The Sample Complexity (with a Generative Model)

Sham Kakade and Wen Sun
CS 6789: Foundations of Reinforcement Learning

Announcements

- Reading assignments (see website)
- sign up for a chapter (signup sheep will be up today)
- start the assignment only after the we approve the chapter.
- requirements:
- one page report that summarizes the chapter
- check all mathematical steps in the chapter
- Participation/effort Bonus
- we will give extra credit for participation (class, ED, etc)
- extra credit for reading assignments, finding bugs, project...
- The book will be updated often.
- Feedback/questions/finding typos appreciated!

Today:

Today:

- Recap: computational complexity
- Question: Given an MDP $\mathscr{M}=(S, A, P, r, \gamma)$ can we exactly compute Q^{\star} (or find π^{\star}) in polynomial time?

Today:

- Recap: computational complexity
- Question: Given an MDP $\mathscr{M}=(S, A, P, r, \gamma)$ can we exactly compute Q^{\star} (or find π^{\star}) in polynomial time?
- Today: statistical complexity
- Question: Given only sampling access to an unknown MDP $\mathscr{M}=(S, A, P, r, \gamma)$ how many observed transitions do we need to estimate Q^{\star} (or find π^{\star})?
- Two sampling models: episodic setting and generative models.

Recap

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^{2} A \frac{L(P, r, \gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$\left(S^{3}+S^{2} A\right) \frac{L(P, r, \gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$S^{3} A L(P, r, \gamma)$
Strongly Poly.	X	$\left(S^{3}+S^{2} A\right) \cdot \min \left\{\frac{A^{S}}{S}, \frac{S^{2} A \log \frac{S^{2}}{1-\gamma}}{1-\gamma}\right\}$	$S^{4} A^{4} \log \frac{S}{1-\gamma}$

- VI: poly time for fixed γ, not strongly poly
- PI: poly and strongly-poly time for fixed γ
- LP approach: poly and strongly-poly time (LP approach is only logarithmic in $1 /(1-\gamma)$)

Today

Two natural models for learning in an unknown MDP

- Episodic setting:
- in every episode, $s_{0} \sim \mu$.
- the learner acts for some finite number of steps and observes the trajectory.
- The state is then resets to $s_{0} \sim \mu$.

Two natural models for learning in an unknown MDP

- Episodic setting:
- in every episode, $s_{0} \sim \mu$.
- the learner acts for some finite number of steps and observes the trajectory.
- The state is then resets to $s_{0} \sim \mu$.
- Generative model setting:
- input: (s, a)
- output: a sample $s^{\prime} \sim P(\cdot \mid s, a)$ and $r(s, a)$

Two natural models for learning in an unknown MDP

- Episodic setting:
- in every episode, $s_{0} \sim \mu$.
- the learner acts for some finite number of steps and observes the trajectory.
- The state is then resets to $s_{0} \sim \mu$.
- Generative model setting:
- input: (s, a)
- output: a sample $s^{\prime} \sim P(\cdot \mid s, a)$ and $r(s, a)$
- Sample complexity of RL: how many transitions do we need observe in order to find a near optimal policy?
- Episodic setting: we must actively explore to gather information
- Generative model setting: lets us disentangle the issue of fundamental statistical limits from exploration.

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using any algorithm)
- Since P has $S^{2} A$ parameters, we may hope that $O\left(S^{2} A\right)$ samples are sufficient for learning.

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using any algorithm)
- Since P has $S^{2} A$ parameters, we may hope that $O\left(S^{2} A\right)$ samples are sufficient for learning.
- Questions:
- Is a naive model-based approach optimal? i.e. estimate P accurately (using $O\left(S^{2} A\right)$ samples) and then use \widehat{P} for planning.
- Is sublinear learning possible? (i.e. learn with fewer than $\Omega\left(S^{2} A\right)$ samples)

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using any algorithm)
- Since P has $S^{2} A$ parameters, we may hope that $O\left(S^{2} A\right)$ samples are sufficient for learning.
- Questions:
- Is a naive model-based approach optimal?
i.e. estimate P accurately (using $O\left(S^{2} A\right)$ samples) and then use \widehat{P} for planning.
- Is sublinear learning possible?
(i.e. learn with fewer than $\Omega\left(S^{2} A\right)$ samples)
- If sublinear learning is possible, then we do not need an accurate model of the world in order to act near-optimally?

The most naive approach: model based

- Today: let us assume access to a generative model

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
- Call our simulator N times at each state action pair.
- Let \widehat{P} be our empirical model:
$\widehat{P}\left(s^{\prime} \mid s, a\right)=\frac{\operatorname{count}\left(s^{\prime}, s, a\right)}{N}$
where count $\left(s^{\prime}, s, a\right)$ is the \#times (s, a) transitions to state s^{\prime}.
- we also know the rewards after one call. (for simplicity, we often assume $r(s, a)$ is determinstic)

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
- Call our simulator N times at each state action pair.
- Let \widehat{P} be our empirical model:

$$
\widehat{P}\left(s^{\prime} \mid s, a\right)=\frac{\operatorname{count}\left(s^{\prime}, s, a\right)}{N}
$$

where count $\left(s^{\prime}, s, a\right)$ is the \#times (s, a) transitions to state s^{\prime}.

- we also know the rewards after one call.
(for simplicity, we often assume $r(s, a)$ is determinstic)
- The total number of calls to our generative model is SAN.

Attempt 1:

the naive model based approach

Model accuracy

Proposition: c is an absolute constant. $\epsilon>0$. For $N \geq \frac{c \gamma}{(1-\gamma)^{4}} \frac{S \log (c S A / \delta)}{\epsilon^{2}}$ and with probability greater than $1-\delta$,

Model accuracy

Proposition: c is an absolute constant. $\epsilon>0$. For $N \geq \frac{c \gamma}{(1-\gamma)^{4}} \frac{S \log (c S A / \delta)}{\epsilon^{2}}$ and with probability greater than $1-\delta$,

- Model accuracy: The transition model is ϵ has error bounded as: $\max \|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1} \leq(1-\gamma)^{2} \epsilon / 2$.
s, a

Model accuracy

Proposition: c is an absolute constant. $\epsilon>0$. For $N \geq \frac{c \gamma}{(1-\gamma)^{4}} \frac{S \log (c S A / \delta)}{\epsilon^{2}}$ and with probability greater than $1-\delta$,

- Model accuracy: The transition model is ϵ has error bounded as:
$\max \|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1} \leq(1-\gamma)^{2} \epsilon / 2$.
s,a
- Uniform value accuracy: For all policies π,

$$
\left\|Q^{\pi}-\widehat{Q}^{\pi}\right\|_{\infty} \leq \epsilon / 2
$$

Model accuracy

Proposition: \mathbf{c} is an absolute constant. $\boldsymbol{\epsilon}>0$. For $N \geq \frac{c \gamma}{(1-\gamma)^{4}} \frac{S \log (c S A / \delta)}{\epsilon^{2}}$ and with probability greater than $1-\delta$,

- Model accuracy: The transition model is ϵ has error bounded as:
$\max \|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1} \leq(1-\gamma)^{2} \epsilon / 2$.
s,a
- Uniform value accuracy: For all policies π,
$\left\|Q^{\pi}-\widehat{Q}^{\pi}\right\|_{\infty} \leq \epsilon / 2$
- Near optimal planning: Suppose that $\hat{\pi}^{\star}$ is the optimal policy in \widehat{M}.

$$
\left\|Q^{\star}-Q^{\hat{\pi}^{\star}}\right\|_{\infty} \leq \epsilon
$$

Matrix Expressions

- Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

$$
\begin{array}{cl}
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) & \text { if } a^{\prime}=\pi\left(s^{\prime}\right) \\
0 & \text { if } a^{\prime} \neq \pi\left(s^{\prime}\right)
\end{array}
$$

Matrix Expressions

- Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

$$
\begin{array}{cl}
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) & \text { if } a^{\prime}=\pi\left(s^{\prime}\right) \\
0 & \text { if } a^{\prime} \neq \pi\left(s^{\prime}\right)
\end{array}
$$

- With this notation,
$Q^{\pi}=r+\gamma P V^{\pi}$
$Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}$

Matrix Expressions

- Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

$$
\begin{array}{cc}
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) & \text { if } a^{\prime}=\pi\left(s^{\prime}\right) \\
0 & \text { if } a^{\prime} \neq \pi\left(s^{\prime}\right)
\end{array}
$$

- With this notation,
$Q^{\pi}=r+\gamma P V^{\pi}$
$Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}$
- Also,
$Q^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r$
(where one can show the inverse exists)

"Simulation" Lemma

"Simulation Lemma": For all π, $Q^{\pi}-\widehat{Q}^{\pi}=\gamma\left(I-\gamma \widehat{P^{\pi}}\right)^{-1}(P-\widehat{P}) V^{\pi}$

"Simulation" Lemma

"Simulation Lemma": For all π,

$$
Q^{\pi}-\widehat{Q}^{\pi}=\gamma\left(I-\gamma \widehat{P^{\pi}}\right)^{-1}(P-\widehat{P}) V^{\pi}
$$

Proof: Using our matrix equality for Q^{π}, we have:

$$
Q^{\pi}-\widehat{Q}^{\pi}=Q^{\pi}-\left(I-\gamma \widehat{P}^{\pi}\right)^{-1} r
$$

$$
\begin{aligned}
& =\left(I-\gamma \widehat{P}^{\pi}\right)^{-1}\left(\left(I-\gamma \widehat{P}^{\pi}\right)-\left(I-\gamma P^{\pi}\right)\right) Q^{\pi} \\
& =\gamma\left(I-\gamma \widehat{P}^{\pi}\right)^{-1}\left(P^{\pi}-\widehat{P}^{\pi}\right) Q^{\pi} \\
& =\gamma\left(I-\gamma \widehat{P}^{\pi}\right)^{-1}(P-\widehat{P}) V^{\pi}
\end{aligned}
$$

Proof of Claim 1

Proof of Claim 1

- Concentration of a distribution in the ℓ_{1} norm:
- For a fixed s, a. With pr greater than $1-\delta$,

$$
\begin{aligned}
& \|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1} \leq c \sqrt{\frac{S \log (1 / \delta)}{N}} \\
& \text { with } N \text { samples used to estimate } \widehat{P}(\cdot \mid s, a) .
\end{aligned}
$$

Proof of Claim 1

- Concentration of a distribution in the ℓ_{1} norm:
- For a fixed s, a. With pr greater than $1-\delta$,

$$
\begin{aligned}
& \|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1} \leq c \sqrt{\frac{S \log (1 / \delta)}{N}} \\
& \text { with } N \text { samples used to estimate } \widehat{P}(\cdot \mid s, a) .
\end{aligned}
$$

- The first claim now follows by the union bound.

Proof of Claim 2 (\&3)

Proof of Claim 2 (\&3)

For the second claim,

$$
\begin{aligned}
& \left\|Q^{\pi}-\widehat{Q}^{\pi}\right\|_{\infty}=\left\|\gamma\left(I-\gamma \widehat{P}^{\pi}\right)^{-1}(P-\widehat{P}) V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{1-\gamma}\left(\max _{s, a}\|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1}\right)\left\|V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{(1-\gamma)^{2}} \max _{s, a}\|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1}
\end{aligned}
$$

(why is the first inequality true?)

Proof of Claim 2 (\&3)

For the second claim,

$$
\begin{aligned}
& \left\|Q^{\pi}-\widehat{Q}^{\pi}\right\|_{\infty}=\left\|\gamma\left(I-\gamma \widehat{P}^{\pi}\right)^{-1}(P-\widehat{P}) V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{1-\gamma}\left(\max _{s, a}\|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1}\right)\left\|V^{\pi}\right\|_{\infty} \\
& \quad \leq \frac{\gamma}{(1-\gamma)^{2}} \max _{s, a}\|P(\cdot \mid s, a)-\widehat{P}(\cdot \mid s, a)\|_{1}
\end{aligned}
$$

(why is the first inequality true?)
The proof for the Claim 3 immediately follows from the second claim.

Attempt 2:

obtaining sublinear sample complexity idea: use concentration only on V^{\star}

Reference sheet (defs/notation)

Reference sheet (defs/notation)

- Remember: \# samples from generative model $=S A N$

Reference sheet (defs/notation)

- Remember: \# samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π :

$$
\begin{array}{cc}
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) & \text { if } a^{\prime}=\pi\left(s^{\prime}\right) \\
0 & \text { if } a^{\prime} \neq \pi\left(s^{\prime}\right)
\end{array}
$$

Reference sheet (defs/notation)

- Remember: \# samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π :

$$
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) \quad \text { if } a^{\prime}=\pi\left(s^{\prime}\right)
$$

$0 \quad$ if $a^{\prime} \neq \pi\left(s^{\prime}\right)$
-With this notation,

$$
Q^{\pi}=r+\gamma P V^{\pi}, \quad Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}, \quad Q^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r
$$

Reference sheet (defs/notation)

- Remember: \# samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π :

$$
\begin{array}{cc}
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) & \text { if } a^{\prime}=\pi\left(s^{\prime}\right) \\
0 & \text { if } a^{\prime} \neq \pi\left(s^{\prime}\right)
\end{array}
$$

-With this notation,

$$
Q^{\pi}=r+\gamma P V^{\pi}, \quad Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}, \quad Q^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r
$$

$\frac{1}{1-\gamma}\left(I-\gamma P^{\pi}\right)^{-1}$ is a matrix whose rows are probability distributions (why?)

Reference sheet (defs/notation)

- Remember: \# samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π :

$$
P_{(s, a),\left(s^{\prime}, a^{\prime}\right)}^{\pi}:=P\left(s^{\prime} \mid s, a\right) \quad \text { if } a^{\prime}=\pi\left(s^{\prime}\right)
$$

$0 \quad$ if $a^{\prime} \neq \pi\left(s^{\prime}\right)$
-With this notation,

$$
Q^{\pi}=r+\gamma P V^{\pi}, \quad Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}, \quad Q^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r
$$

$\cdot \frac{1}{1-\gamma}\left(I-\gamma P^{\pi}\right)^{-1}$ is a matrix whose rows are probability distributions (why?)

- \widehat{Q}^{\star} : optimal value in estimated model \widehat{M}.
$\widehat{\pi}^{\star}$: optimal policy in \widehat{M}.
$Q^{\hat{\pi}^{\star}}$: (true) value of estimated policy.

Attempt 2: Sublinear Sample Complexity

Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than $1-\delta$,

$$
\begin{aligned}
& \left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{(1-\gamma)^{2}} \sqrt{\frac{2 \log (2 S A / \delta)}{N}} \\
& \| Q^{\star}-\widehat{Q^{\pi^{\star}} \|_{\infty} \leq \frac{\gamma}{(1-\gamma)^{2}} \sqrt{\frac{2 \log (2 S A / \delta)}{N}}}=\$ \text {. }
\end{aligned}
$$

Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than $1-\delta$,

$$
\begin{aligned}
& \left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{(1-\gamma)^{2}} \sqrt{\frac{2 \log (2 S A / \delta)}{N}} \\
& \left\|Q^{\star}-\widehat{Q}^{\pi^{\star}}\right\|_{\infty} \leq \frac{\gamma}{(1-\gamma)^{2}} \sqrt{\frac{2 \log (2 S A / \delta)}{N}}
\end{aligned}
$$

What about the value of the policy?

$$
\left\|Q^{\star}-Q^{\hat{\pi} \star}\right\|_{\infty} \leq \frac{\gamma}{(1-\gamma)^{3}} \sqrt{\frac{2 \log (2 S A / \delta)}{N}}
$$

Component-wise Bounds Lemma

Lemma: we have that

$$
\begin{aligned}
& Q^{\star}-\widehat{Q}^{\star} \leq \gamma\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star} \\
& Q^{\star}-\widehat{Q}^{\star} \geq \gamma\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}
\end{aligned}
$$

Component-wise Bounds Lemma

Lemma: we have that

$$
\begin{aligned}
& Q^{\star}-\widehat{Q}^{\star} \leq \gamma\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star} \\
& Q^{\star}-\widehat{Q}^{\star} \geq \gamma\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}
\end{aligned}
$$

Proof:

For the first claim, the optimality of π^{\star} in M implies:
$Q^{\star}-\widehat{Q}^{\star}=Q^{\pi^{\star}}-\widehat{Q^{\pi^{\star}}} \leq Q^{\pi^{\star}}-\widehat{Q^{\star}}=\gamma\left(I-\gamma \widehat{P}^{\pi^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}$,
using the simulation lemma in the final step.
See notes for the proof of second claim.

Proof: (\& key idea for sublinearity)

Proof: (\& key idea for sublinearity)

- Proof of the first claim:

Proof: (\& key idea for sublinearity)

- Proof of the first claim:
. By the previous lemma: $\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty}$

Proof: (\& key idea for sublinearity)

- Proof of the first claim:
- By the previous lemma: $\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty}$
- Recall $\left\|V^{\star}\right\|_{\infty} \leq 1 /(1-\gamma)$.

Proof: (\& key idea for sublinearity)

- Proof of the first claim:

. By the previous lemma: $\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty}$

- Recall $\left\|V^{\star}\right\|_{\infty} \leq 1 /(1-\gamma)$.
- By Hoeffding's inequality and the union bound,

$$
\begin{aligned}
\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty} & =\max _{s, a}\left|E_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V^{\star}\left(s^{\prime}\right)\right]-E_{s^{\prime} \sim \widehat{P}(\cdot \mid s, a)}\left[V^{\star}\left(s^{\prime}\right)\right]\right| \\
& \leq \frac{1}{1-\gamma} \sqrt{\frac{2 \log (2 S A / \delta)}{N}}
\end{aligned}
$$

which holds with probability greater than $1-\delta$.

Proof: (\& key idea for sublinearity)

- Proof of the first claim:
- By the previous lemma: $\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty}$
- Recall $\left\|V^{\star}\right\|_{\infty} \leq 1 /(1-\gamma)$.
- By Hoeffding's inequality and the union bound,

$$
\begin{aligned}
\left\|(P-\widehat{P}) V^{\star}\right\|_{\infty} & =\max _{s, a}\left|E_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V^{\star}\left(s^{\prime}\right)\right]-E_{s^{\prime} \sim \widehat{P}(\cdot \mid s, a)}\left[V^{\star}\left(s^{\prime}\right)\right]\right| \\
& \leq \frac{1}{1-\gamma} \sqrt{\frac{2 \log (2 S A / \delta)}{N}}
\end{aligned}
$$

which holds with probability greater than $1-\delta$.

- Proof of second claim is similar (see the book)

Attempt 3: minimax optimal sample complexity idea: better variance control

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1-\delta$,
$\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}}+\frac{c \gamma}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}$,
where c is an absolute constant.

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1-\delta$,
$\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}}+\frac{c \gamma}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}$,
where c is an absolute constant.
Corollary: for $\epsilon<1$, provided $N \geq \frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}$ then
$\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \epsilon$ (with prob. greater than $\left.1-\delta\right)$

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1-\delta$,
$\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}}+\frac{c \gamma}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{N}$,
where c is an absolute constant.
Corollary: for $\epsilon<1$, provided $N \geq \frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}$ then
$\left\|Q^{\star}-\widehat{Q}^{\star}\right\|_{\infty} \leq \epsilon$ (with prob. greater than $1-\delta$)
Corollary: What about the policy? Naively, need $N /(1-\gamma)^{2}$ more samples. We pay another factor of $1 /(1-\gamma)^{2}$ samples. Is this real?

Minimax Optimal Sample Complexity (on the policy)

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $\epsilon<\sqrt{1 /(1-\gamma)}$, provided
$N \geq \frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}$ then with prob. greater than $\left.1-\delta\right)$,

$$
\left\|Q^{\star}-Q^{\hat{\pi} \star}\right\|_{\infty} \leq \epsilon
$$

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $\epsilon<\sqrt{1 /(1-\gamma)}$, provided
$N \geq \frac{c}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}$ then with prob. greater than $\left.1-\delta\right)$,

$$
\left\|Q^{\star}-Q^{\hat{\pi} \star}\right\|_{\infty} \leq \epsilon
$$

Lower Bound: We can't do better.

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound:
$Q^{\star}-\widehat{Q}^{\star} \leq \gamma\left\|\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}\right\|_{\infty} \leq ? ?$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound:

$$
Q^{\star}-\widehat{Q}^{\star} \leq \gamma\left\|\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}\right\|_{\infty} \leq ? ?
$$

- From Bernstein's ineq, with pr. greater than $1-\delta$, we have (component-wise):

$$
\left|(P-\widehat{P}) V^{\star}\right| \leq \sqrt{\frac{2 \log (2 S A / \delta)}{N}} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}+\frac{1}{1-\gamma} \frac{2 \log (2 S A / \delta)}{3 N} \overrightarrow{1}
$$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound:

$$
Q^{\star}-\widehat{Q}^{\star} \leq \gamma\left\|\left(I-\gamma \widehat{P^{\star}}\right)^{-1}(P-\widehat{P}) V^{\star}\right\|_{\infty} \leq ? ?
$$

- From Bernstein's ineq, with pr. greater than $1-\delta$, we have (component-wise):

$$
\left|(P-\widehat{P}) V^{\star}\right| \leq \sqrt{\frac{2 \log (2 S A / \delta)}{N}} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}+\frac{1}{1-\gamma} \frac{2 \log (2 S A / \delta)}{3 N} \overrightarrow{1}
$$

- Therefore

$$
\begin{aligned}
Q^{\star}-\widehat{Q}^{\star} \leq & \gamma \sqrt{\frac{2 \log (2 S A / \delta)}{N}}\left\|\left(I-\gamma \widehat{P}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}\right\|_{\infty} \\
& + \text { "lower order term" }
\end{aligned}
$$

Bellman Equation for the Variance

- Variance: $\operatorname{Var}_{P}(V)(s, a):=\operatorname{Var}_{P(\cdot \mid s, a)}(V)$

Component wise variance: $\operatorname{Var}_{P}(V):=P(V)^{2}-(P V)^{2}$

Bellman Equation for the Variance

- Variance: $\operatorname{Var}_{P}(V)(s, a):=\operatorname{Var}_{P(\cdot \mid s, a)}(V)$

Component wise variance: $\operatorname{Var}_{P}(V):=P(V)^{2}-(P V)^{2}$

- Let's keep around the MDP M subscripts. Define Σ_{M}^{π} as the (total) variance of the discounted reward:

$$
\Sigma_{M}^{\pi}(s, a):=E\left[\left(\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right)-Q_{M}^{\pi}(s, a)\right)^{2} \mid s_{0}=s, a_{0}=a\right]
$$

Bellman Equation for the Variance

- Variance: $\operatorname{Var}_{P}(V)(s, a):=\operatorname{Var}_{P(\cdot \mid s, a)}(V)$

Component wise variance: $\operatorname{Var}_{P}(V):=P(V)^{2}-(P V)^{2}$

- Let's keep around the MDP M subscripts. Define Σ_{M}^{π} as the (total) variance of the discounted reward:

$$
\Sigma_{M}^{\pi}(s, a):=E\left[\left(\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right)-Q_{M}^{\pi}(s, a)\right)^{2} \mid s_{0}=s, a_{0}=a\right]
$$

- Bellman equation for the total variance: $\Sigma_{M}^{\pi}=\gamma^{2} \operatorname{Var}_{P}\left(V_{M}^{\pi}\right)+\gamma^{2} P^{\pi} \Sigma_{M}^{\pi}$

Key Lemma

Lemma: For any policy π and MDP M,
$\left\|\left(I-\gamma P^{\pi}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi}\right)}\right\|_{\infty} \leq \sqrt{\frac{2}{(1-\gamma)^{3}}}$
Proof idea: convexity + Bellman equations for the variance.

Putting it all together

Proof sketch: we have two MDPs M and \widehat{M}. need to bound:

Putting it all together

Proof sketch: we have two MDPs M and \widehat{M}. need to bound:

$$
\left\|\left(I-\gamma \widehat{P^{\pi^{\star}}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}\right\|_{\infty}=\left\|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)}\right\|_{\infty}
$$

$\leq \|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}+$ "lower order"
$\leq \sqrt{\frac{2}{(1-\gamma)^{3}}}+$ "lower order"

Putting it all together

Proof sketch: we have two MDPs M and \widehat{M}. need to bound:

$$
\|\left(I-\gamma \widehat{\left.P^{\pi^{\star}}\right)^{-1}} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}\left\|_{\infty}=\right\|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)} \|_{\infty}\right.
$$

$$
\leq \|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}+\text { "lower order" }
$$

$$
\leq \sqrt{\frac{2}{(1-\gamma)^{3}}}+\text { "lower order" }
$$

First equality above: just notation

Putting it all together

Proof sketch: we have two MDPs M and \widehat{M}. need to bound:

$$
\left\|\left(I-\gamma \widehat{P^{\pi^{\star}}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}\right\|_{\infty}=\left\|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)}\right\|_{\infty}
$$

$$
\leq \|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}+\text { "lower order" }
$$

$$
\leq \sqrt{\frac{2}{(1-\gamma)^{3}}}+\text { "lower order" }
$$

First equality above: just notation
Second step: concentration \rightarrow we need to quantify:
$\sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)} \approx \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}$

Putting it all together

Proof sketch: we have two MDPs M and \widehat{M}. need to bound:

$$
\left\|\left(I-\gamma \widehat{P^{\pi^{\star}}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V^{\star}\right)}\right\|_{\infty}=\left\|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)}\right\|_{\infty}
$$

$$
\leq \|\left(I-\gamma P_{\widehat{M}}^{\pi^{\star}}\right)^{-1} \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}+\text { "lower order" }
$$

$$
\leq \sqrt{\frac{2}{(1-\gamma)^{3}}}+\text { "lower order" }
$$

First equality above: just notation
Second step: concentration \rightarrow we need to quantify:
$\sqrt{\operatorname{Var}_{P}\left(V_{M}^{\pi^{\star}}\right)} \approx \sqrt{\operatorname{Var}_{P}\left(V_{\widehat{M}}^{\pi^{\star}}\right)}$
Last step: previous slide

