The Sample Complexity (with a Generative Model)

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

Announcements

- Reading assignments (see website)
 - sign up for a chapter (signup sheep will be up today)
 - start the assignment only after the we approve the chapter.
 - requirements:
 - one page report that summarizes the chapter
 - check all mathematical steps in the chapter
- Participation/effort Bonus
- The book will be updated often.
 - Feedback/questions/finding typos appreciated!

• we will give extra credit for participation (class, ED, etc) • extra credit for reading assignments, finding bugs, project...

Today:

- Recap: computational complexity
 - Q^{\star} (or find π^{\star}) in polynomial time?

Today:

• Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute

- Recap: computational complexity
 - Q^{\star} (or find π^{\star}) in polynomial time?
- Today: statistical complexity
 - Question: Given only sampling access to an unknown MDP estimate Q^{\star} (or find π^{\star})?

Today:

• Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute

$\mathcal{M} = (S, A, P, r, \gamma)$ how many observed transitions do we need to

Two sampling models: episodic setting and generative models.

Recap

Summary Table

	Value Iteration	
Poly.	$S^2 A \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	(S)
Strongly Poly.	X	$(S^3 + S)$

- (LP approach is only logarithmic in $1/(1 \gamma)$)
- VI: poly time for fixed γ , not strongly poly • PI: poly and strongly-poly time for fixed γ LP approach: poly and strongly-poly time

Today

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.

• the learner acts for some finite number of steps and observes the trajectory.

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (s, a)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)

• the learner acts for some finite number of steps and observes the trajectory.

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (s, a)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)
- Sample complexity of RL:
 - Episodic setting: we must actively explore to gather information
 - statistical limits from exploration.

• the learner acts for some finite number of steps and observes the trajectory.

how many transitions do we need observe in order to find a near optimal policy? • Generative model setting: lets us disentangle the issue of fundamental

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.
- Questions:
 - Is a naive model-based approach optimal?
 - Is sublinear learning possible? (i.e. learn with fewer than $\Omega(S^2A)$ samples)

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

i.e. estimate P accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.
- Questions:
 - Is a naive model-based approach optimal?
 - Is sublinear learning possible? (i.e. learn with fewer than $\Omega(S^2A)$ samples)
- world in order to act near-optimally?

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

i.e. estimate P accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.

• If sublinear learning is possible, then we do not need an accurate model of the

The most naive approach: model based

Today: let us assume access to a generative model

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

- we also know the rewards after one call.
 (for simplicity, we often assume r(s, a) is deterministic)
- es (s, a) transitions to state s'. one call.

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

- we also know the rewards after one call. (for simplicity, we often assume r(s, a) is deterministic)
- The total number of calls to our generative model is SAN.

Attempt 1: the naive model based approach

and with probability greater than $1 - \delta$,

and with probability greater than $1 - \delta$,

Model accuracy: The transition model is ϵ has error bounded as: $\max \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \leq (1 - \gamma)^2 \epsilon/2.$ S, a

and with probability greater than $1 - \delta$,

- Model accuracy: The transition model is ϵ has error bounded as: $\max \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \leq (1 - \gamma)^2 \epsilon/2.$ S, a
- Uniform value accuracy: For all policies π , $\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} \le \epsilon/2$

and with probability greater than $1 - \delta$,

- Model accuracy: The transition model is ϵ has error bounded as: $\max \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \leq (1 - \gamma)^2 \epsilon/2.$ S, a
- Uniform value accuracy: For all policies π , $\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} \le \epsilon/2$
- Near optimal planning: Suppose that $\hat{\pi}^{\star}$ is the optimal policy in M. $\|Q^{\star} - Q^{\hat{\pi}^{\star}}\|_{\infty} \le \epsilon$

Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

 $P_{(s,a),(s',a')}^{\pi} := P(s' \mid s, a) \quad \text{if } a' = \pi(s')$ $0 \quad \text{if } a' \neq \pi(s')$

Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

 $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' = \pi(s')$ if $a' \neq \pi(s')$

• With this notation, $Q^{\pi} = r + \gamma P V^{\pi}$ $Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}$

Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

 $\text{if } a' = \pi(s')$ $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' \neq \pi(s')$

- With this notation, $Q^{\pi} = r + \gamma P V^{\pi}$ $Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}$
- Also,

 $Q^{\pi} = (I - \gamma P^{\pi})^{-1}r$ (where one can show the inverse exists)

"Simulation" Lemma

"Simulation Lemma": For all π , $Q^{\pi} - \widehat{Q}^{\pi} = \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$

"Simulation" Lemma

"Simulation Lemma": For all π , $O^{\pi} - \widehat{O}^{\pi} = \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$

Proof: Using our matrix equality for Q^{π} , we have: $O^{\pi} - \widehat{O}^{\pi} = O^{\pi} - (I - \gamma \widehat{P}^{\pi})^{-1} r$ $= (I - \gamma \widehat{P^{\pi}})^{-1} ((I - \gamma \widehat{P^{\pi}}) - (I - \gamma P^{\pi})) O^{\pi}$ $= \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P^{\pi} - \widehat{P}^{\pi}) Q^{\pi}$ $= \gamma (I - \gamma \widehat{P^{\pi}})^{-1} (P - \widehat{P}) V^{\pi}$

Proof of Claim 1

Proof of Claim 1

- Concentration of a distribution in the ℓ_1 norm: • For a fixed s, a. With pr greater than $1 - \delta$, $\|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_{1} \le c \sqrt{\frac{S \log(1/\delta)}{N}}$ with *N* samples used to estimate $\widehat{P}(\cdot | s, a)$.

Proof of Claim 1

- Concentration of a distribution in the ℓ_1 norm: • For a fixed s, a. With pr greater than $1 - \delta$, $\|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_{1} \le c \sqrt{\frac{S \log(1/\delta)}{N}}$ with *N* samples used to estimate $\widehat{P}(\cdot | s, a)$.
- The first claim now follows by the union bound.

Proof of Claim 2 (&3)

For the second claim,

$$\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} = \|\gamma(I - \gamma \widehat{P}^{\pi})^{-1}(\widehat{P} - \sum_{i=1}^{\gamma} \|(\widehat{P} - \widehat{P})V^{\pi}\|_{\infty}$$

$$\leq \frac{\gamma}{1 - \gamma} \left(\max_{s,a} \|P(\cdot \mid s, a) - \widehat{P}(\cdot \mid s, a) -$$

Proof of Claim 2 (&3)

 $\|s,a)\|_1 \bigg) \|V^{\pi}\|_{\infty}$ $\|s,a)\|_1$

For the second claim,

$$\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} = \|\gamma(I - \gamma \widehat{P}^{\pi})^{-1}(P - \widehat{P})V^{\pi}\|_{\infty}$$

$$\leq \frac{\gamma}{1 - \gamma} \|(P - \widehat{P})V^{\pi}\|_{\infty}$$

$$\leq \frac{\gamma}{1 - \gamma} \left(\max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_{1} \right) \|V^{\pi}\|_{\infty}$$

$$\leq \frac{\gamma}{(1 - \gamma)^{2}} \max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_{1}$$
(why is the first inequality true?)

The proof for the Claim 3 immediately follows from the second claim.

Proof of Claim 2 (&3)

Attempt 2: obtaining sublinear sample complexity idea: use concentration only on V^{\star}

Reference sheet (defs/notation)

Reference sheet (defs/notation)

• Remember: # samples from generative model = SAN

• Remember: # samples from generative model = SAN

0

- P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' = \pi(s')$
 - if $a' \neq \pi(s')$

- Remember: # samples from generative model = SAN
- • P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P_{(s,a),(s',a')}^{\pi} := P(s' | s, a) \quad \text{if } a' = \pi(s')$

if $a' \neq \pi(s')$

•With this notation,

 $Q^{\pi} = r + \gamma P V^{\pi}, \quad Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1} r$

- Remember: # samples from generative model = SAN
- • P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a) \quad \text{if } a' = \pi(s')$

0 if $a' \neq \pi(s')$

•With this notation.

 $Q^{\pi} = r + \gamma P V^{\pi}, \quad Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1} r$

 $\frac{1}{1-\gamma}(I-\gamma P^{\pi})^{-1}$ is a matrix whose rows are probability distributions (why?)

- Remember: # samples from generative model = SAN
- • P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P_{(s,a),(s',a')}^{\pi} := P(s' | s, a) \quad \text{if } a' = \pi(s')$

0 if $a' \neq \pi(s')$

•With this notation,

 $Q^{\pi} = r + \gamma P V^{\pi}, \quad Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1} r$

 $\frac{1}{1-\gamma}(I-\gamma P^{\pi})^{-1}$ is a matrix whose rows are probability distributions (why?)

• \widehat{Q}^{\star} : optimal value in estimated model \widehat{M} . $\widehat{\pi}^{\star}$: optimal policy in \widehat{M} . $Q^{\hat{\pi}^{\star}}$: (true) value of estimated policy.

Attempt 2: Sublinear Sample Complexity

Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than $1 - \delta$, $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{(1 - \gamma)^2} \sqrt{\frac{2 \log(2SA/\delta)}{N}}$ $\|Q^{\star} - \widehat{Q}^{\pi^{\star}}\|_{\infty} \leq \frac{\gamma}{(1 - \gamma)^2} \sqrt{\frac{2 \log(2SA/\delta)}{N}}$

Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than $1 - \delta$, $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{(1 - \gamma)^2} \sqrt{\frac{2\log(2SA/\delta)}{N}}$ $\|Q^{\star} - \widehat{Q}^{\pi^{\star}}\|_{\infty} \leq \frac{\gamma}{(1 - \gamma)^2} \sqrt{\frac{2\log(2SA/\delta)}{N}}$

What about the value of the policy? $\|Q^{\star} - Q^{\hat{\pi}\star}\|_{\infty} \leq \frac{\gamma}{(1-\gamma)^3} \sqrt{\frac{2\log(2SA/\delta)}{N}}$

Component-wise Bounds Lemma

Lemma: we have that

 $Q^{\star} - \widehat{Q}^{\star} \leq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}$ $Q^{\star} - \widehat{Q}^{\star} \geq \gamma (I - \gamma \widehat{P}^{\widehat{\pi}^{\star}})^{-1} (P - \widehat{P}) V^{\star}$

Component-wise Bounds Lemma

Lemma: we have that

 $Q^{\star} - \widehat{Q}^{\star} \leq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}$ $O^{\star} - \widehat{O}^{\star} > \gamma (I - \gamma \widehat{P}^{\hat{\pi}^{\star}})^{-1} (P - \widehat{P}) V^{\star}$

Proof:

For the first claim, the optimality of π^{\star} in M implies: using the simulation lemma in the final step.

See notes for the proof of second claim.

$Q^{\star} - \widehat{Q}^{\star} = Q^{\pi^{\star}} - \widehat{Q}^{\widehat{\pi}^{\star}} \leq Q^{\pi^{\star}} - \widehat{Q}^{\pi^{\star}} = \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}.$

• Proof of the first claim:

- Proof of the first claim:

- Proof of the first claim:

 - Recall $||V^*||_{\infty} \le 1/(1-\gamma)$.

- Proof of the first claim:
 - By the previous lemma: $||Q^{\star} -$
 - Recall $||V^*||_{\infty} \le 1/(1-\gamma)$.
 - By Hoeffding's inequality and the $\|(P \widehat{P})V^{\star}\|_{\infty} = \max_{s,a} |E_{s' \sim P(s,a)}|_{S,a}$

$$\leq \frac{1}{1-\gamma} \sqrt{\frac{2\log(2SA/\delta)}{N}}$$

which holds with probability grea

$$\widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \| (P - \widehat{P}) V^{\star} \|_{\infty}$$

e union bound,
$$U(\cdot|s,a)[V^{\star}(s')] - E_{s'\sim \widehat{P}(\cdot|s,a)}[V^{\star}(s')]$$

ater than
$$1-\delta$$

- Proof of the first claim:
 - By the previous lemma: $||Q^{\star} -$
 - Recall $||V^{\star}||_{\infty} \le 1/(1-\gamma)$.
 - By Hoeffding's inequality and the $\|(P - \widehat{P})V^{\star}\|_{\infty} = \max_{s,a} |E_{s' \sim P(s)}|_{S,a}$

$$\leq \frac{1}{1-\gamma} \sqrt{\frac{2\log(2SA/\delta)}{N}}$$

which holds with probability greater than $1 - \delta$. Proof of second claim is similar (see the book)

$$\widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|(P-\widehat{P})V^{\star}\|_{\infty}$$

e union bound,
$$E_{(\cdot|s,a)}[V^{\star}(s')] - E_{s'\sim \widehat{P}(\cdot|s,a)}[V^{\star}(s')]$$

Attempt 3: minimax optimal sample complexity idea: better variance control

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

- where *c* is an absolute constant.

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3}} \frac{\log(cSA/\delta)}{N} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N},$

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

where c is an absolute constant.

Corollary: for $\epsilon < 1$, provided $N \geq -$

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \epsilon$ (with prob. grea

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3}} \frac{\log(cSA/\delta)}{N} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N},$

$$\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$$
 then eater than $1-\delta$

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

where c is an absolute constant.

- Corollary: for $\epsilon < 1$, provided $N \geq -$
- $\|Q^{\star} \widehat{Q}^{\star}\|_{\infty} \leq \epsilon$ (with prob. greater than 1δ)

Corollary: What about the policy? Naively, need $N/(1 - \gamma)^2$ more samples. We pay another factor of $1/(1 - \gamma)^2$ samples. Is this real?

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N}} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N},$

$$\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$$
 then

Minimax Optimal Sample Complexity (on the policy)

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $N \geq \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then with prob. greater than $1-\delta$), $\|Q^{\star} - Q^{\widehat{\pi} \star}\|_{\infty} \leq \epsilon$

$$\epsilon < \sqrt{1/(1-\gamma)}$$
, provided

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $N \geq \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then with prob. greater than $1-\delta$), $\|Q^{\star} - Q^{\widehat{\pi} \star}\|_{\infty} \leq \epsilon$

Lower Bound: We can't do better.

$$\epsilon < \sqrt{1/(1-\gamma)}$$
, provided

Proof sketch: part 1

 From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$

• From Bernstein's ineq, with pr. greater than $1 - \delta$, we have (component-wise): $|(P - \widehat{P})V^{\star}| \leq \sqrt{\frac{2\log(2SA/\delta)}{N}}\sqrt{\operatorname{Var}_{P}(V^{\star})} + \frac{1}{1 - \gamma} \frac{2\log(2SA/\delta)}{3N} \overrightarrow{1}$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$
- Therefore $Q^{\star} - \widehat{Q}^{\star} \le \gamma \sqrt{\frac{2\log(2SA/\delta)}{N}} \|($ +"lower order term"

• From Bernstein's ineq, with pr. greater than $1 - \delta$, we have (component-wise): $|(P - \widehat{P})V^{\star}| \leq \sqrt{\frac{2\log(2SA/\delta)}{N}}\sqrt{\operatorname{Var}_{P}(V^{\star})} + \frac{1}{1 - \gamma} \frac{2\log(2SA/\delta)}{3N} \overrightarrow{1}$

$$(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)} \|_{\infty}$$

Bellman Equation for the Variance

• Variance: $\operatorname{Var}_{P}(V)(s, a) := \operatorname{Var}_{P(\cdot|s,a)}(V)$ Component wise variance: $\operatorname{Var}_P(V) := P(V)^2 - (PV)^2$

Bellman Equation for the Variance

- Variance: $\operatorname{Var}_{P}(V)(s, a) := \operatorname{Var}_{P(\cdot)}(s, a)$ Component wise variance: $Var_P(V)$
- Let's keep around the MDP M subscripts. Define Σ_M^{π} as the (total) variance of the discounted reward: $\Sigma_{M}^{\pi}(s,a) := E \left[\left(\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) - \zeta \right) \right]$

$$|s,a|(V)$$

 $V) := P(V)^2 - (PV)^2$

$$\left. -Q_M^{\pi}(s,a) \right)^2 \bigg| s_0 = s, a_0 = a$$

Bellman Equation for the Variance

- Variance: $\operatorname{Var}_{P}(V)(s, a) := \operatorname{Var}_{P(\cdot)}(s, a)$ Component wise variance: $Var_P(V)$
- Let's keep around the MDP M subscripts. Define Σ_M^{π} as the (total) variance of the discounted reward: $\Sigma_{M}^{\pi}(s,a) := E \left[\left(\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) - Q \right) \right]$
- Bellman equation for the total variance: $\Sigma_M^{\pi} = \gamma^2 \operatorname{Var}_P(V_M^{\pi}) + \gamma^2 P^{\pi} \Sigma_M^{\pi}$

$$|s,a|(V)$$

 $V := P(V)^2 - (PV)^2$

$$\left. -Q_M^{\pi}(s,a) \right)^2 \bigg| s_0 = s, a_0 = a$$

Lemma: For any policy π and MDP M, $\left\| (I - \gamma P^{\pi})^{-1} \sqrt{\operatorname{Var}_{P}(V_{M}^{\pi})} \right\|_{\infty} \leq \sqrt{\frac{2}{(1 - \gamma)^{3}}}$

Proof idea: convexity + Bellman equations for the variance.

Key Lemma

Proof sketch: we have two MDPs M and \widehat{M} . need to bound:

Proof sketch: we have two MDPs
$$M$$

$$\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \|_{W}^{2}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^3}} + \|\operatorname{lower order}\|$$

t all together I and \widehat{M} . need to bound: $|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}||_{\infty}$

Proof sketch: we have two MDPs
$$M$$

$$\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \|_{W}^{-1}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^3}} + \|\operatorname{lower order}\|$$
First equality above: just notation

t all together I and \widehat{M} . need to bound: $|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}||_{\infty}$

Proof sketch: we have two MDPs
$$M$$

 $\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \|$$

$$\leq \sqrt{\frac{2}{(1-\gamma)^3}} + "lower order"$$

First equality above: just notation Second step: concentration \rightarrow we need to quantify:

$$\sqrt{\operatorname{Var}_P(V_M^{\pi^*})} \approx \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})}$$

t all together and M. need to bound: $\|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}\|_{\infty}$

Proof sketch: we have two MDPs
$$M$$

 $\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \|$$

$$\leq \sqrt{\frac{2}{(1-\gamma)^3}} + "lower order"$$

First equality above: just notation Second step: concentration \rightarrow we need to quantify:

$$\sqrt{\operatorname{Var}_P(V_M^{\pi^*})} \approx \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})}$$

Last step: previous slide

t all together and M. need to bound: $\|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}\|_{\infty}$