The Sample Complexity
(with a Generative Model)

CS 6789: Foundations of Reinforcement Learning



Announcements

 Reading assignments (see website)
e sign up for a chapter
o start the assignment only after the we approve the chapter.
* reguirements:
* one page report that summarizes the chapter
* check all mathematical steps in the chapter

* Participation/effort Bonus
* we Wwill give extra credit for participation (class, ED, etc)
o extra credit for reading assignments, finding bugs, project...

 The book will be updated often.
* Feedback/questions/finding typos appreciated!



Today:



Today:

 Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

O™ (or find 7¥) in polynomial time?



Today:

 Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

O™ (or find 7¥) in polynomial time?

* Joday: statistical complexity
* Question: Given only sampling access to an unknown MDP

M= (S,A, P, r,y) how many observed transitions do we need to
estimate O™ (or find 7%)?

* Two sampling models: episodic setting and generative models.



Recap



Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Poly. | s2altryless (5 4 §2.4) LEr 08 S3AL(P,r,7)
2 A 1o S2
Strongly Poly:. X (S5° 4+ S%A) - min { 1‘};, > All_il—'v } S* A% log %

* VI poly time for fixed y, not strongly poly

* PIl: poly and strongly-poly time for fixed y

| P approach: poly and strongly-poly time
(LP approach is only logarithmic in 1/(1 — y))




loday
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Two natural models for learning in an unknown MDP

e Episodic setting:
e IN every episode, 5, ~ /i.
* the learner acts for some finite number of steps and observes the trajectory.

» The state Is then resets to 5, ~ /1.
e Generative model setting:

 input: (s, a)
» output: asample s’ ~ P( - |s,a) and r(s, a)

e Sample complexity of RL.:
how many transitions do we need observe in order to find a near optimal policy?
* Episodic setting: we must actively explore to gather information
* (Generative model setting: lets us disentangle the issue of fundamental
statistical limits from exploration.
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(using any algorithm)
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How many samples do we need to learn”

 What is the minmax optimal sample complexity, with generative modeling access”?
(using any algorithm)

. Since P has S°A parameters, we may hope that O(S?A) samples are sufficient
for learning.
e Questions:

* [s a naive model-based approach optimal?
.. estimate P accurately (using O(S*A) samples) and then use P for planning.

(i.e. learn with fewer than Q(S2A) samples)

* |[f sublinear learning is possible, then we do not need an accurate model of the
world in order to act near-optimally?
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* we also know the rewards after one call.
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The most naive approach: model based

* [oday: let us assume access to a generative model
 most naive approach to learning:
» (Call our simulator

 Let P be our empirical model:
—~ count(s’, s, a)
P(s'|s,a) =———

N
where count(s’, s, @) is the #times (s, a) transitions to state s'.

* we also know the rewards after one call.
(for simplicity, we often assume r(s, a) is determinstic)

» The total number of calls to our generative model is SA/NV.



Attempt 1.

the nalve model based approach
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Model accuracy

| cy Slog(cSA/o)
Proposition: ¢ is an absolute constant. ¢ > 0. For N > —mMm——————
(1 =) €

and with probability greater than 1 — ¢,

 Model accuracy: The transition model is € has error bounded as:
max ||P(- |s,a) — P (- |s,a)ll; < (1 —p)%/2.
S.d

o Uniform value accuracy: For all policies r,

10" — 07|, <el2

 Near optimal planning: Suppose that 7~ is the optimal policy In Z/W\

HQ* o Qﬂ Hoo S €
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Matrix Expressions

« Define P” to be the transition matrix on state-action pairs (for deterministic 7):

P(’;,a),(s,’a,) = P(s'|s, a) if a’ = n(s’)
0 if a’ £ (s’
e With this notation,
Q" =r+yPV”"
Q" = r+yP"Q"
e Also,

Q"= —yP")'r
(where one can show the inverse exists)
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“Simulation” Lemma

For all r,
Q"— Q" =yI—-yP"'(P— P)V”

LJEing our matrix quglity for O”, we have:
Q"— Q"=Q"—(U-y P
= -y PO NI-yP™)—U~-yP)Q"
= y(I—y P " ~(P*— PMQ"
= y(I—yP™'(P - P)V”
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Proof of Claim 1

» Concentration of a distribution in the £/; norm:
» For a fixed s, a. With pr greater than 1 — 0,

D Slog(1l/o
I1PC-15,a) = P (-], a)ll; sC@

with N samples used to estimate P ( - | s, a).

* The first claim now follows by the union bound.
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Proof of Claim 2 (&3)

For the second claim,

107 — Q% = llyd —y P~Y(P = PV,
< 1—u<P PHVA,
— 7
< %_y (max 1P(-|s,a) — P(-]s. a>||1) 1V o
< (li/;/) maXHP( s,a)— P (-|s,a)ll

(why is the first mequality true?)

The proof for the Claim 3 immediately follows from the second claim.



Attempt 2:

obtaining sublinear sample complexity
idea: use concentration only on V*
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Reference sheet (defs/notation)

» Remember: # samples from generative model = SAN

- P”" is the transition matrix on state-action pairs for a deterministic policy x:
P(’; N = P(s'|s,a) if a’ = n(s’)

O if a’ #+ m(s’)
*With this notation,
Q" =r+yPV", Q"=r+yP"Q", Q"=(I-yP")r

|
—( — ;/P”)_1 is a matrix whose rows are probability distributions (why?)

1=y

N

. Q *: optimal value in estimated model M .
optimal policy in M .
Q” (true) value of estimated policy.
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Proposition: (Crude Value Bound) With probability greater than 1 — 0,
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Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than 1 — 0,

. A y 2 Tog(2SA75)
10"~ 0lle s o[ =y
. A y 2 Tog(2SA79)
10~ 07l S T\ [

What about the value of the policy?

Q™ = 0"l < 1= N




Component-wise Bounds Lemma

Lemma: we have that
Q*— Q*<yU—-yP™)y\(P- P)V*

/\/\*

Q* - Q*2yU—yP ™)y \(P— P)V*



Component-wise Bounds Lemma

we have that
Q*— Q*<yI—yP™){(P- P)V*

/\/\*

Q* - 0*>yI—yP*)y'(P- P)V*

For the first claim, the optimality of 7* in M implies:

Q*-Q0*=0" - Q0" <Q" - Q" =yI-yP")'(P- P)V*,
using the simulation lemma in the final step.

See notes for the proof of second claim.
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_ By the previous lemma: ||Q* — /Q\*HOO < %H(P — ?)V*HOO
— 7

e Recall [|[V*]|, < 1/(1 —=y).

By Hoeffding's inequality and the union bound,
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Proof: (& key idea for sublinearity)

_ By the previous lemma: ||Q* — /Q\*HOO < %H(P — ?)V*HOO
— 7

e Recall [|[V*]|, < 1/(1 —=y).

By Hoeffding's inequality and the union bound,

|(P = P)WV*|l oo = max | Eg_pis o [V¥E = E, 510 o[V

- 1 [210g(2SA/6)
1l —y N

which holds with probability greater than 1 — 0.
* Proof of second claim is similar (see the book)




Attempt 3:

minimax optimal sample complexity
idea: better variance control



(“near”) Minimax Optimal Sample Complexity

Theorem: (Azar et al. ’13) With probability greater than 1 — 0,
SRt s
—~ c log(cSA/o) cy log(cSA/o)
1Q™ — Q*Hmsy\ + —

b

(1—=1y) N (1—=1y) N

where ¢ IS an absolute constant.



(“near”) Minimax Optimal Sample Complexity

Theorem: (Azar et al. ’13) With probability greater than 1 — 0,
ARt AN Mt A

0% — /Q\*H <y c log(cSA/o) N cy log(cSA/o)
*TNa-pr N (1-p° N

where ¢ IS an absolute constant.

b

c log(cSA/o)

(I-p)° €
10> — O *H < € (with prob. greater than 1 — 9)

Corollary: for e < 1, provided N > then



(“near”) Minimax Optimal Sample Complexity

(Azar et al. ’13) With probability greater than 1 — 0,
o T REReTY Y

0% — /Q\*H <y c log(cSA/o) N cy log(cSA/o)
T \(1—9/)3 N (I-y° N

where ¢ IS an absolute constant.

b

c log(cSA/o)

(I-p)° €
10> — O *H < € (with prob. greater than 1 — 9)

fore < 1, provided N > then

What about the policy? Naively, need N/(1 — ¥)* more samples.
We pay another factor of 1/(1 — y)? samples. Is this real?
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Minimax Optimal Sample Complexity
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(Agarwal et al. '20) Fore < 4/1/(1 — y), provided
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Minimax Optimal Sample Complexity
(on the policy)

(Agarwal et al. '20) Fore < 4/1/(1 — y), provided
N> c log(cSA/o)

(I =yp) €2

then with prob. greater than 1 — 9),

|0* — 0"l <€

We can’t do better.
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Proof sketch: part

 From “Component-wise Bounds” lemma, we want to bound:
0% = Q" <ylIlU—yP™)'(P = P)V¥|o <77

» From Bernstein's ineq, with pr. greater than 1 — o, we have (component-wise):

2108(25A/6 2108(285A/0 e
| (P — P)V*\<\/ og( )\/ arPV*)+— Og(N )

e Therefore

- [2Tog(2SAT5) o
— Q" <y THU— y P”") 1\/ Varp(V*)|| o

+ "lower order term"
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Bellman Equation for the Variance

o Varp(V)(s,a) := Varp(,‘saa)(V)
Component wise variance: Varp(V) := P(V)* — (PV)?

e | et’'s keep around the MDP M subscripts.
Define 217(4 as the (total) variance of the discounted reward:

2
sy £ |( 3 s - 5600
=0

S():S,CZO:CI

37 = y*Varp(V7) + y*P"%7,



Key Lemma

Lemma: For any policy 7 and MDP M,

—
||(1 — yPT~L [Vary(VE)|| < ’

o — )3
. \ (1 =)
Proof idea: convexity + Bellman equations for the variance.
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Putting It all fogether

we have two MDPs M and M . need to bound:

| =y Py~ Varp(V9)ll, = 1T = 7P%) ™/ Vary(VE) .
< | - J/P )_ 1 /VarP(V’]/g) + "lower order”

2
< 4 |—— + "lower order"
(1 —=1y)

First equality above: just notation
Second step: concentration — we need to quantify:

\/ Varp(Vy, ) ~ 4 /VarP(VM\)

L ast step: previous slide



