class of parametric policies.

Let's consider having a staring state distribution with "coverage"

- Given our a starting distribution ρ over states, recall our objective is: $\max_{\theta \in \Theta} V^{\pi_{\theta}}(\rho) \,.$ where $\{\pi_{\theta} | \theta \in \Theta \subset \mathbb{R}^d\}$ is some class of parametric policies.
- While we are interested in good performance under ρ , it is helpful to optimize under a different measure μ . Specifically, consider optimizing: $V^{\pi_{\theta}}(\mu)$, i.e. $\max_{\theta \in \Theta} V^{\pi_{\theta}}(\mu)$,

even though our ultimate goal is performance under $V^{\pi_{\theta}}(\rho)$.

notation (+ overloading)

Today: we will use $d_{s_0}^{\pi}$ for a state distribution measure.

(it should be clear from context how we use it).

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s \mid s_0, \pi) \qquad V^{\pi}(\mu) = E_{s \sim \mu}[V^{\pi}(s)]$$

$$d_{\mu}^{\pi}(s) = E_{s_0 \sim \mu}[d_{s_0}^{\pi}(s)]$$

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s, a_h = a \mid s_0, \pi)$$

Advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})},$$
 (where the number of parameters is SA).

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})},$$
 (where the number of parameters is SA).

We have that:

$$\frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta_{s',a'}} = \mathbf{1} \left[s = s' \right] \left(\mathbf{1} \left[a = a' \right] - \pi_{\theta}(a' \mid s) \right)$$

where $1[\cdot]$ is the indicator function.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})},$$
 (where the number of parameters is SA).

We have that:

$$\frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta_{s',a'}} = \mathbf{1} \left[s = s' \right] \left(\mathbf{1} \left[a = a' \right] - \pi_{\theta}(a' \mid s) \right)$$

where $1[\cdot]$ is the indicator function.

• Lemma: For the softmax policy class, we have:

$$\frac{\partial V^{\pi_{\theta}}(\mu)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)$$

Proof

$$\begin{split} \frac{\partial V^{\pi_{\theta}}(\mu)}{\partial \theta_{s,a}} &= E_{\tau \sim \mathrm{Pr}_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \ln \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) \right] \\ &= E_{\tau \sim \mathrm{Pr}_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}[s_{t} = s] \left(\mathbf{1}[a_{t} = a] A^{\pi_{\theta}}(s, a) - \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s_{t}, a_{t}) \right) \right] \\ &= E_{\tau \sim \mathrm{Pr}_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}[(s_{t}, a_{t}) = (s, a)] A^{\pi_{\theta}}(s, a) \right] + \pi_{\theta}(a \mid s) \sum_{t=0}^{\infty} \gamma^{t} E_{\tau \sim \mathrm{Pr}_{\mu}^{\pi_{\theta}}} \left[\mathbf{1}[s_{t} = s] A^{\pi_{\theta}}(s_{t}, a_{t}) \right] \\ &= \frac{1}{1 - \gamma} E_{(s', a') \sim d^{\pi_{\theta}}} \left[\mathbf{1}[(s', a') = (s, a)] A^{\pi_{\theta}}(s, a) \right] + 0 \\ &= \frac{1}{1 - \gamma} d^{\pi_{\theta}}(s, a) A^{\pi_{\theta}}(s, a), \end{split}$$

Remember: The Performance Difference Lemma

For all
$$\pi$$
, π' , s_0 :

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[A^{\pi'}(s, a) \right]$$

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s \mid s_0, \pi)$$

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$$

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$$

- Concerns:
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$ (π_t becoming any deterministic policy implies θ_t approaches a stationary point)

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$$

- Concerns:
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$ (π_t becoming any deterministic policy implies θ_t approaches a stationary point)
- Theorem: Assume the μ is strictly positive i.e. $\mu(s) > 0$ for all states s. For $\eta \leq (1 \gamma)^3/8$, then we have that for all states s, $V^{(t)}(s) \to V^*(s)$, as $t \to \infty$.

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$$

- Concerns:
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$ (π_t becoming any deterministic policy implies θ_t approaches a stationary point)
- Theorem: Assume the μ is strictly positive i.e. $\mu(s) > 0$ for all states s. For $\eta \leq (1 \gamma)^3/8$, then we have that for all states s, $V^{(t)}(s) \to V^*(s)$, as $t \to \infty$.
- Comments:
 - rate could be exponentially slow in S, H.
 - need $\mu > 0$ is necessary.

PG+Log Barrier Regularization (for the softmax)

Log Barrier Regularization

Log Barrier Regularization

• Relative-entropy for distributions p,q is: $\mathrm{KL}(p,q) := E_{x\sim p}[-\log q(x)/p(x)]$.

Log Barrier Regularization

- Relative-entropy for distributions p,q is: $\mathrm{KL}(p,q) := E_{x\sim p}[-\log q(x)/p(x)]$.
- Consider the log barrier λ -regularized objective:

$$L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) - \lambda E_{s \sim \mathsf{Unif}_{S}} [\mathsf{KL}(\mathsf{Unif}_{A}, \pi_{\theta}(\cdot \mid s))]$$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s) + \lambda \log A$$

Log Barrier Regularization

- Relative-entropy for distributions p,q is: $\mathrm{KL}(p,q) := E_{x\sim p}[-\log q(x)/p(x)]$.
- Consider the log barrier λ -regularized objective: $L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) \lambda E_{s \sim \mathsf{Unif}_{S}} \big[\mathsf{KL}(\mathsf{Unif}_{A}, \pi_{\theta}(\cdot \mid s)) \big]$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s) + \lambda \log A$$

Gradient Ascent:

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} L_{\lambda}(\theta^{(t)})$$

Log Barrier Regularization

- Relative-entropy for distributions p,q is: $\mathrm{KL}(p,q) := E_{x\sim p}[-\log q(x)/p(x)]$.
- Consider the log barrier λ -regularized objective:

$$L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) - \lambda E_{s \sim \mathsf{Unif}_{S}} \big[\mathsf{KL}(\mathsf{Unif}_{A}, \pi_{\theta}(\cdot \mid s)) \big]$$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s) + \lambda \log A$$

Gradient Ascent:

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} L_{\lambda}(\theta^{(t)})$$

Do small gradients imply a globally optimal policy?

Stationarity and Optimality

Stationarity and Optimality

• Log barrier regularized objective:

$$L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s) + \lambda \log A$$

Stationarity and Optimality

Log barrier regularized objective:

$$L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s) + \lambda \log A$$

• Theorem: (Log barrier regularization) Suppose θ is such that:

$$\|\nabla_{\theta} L_{\lambda}(\theta)\|_{2} \le \epsilon_{opt}$$
 and $\epsilon_{opt} \le \lambda/(2SA)$

then we have for all starting state distributions ρ :

$$V^{\pi_{\theta}}(\rho) \ge V^{\star}(\rho) - \frac{2\lambda}{1 - \gamma} \left\| \frac{d_{\rho}^{\pi^{\star}}}{\mu} \right\|_{\infty}$$

where the "distribution mismatch coefficient" is

$$\left\| \frac{d_{\rho}^{\pi^{\star}}}{\mu} \right\|_{\infty} = \max_{s} \left(\frac{d_{\rho}^{\pi^{\star}(s)}}{\mu(s)} \right) \quad \text{(componentwise division notation)}$$

Global Convergence with the Log Barrier

Global Convergence with the Log Barrier

. The smoothness of
$$L_{\lambda}(\theta)$$
 is $\beta_{\lambda}:=\frac{8\gamma}{(1-\gamma)^3}+\frac{2\lambda}{S}$

Global Convergence with the Log Barrier

- . The smoothness of $L_{\lambda}(\theta)$ is $\beta_{\lambda}:=\frac{8\gamma}{(1-\gamma)^3}+\frac{2\lambda}{S}$
- Corollary: (Iteration complexity with log barrier regularization)

Set
$$\lambda = \frac{\epsilon(1-\gamma)}{2\left\|\frac{d_{\rho}^{\pi^{\star}}}{\mu}\right\|_{\infty}}$$
 and $\eta = 1/\beta_{\lambda}$. Starting from any initial $\theta^{(0)}$,

then for all starting state distributions ρ , we have

$$\min_{t < T} \left\{ V^{\star}(\rho) - V^{(t)}(\rho) \right\} \leq \epsilon \quad \text{whenever} \quad T \geq c \frac{S^2 A^2}{(1 - \gamma)^6 \, \epsilon^2} \left\| \frac{d_{\rho}^{\pi^{\star}}}{\mu} \right\|_{\infty}^2$$
 (for constant c).

Remember: The Performance Difference Lemma

For all
$$\pi$$
, π' , s_0 :

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[A^{\pi'}(s, a) \right]$$

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s \mid s_0, \pi)$$

• The proof consists of showing that: $\max_{a} A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all states s.

- The proof consists of showing that: $\max_{a} A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all states s.
- To see that this is sufficient, observe that by the performance difference lemma:

$$V^{\star}(\rho) - V^{\pi_{\theta}}(\rho) = \frac{1}{1 - \gamma} \sum_{s,a} d_{\rho}^{\pi^{\star}}(s) \pi^{\star}(a \mid s) A^{\pi_{\theta}}(s, a)$$

$$\leq \frac{1}{1 - \gamma} \sum_{s} d_{\rho}^{\pi^{\star}}(s) \max_{a \in A} A^{\pi_{\theta}}(s, a)$$

$$\leq \frac{1}{1 - \gamma} \sum_{s} 2d_{\rho}^{\pi^{\star}}(s) \lambda / (\mu(s)S)$$

$$\leq \frac{2\lambda}{1 - \gamma} \max_{s} \left(\frac{d_{\rho}^{\pi^{\star}}(s)}{\mu(s)}\right).$$

which would then complete the proof.

• need to show $A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all (s,a). consider (s,a) where that $A^{\pi_{\theta}}(s,a) \geq 0$ (else claim is true).

• need to show $A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all (s,a). consider (s,a) where that $A^{\pi_{\theta}}(s,a) \geq 0$ (else claim is true).

$$\operatorname{Recall} \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right)$$

- need to show $A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all (s,a). consider (s,a) where that $A^{\pi_{\theta}}(s,a) \geq 0$ (else claim is true).
- $\text{Recall } \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s,a) + \frac{\lambda}{S} \left(\frac{1}{A} \pi_{\theta}(a \mid s) \right)$
- Solving for $A^{\pi_{\theta}}(s,a)$ in the first step and using $\|\nabla_{\theta}L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt} \leq \lambda/(2SA)$,

$$A^{\pi_{\theta}}(s,a) = \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \left(1 - \frac{1}{\pi_{\theta}(a \mid s)A} \right) \right)$$

$$\leq \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)$$

$$\leq \frac{1}{\mu(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) \qquad \text{using that} \quad d_{\mu}^{\pi_{\theta}}(s) \geq (1-\gamma)\mu(s)$$

• need to show $A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all (s,a). consider (s,a) where that $A^{\pi_{\theta}}(s,a) \geq 0$ (else claim is true).

$$\text{Recall } \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s,a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right)$$

• Solving for $A^{\pi_{\theta}}(s,a)$ in the first step and using $\|\nabla_{\theta}L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt} \leq \lambda/(2SA)$,

$$\begin{split} A^{\pi_{\theta}}(s,a) &= \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \Big(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \Big(1 - \frac{1}{\pi_{\theta}(a \mid s)A} \Big) \Big) \\ &\leq \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \Big(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \Big) \\ &\leq \frac{1}{\mu(s)} \Big(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \Big) \qquad \text{using that} \quad d_{\mu}^{\pi_{\theta}}(s) \geq (1-\gamma)\mu(s) \end{split}$$

• Suppose we could show that $\pi_{\theta}(a \mid s) \geq 1/(2A)$, when $A^{\pi_{\theta}}(s, a) \geq 0$, then

$$\frac{1}{\mu(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) \leq \frac{1}{\mu(s)} \left(2A \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) = \frac{2\lambda}{\mu(s)S}$$
 and the proof is done!

• for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.

- for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.
- The gradient norm assumption $\|\nabla_{\theta}L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt}$ implies that:

$$\epsilon_{opt} \ge \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right)$$

$$\ge 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right) \quad \text{using } A^{\pi_{\theta}}(s, a) \ge 0$$

- for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.
- The gradient norm assumption $\|\nabla_{\theta}L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt}$ implies that:

$$\epsilon_{opt} \ge \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right)$$

$$\ge 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right) \quad \text{using } A^{\pi_{\theta}}(s, a) \ge 0$$

• Rearranging and using our assumption $\epsilon_{opt} \leq \lambda/(2SA)$,

$$\pi_{\theta}(a \mid s) \ge \frac{1}{A} - \frac{\epsilon_{opt}S}{\lambda} \ge \frac{1}{2A}.$$