
The Sample Complexity  
(with a Generative Model) 

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning



Announcements
• Reading assignments (see website)

• sign up for a chapter (signup sheep will be up today)

• start the assignment only after the we approve the chapter.

• requirements:

• one page report that summarizes the chapter

• check all mathematical steps in the chapter


• Participation/effort Bonus

• we will give extra credit for participation (class, ED, etc)

• extra credit for reading assignments, finding bugs, project… 

• The book will be updated often.

• Feedback/questions/finding typos appreciated!




Today: 
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 (or find ) in polynomial time? 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Today: 

• Recap: computational complexity

• Question: Given an MDP  can we exactly compute 

 (or find ) in polynomial time? 
ℳ = (S, A, P, r, γ)

Q⋆ π⋆

• Today: statistical complexity

• Question: Given only sampling access to an unknown MDP

 how many observed transitions do we need to 
estimate  (or find )?


• Two sampling models: episodic setting and generative models.

ℳ = (S, A, P, r, γ)
Q⋆ π⋆



Recap



Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� S3AL(P, r, �)

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
S4A4 log S

1��

• VI: poly time for fixed , not strongly poly

• PI: poly and strongly-poly time for fixed 

• LP approach: poly and strongly-poly time 

(LP approach is only logarithmic in )

γ
γ

1/(1 − γ)
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Two natural models for learning in an unknown MDP
• Episodic setting:

• in every episode, . 

• the learner acts for some finite number of steps and observes the trajectory.

• The state is then resets to .

s0 ∼ μ

s0 ∼ μ
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Two natural models for learning in an unknown MDP
• Episodic setting:

• in every episode, . 

• the learner acts for some finite number of steps and observes the trajectory.

• The state is then resets to .

s0 ∼ μ

s0 ∼ μ
• Generative model setting:

• input: 

• output: a sample   and  

(s, a)
s′ ∼ P( ⋅ |s, a) r(s, a)

• Sample complexity of RL:  
how many transitions do we need observe in order to find a near optimal policy?

• Episodic setting: we must actively explore to gather information  

• Generative model setting: lets us disentangle the issue of fundamental 

statistical limits from exploration.



How many samples do we need to learn?

• What is the minmax optimal sample complexity, with generative modeling access? 
(using any algorithm)

• Since  has  parameters, we may hope that  samples are sufficient 

for learning.
P S2A O(S2A)
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• Questions: 
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How many samples do we need to learn?

• What is the minmax optimal sample complexity, with generative modeling access? 
(using any algorithm)

• Since  has  parameters, we may hope that  samples are sufficient 

for learning.
P S2A O(S2A)

• Questions: 

• Is a naive model-based approach optimal? 

i.e. estimate  accurately (using  samples) and then use  for planning.

• Is sublinear learning possible?  

(i.e. learn with fewer than  samples)

P O(S2A) ̂P

Ω(S2A)
• If sublinear learning is possible, then we do not need an accurate model of the 

world in order to act near-optimally?
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• Today: let us assume access to a generative model
• most naive approach to learning: 

• Call our simulator N times at each state action pair. 

• Let  be our empirical model: 

 

where  is the #times  transitions to state . 

• we also know the rewards after one call. 

(for simplicity, we often assume  is determinstic)

̂P
̂P (s′ |s, a) =

count(s′ , s, a)
N
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r(s, a)



The most naive approach: model based

• Today: let us assume access to a generative model
• most naive approach to learning: 

• Call our simulator N times at each state action pair. 

• Let  be our empirical model: 

 

where  is the #times  transitions to state . 

• we also know the rewards after one call. 

(for simplicity, we often assume  is determinstic)

̂P
̂P (s′ |s, a) =

count(s′ , s, a)
N

count(s′ , s, a) (s, a) s′ 

r(s, a)
• The total number of calls to our generative model is .SAN



Attempt 1:

the naive model based approach




Model accuracy

Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥
cγ

(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ
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Model accuracy

Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥
cγ

(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ

• Model accuracy: The transition model is  has error bounded as:ϵ
max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ (1 − γ)2ϵ/2 .

• Uniform value accuracy: For all policies ,  π
∥Qπ − ̂Q π∥∞ ≤ ϵ/2

• Near optimal planning: Suppose that  is the optimal policy in .  ̂π⋆ ̂M
∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ



Matrix Expressions
• Define  to be the transition matrix on state-action pairs (for deterministic ): 

 

 

Pπ π

Pπ
(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )

0 if a′ ≠ π(s′ )
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Matrix Expressions
• Define  to be the transition matrix on state-action pairs (for deterministic ): 

 

 

Pπ π

Pπ
(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )

0 if a′ ≠ π(s′ )

• With this notation, 

 
Qπ = r + γPVπ

Qπ = r + γPπQπ

• Also, 
 

(where one can show the inverse exists)
Qπ = (I − γPπ)−1r
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“Simulation” Lemma
“Simulation Lemma”:  For all , π
Qπ − ̂Q π = γ(I − γ ̂P π)−1(P − ̂P )Vπ

 
Proof: Using our matrix equality for , we have: Qπ

Qπ − ̂Q π = Qπ − (I − γ ̂P π)−1r

= (I − γ ̂P π)−1((I − γ ̂P π) − (I − γPπ))Qπ

= γ(I − γ ̂P π)−1(Pπ − ̂P π)Qπ

= γ(I − γ ̂P π)−1(P − ̂P )Vπ
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Proof of Claim 1

• Concentration of a distribution in the  norm: 

• For a fixed . With pr greater than ,

 

with  samples used to estimate .  

ℓ1
s, a 1 − δ

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ c
S log(1/δ)

N
N ̂P ( ⋅ |s, a)



Proof of Claim 1

• Concentration of a distribution in the  norm: 

• For a fixed . With pr greater than ,

 

with  samples used to estimate .  

ℓ1
s, a 1 − δ

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ c
S log(1/δ)

N
N ̂P ( ⋅ |s, a)

• The first claim now follows by the union bound.
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Proof of Claim 2 (&3)
For the second claim, 

 

(why is the first inequality true?) 

∥Qπ − ̂Q π∥∞ = ∥γ(I − γ ̂P π)−1(P − ̂P )Vπ∥∞

≤
γ

1 − γ
∥(P − ̂P )Vπ∥∞

≤
γ

1 − γ (max
s,a

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1) ∥Vπ∥∞

≤
γ

(1 − γ)2
max
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∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1



Proof of Claim 2 (&3)
For the second claim, 

 

(why is the first inequality true?) 

∥Qπ − ̂Q π∥∞ = ∥γ(I − γ ̂P π)−1(P − ̂P )Vπ∥∞

≤
γ

1 − γ
∥(P − ̂P )Vπ∥∞

≤
γ

1 − γ (max
s,a

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1) ∥Vπ∥∞

≤
γ

(1 − γ)2
max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1

The proof for the Claim 3 immediately follows from the second claim.



Attempt 2: 
obtaining sublinear sample complexity 
  idea: use concentration only on V⋆
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Reference sheet (defs/notation)
• Remember: # samples from generative model  = SAN
•  is the transition matrix on state-action pairs for a deterministic policy : 

   

Pπ π
Pπ

(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )
0 if a′ ≠ π(s′ )

•With this notation, 
    Qπ = r + γPVπ, Qπ = r + γPπQπ, Qπ = (I − γPπ)−1r

•  is a matrix whose rows are probability distributions (why?) 
1

1 − γ
(I − γPπ)−1

• : optimal value in estimated model . 
: optimal policy in . 
: (true) value of estimated policy.

̂Q ⋆ ̂M
̂π ⋆ ̂M

Q ̂π ⋆
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Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than ,

 

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤
γ

(1 − γ)2

2 log(2SA/δ)
N
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Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than ,

 

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤
γ

(1 − γ)2

2 log(2SA/δ)
N

∥Q⋆ − ̂Q π⋆∥∞ ≤
γ

(1 − γ)2

2 log(2SA/δ)
N

 
What about the value of the policy? 

∥Q⋆ − Q ̂π⋆∥∞ ≤
γ

(1 − γ)3

2 log(2SA/δ)
N
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Lemma: we have that 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Component-wise Bounds Lemma

Lemma: we have that 

 
Q⋆ − ̂Q ⋆ ≤ γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆

Q⋆ − ̂Q ⋆ ≥ γ(I − γ ̂P ̂π ⋆)−1(P − ̂P )V⋆

Proof:  
For the first claim, the optimality of  in  implies: 

 
using the simulation lemma in the final step. 
 
See notes for the proof of second claim.

π⋆ M
Q⋆ − ̂Q ⋆ = Qπ⋆ − ̂Q ̂π ⋆ ≤ Qπ⋆ − ̂Q π⋆ = γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆,
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γ
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Proof: (& key idea for sublinearity)
• Proof of the first claim:

• By the previous lemma: ∥Q⋆ − ̂Q ⋆∥∞ ≤
γ

1 − γ
∥(P − ̂P )V⋆∥∞

• Recall .∥V⋆∥∞ ≤ 1/(1 − γ)
• By Hoeffding's inequality and the union bound, 

 

which holds with probability greater than . 

∥(P − ̂P )V⋆∥∞ = max
s,a

Es′ ∼P(⋅|s,a)[V⋆(s′ )] − Es′ ∼ ̂P (⋅|s,a)[V
⋆(s′ )]

≤
1

1 − γ
2 log(2SA/δ)

N
1 − δ



Proof: (& key idea for sublinearity)
• Proof of the first claim:

• By the previous lemma: ∥Q⋆ − ̂Q ⋆∥∞ ≤
γ

1 − γ
∥(P − ̂P )V⋆∥∞

• Recall .∥V⋆∥∞ ≤ 1/(1 − γ)
• By Hoeffding's inequality and the union bound, 

 

which holds with probability greater than . 

∥(P − ̂P )V⋆∥∞ = max
s,a

Es′ ∼P(⋅|s,a)[V⋆(s′ )] − Es′ ∼ ̂P (⋅|s,a)[V
⋆(s′ )]

≤
1

1 − γ
2 log(2SA/δ)

N
1 − δ

• Proof of second claim is similar (see the book)



Attempt 3: 
minimax optimal sample complexity 

idea: better variance control



(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13)  With probability greater than , 

 

where  is an absolute constant. 

1 − δ
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c
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log(cSA/δ)
N

+
cγ

(1 − γ)3

log(cSA/δ)
N

,

c
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where  is an absolute constant. 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(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13)  With probability greater than , 

 

where  is an absolute constant. 

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
c

(1 − γ)3

log(cSA/δ)
N

+
cγ

(1 − γ)3

log(cSA/δ)
N

,

c

Corollary: for , provided   then 

  (with prob. greater than ) 

ϵ < 1 N ≥
c

(1 − γ)3

log(cSA/δ)
ϵ2

∥Q⋆ − ̂Q ⋆∥∞ ≤ ϵ 1 − δ

Corollary: What about the policy?  Naively, need   more samples. 
We pay another factor of  samples. Is this real?

N/(1 − γ)2

1/(1 − γ)2
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Minimax Optimal Sample Complexity  
(on the policy)

Theorem: (Agarwal et al. ’20)  For , provided 

  then with prob. greater than ), 

 
  

 

ϵ < 1/(1 − γ)

N ≥
c

(1 − γ)3

log(cSA/δ)
ϵ2

1 − δ

∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ



Minimax Optimal Sample Complexity  
(on the policy)

Theorem: (Agarwal et al. ’20)  For , provided 

  then with prob. greater than ), 

 
  

 

ϵ < 1/(1 − γ)

N ≥
c

(1 − γ)3

log(cSA/δ)
ϵ2

1 − δ

∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Lower Bound: We can’t do better.
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Q⋆ − ̂Q ⋆ ≤ γ∥(I − γ ̂P π⋆)−1(P − ̂P )V⋆∥∞ ≤ ??

• From Bernstein's ineq, with pr.  greater than , we have (component-wise):
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2 log(2SA/δ)

N
VarP(V⋆) +
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1 − γ

2 log(2SA/δ)
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Proof sketch: part 1
• From “Component-wise Bounds” lemma, we want to bound:

 Q⋆ − ̂Q ⋆ ≤ γ∥(I − γ ̂P π⋆)−1(P − ̂P )V⋆∥∞ ≤ ??

• From Bernstein's ineq, with pr.  greater than , we have (component-wise):

 

1 − δ

| (P − ̂P )V⋆ | ≤
2 log(2SA/δ)

N
VarP(V⋆) +

1
1 − γ

2 log(2SA/δ)
3N

⃗1

• Therefore 

Q⋆ − ̂Q ⋆ ≤ γ
2 log(2SA/δ)

N
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞

+"lower order term"
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• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2



Bellman Equation for the Variance
• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2

• Let’s keep around the MDP M subscripts.  
Define  as the (total) variance of the discounted reward:    

 

Σπ
M

Σπ
M(s, a) := E (

∞

∑
t=0

γtr(st, at) − Qπ
M(s, a))

2

s0 = s, a0 = a



Bellman Equation for the Variance
• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2

• Let’s keep around the MDP M subscripts.  
Define  as the (total) variance of the discounted reward:    

 

Σπ
M

Σπ
M(s, a) := E (

∞

∑
t=0

γtr(st, at) − Qπ
M(s, a))

2

s0 = s, a0 = a

• Bellman equation for the total variance:  
Σπ

M = γ2VarP(Vπ
M) + γ2PπΣπ

M



Key Lemma

Lemma: For any policy  and MDP , 




Proof idea:  convexity + Bellman equations for the variance.

π M

(I − γPπ)−1 VarP(Vπ
M)

∞
≤

2
(1 − γ)3
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Putting it all together 
Proof sketch: we have two MDPs  and . need to bound:M ̂M
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞ = ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

M )∥∞

≤ ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

̂M
) + "lower order"

≤
2

(1 − γ)3
+ "lower order"

First equality above: just notation
Second step: concentration  we need to quantify: →

VarP(Vπ⋆

M ) ≈ VarP(Vπ⋆

̂M
)

Last step: previous slide


