
Exploration in Tabular MDPs 
 

Kaiwen Wang and Wen Sun 
CS 6789: Foundations of Reinforcement Learning

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3

an := arg max
a

{ ̂μn(a) + ln(KN/δ)/Nn(a)}

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3

an := arg max
a

{ ̂μn(a) + ln(KN/δ)/Nn(a)}

𝔼 [Nμ(a⋆) −
N

∑
n=1

μ(an)] ≤ Õ (KN)

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3

an := arg max
a

{ ̂μn(a) + ln(KN/δ)/Nn(a)}

𝔼 [Nμ(a⋆) −
N

∑
n=1

μ(an)] ≤ Õ (KN)

Key step in the proof:

μ(a⋆) − μ(an) ≤ ̂μ(an) +
ln(KN/δ)

Nn(an)
− μ(an)

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , P, H, μ, S, A}

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , P, H, μ, S, A}

Only reset from : we assume it’s a delta distribution, all mass at a fixed μ s0

Unknown Transition (for simplicity assume reward is known)P

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , P, H, μ, S, A}

Only reset from : we assume it’s a delta distribution, all mass at a fixed μ s0

Unknown Transition (for simplicity assume reward is known)P

Different from the Generative Model Setting!

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , P, H, μ, S, A}

Only reset from : we assume it’s a delta distribution, all mass at a fixed μ s0

Unknown Transition (for simplicity assume reward is known)P

EXPLORATION!

Different from the Generative Model Setting!

Why we need strategic exploration?

s0

Initialization: s0

Length of chain is H

Why we need strategic exploration?

Probability of random walk hitting reward 1 is (1/3)H

s0

Initialization: s0

Length of chain is H

Learning Protocol

Learning Protocol

1. Learner initializes a policy π1

Learning Protocol

1. Learner initializes a policy π1

2. At episode n, learner executes : πn

{sn
h , an

h , rn
h}H−1

h=0 , with an
h = πn(sn

h), rn
h = r(sn

h , an
h), sn

h+1 ∼ P(⋅ |sn
h , an

h)

Learning Protocol

1. Learner initializes a policy π1

2. At episode n, learner executes : πn

{sn
h , an

h , rn
h}H−1

h=0 , with an
h = πn(sn

h), rn
h = r(sn

h , an
h), sn

h+1 ∼ P(⋅ |sn
h , an

h)

3. Learner updates policy to using all prior informationπn+1

Learning Protocol

1. Learner initializes a policy π1

2. At episode n, learner executes : πn

{sn
h , an

h , rn
h}H−1

h=0 , with an
h = πn(sn

h), rn
h = r(sn

h , an
h), sn

h+1 ∼ P(⋅ |sn
h , an

h)

3. Learner updates policy to using all prior informationπn+1

Performance measure: REGRET

𝔼 [
N

∑
n=1

(V⋆ − Vπn)] = poly(S, A, H) N

Notations for Today

𝔼s′ ∼P(⋅|s,a) [f(s′)] := P(⋅ |s, a) ⋅ f

: state-action distribution induced by at time step h

(i.e., probability of visiting at time step starting from)

dπ
h (s, a) π

π (s, a) h s0

π = {π0, …, πH−1}

Outline for Today

1b. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis

1a. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

(AS)H

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

(AS)H

So treating each policy as an “arm”, and runn UCB gives us O(ASHK)

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

(AS)H

So treating each policy as an “arm”, and runn UCB gives us O(ASHK)

Key lesson: shouldn’t treat policies as independent arms — they do share information

Outline for Today

1. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

UCBVI: Optimistic Model-based Learning

Inside iteration n :

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n

Design reward bonus bn
h(s, a), ∀s, a, h

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n

Optimistic planning with learned model: πn = Value-Iter (̂P n, {rh + bn
h}H−1

h=1)
Design reward bonus bn

h(s, a), ∀s, a, h

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n

Optimistic planning with learned model: πn = Value-Iter (̂P n, {rh + bn
h}H−1

h=1)
Collect a new trajectory by executing in the real world starting from πn P s0

Design reward bonus bn
h(s, a), ∀s, a, h

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn(s, a) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, Nn(s, a, s′) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h, si
h+1) = (s, a, s′)} .

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn(s, a) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, Nn(s, a, s′) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h, si
h+1) = (s, a, s′)} .

Estimate model :̂P n(s′ |s, a), ∀s, a, s′

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode n using and ̂P n {rh + bn
h}h

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode n using and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode n using and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode n using and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode n using and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a

UCBVI: Put All Together

For n = 1 → N :

3. Estimate model: ̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

1. Set Nn(s, a) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a

2. Set Nn(s, a, s′) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, s′

4. Plan: πn = VI (̂P n, {rh + bn
h}h), with bn

h(s, a) = cH
ln(SAHN/δ)

Nn(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

Outline for Today

1. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

Theorem: UCBVI Regret Bound

RegretN :=
N

∑
n=1

(V⋆ − Vπn) ≤ Õ (H1.5 S2AN log(1/δ))
With probability , we have1 − δ

Theorem: UCBVI Regret Bound

RegretN :=
N

∑
n=1

(V⋆ − Vπn) ≤ Õ (H1.5 S2AN log(1/δ))

High probability regret implies bound on the expected regret by integrating over .δ

Remarks:

With probability , we have1 − δ

Theorem: UCBVI Regret Bound

RegretN :=
N

∑
n=1

(V⋆ − Vπn) ≤ Õ (H1.5 S2AN log(1/δ))

Dependency on H and S are suboptimal; but the same algorithm can achieve in the
leading term [Azar et.al 17 ICML, and the book Chapter 7]

H1.5 SAN

High probability regret implies bound on the expected regret by integrating over .δ

Remarks:

With probability , we have1 − δ

Outline of Proof

Bonus is related to bn
h(s, a) ((̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1)

Outline of Proof

Bonus is related to bn
h(s, a) ((̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1)
VI with bonus inside the learned model gives optimism, i.e., ̂V n

h(s) ≥ V⋆
h (s), ∀h, n, s, a

Outline of Proof

Bonus is related to bn
h(s, a) ((̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1)
VI with bonus inside the learned model gives optimism, i.e., ̂V n

h(s) ≥ V⋆
h (s), ∀h, n, s, a

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Outline of Proof

Bonus is related to bn
h(s, a) ((̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1)
VI with bonus inside the learned model gives optimism, i.e., ̂V n

h(s) ≥ V⋆
h (s), ∀h, n, s, a

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Apply simulation lemma: ̂V n
0(s0) − Vπn(s0)

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

From now on, assume this event being true

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

Intuition:

From now on, assume this event being true

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

Intuition:

1. Assume for some i, , then is an unbiased estimate of si
h = s, ai

h = a f(si
h+1) 𝔼s′ ∼Ph(⋅|s,a) f(s′)

From now on, assume this event being true

1. Model Error using Hoeffing’s inequality & Union Bound

̂P n(s′ |s, a) =
Nn(s, a, s′)

Nn(s, a)
, ∀s, a, s′

Given a fixed function , w/ prob
f : S ↦ [0,H] 1 − δ :

(̂P n(⋅ |s, a) − P(⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

Intuition:

1. Assume for some i, , then is an unbiased estimate of si
h = s, ai

h = a f(si
h+1) 𝔼s′ ∼Ph(⋅|s,a) f(s′)

2. Note ̂P n(⋅ |s, a) ⋅ f =
1

Nn(s, a)

n−1

∑
i=1

∑
h

1[(si
h, ai

h) = (s, a)]f(si
h+1)

From now on, assume this event being true

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Inductive hypothesis: ̂V n
h+1(s) ≥ V⋆

h+1(s), ∀s

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Inductive hypothesis: ̂V n
h+1(s) ≥ V⋆

h+1(s), ∀s

̂Q n
h(s, a) − Q⋆

h (s, a) = rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1 − rh(s, a) − P(⋅ |s, a) ⋅ V⋆
h+1

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Inductive hypothesis: ̂V n
h+1(s) ≥ V⋆

h+1(s), ∀s

̂Q n
h(s, a) − Q⋆

h (s, a) = rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1 − rh(s, a) − P(⋅ |s, a) ⋅ V⋆
h+1

≥ bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ V⋆

h+1 − P(⋅ |s, a) ⋅ V⋆
h+1

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Inductive hypothesis: ̂V n
h+1(s) ≥ V⋆

h+1(s), ∀s

̂Q n
h(s, a) − Q⋆

h (s, a) = rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1 − rh(s, a) − P(⋅ |s, a) ⋅ V⋆
h+1

≥ bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ V⋆

h+1 − P(⋅ |s, a) ⋅ V⋆
h+1

= bn
h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

2. Proving Optimism via Induction

Recall Bonus-enhanced Value Iteration at episode n:

̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1, H}
̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Inductive hypothesis: ̂V n
h+1(s) ≥ V⋆

h+1(s), ∀s

̂Q n
h(s, a) − Q⋆

h (s, a) = rh(s, a) + bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ ̂V n

h+1 − rh(s, a) − P(⋅ |s, a) ⋅ V⋆
h+1

≥ bn
h(s, a) + ̂P n(⋅ |s, a) ⋅ V⋆

h+1 − P(⋅ |s, a) ⋅ V⋆
h+1

= bn
h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ V⋆

h+1

≥ bn
h(s, a) − bn

h(s, a) = 0, ∀s, a

Lemma [Optimism]: ̂V n
h(s) ≥ V⋆

h (s), ∀n, h, s

3. Upper Bounding Regret using Optimism

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

This is something
we can control!

And this is related
to our policy πn

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − r0(s0, πn(s0)) − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − r0(s0, πn(s0)) − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − r0(s0, πn(s0)) − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + (̂P n(⋅ |s0, πn(s0)) − P(⋅ |s0, πn(s0))) ⋅ ̂V n

1 + P(⋅ |s0, πn(s0)) ⋅ (̂V n
1 − Vπn

1)

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − r0(s0, πn(s0)) − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n(⋅ |s0, πn(s0)) ⋅ ̂V n

1 − P(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + (̂P n(⋅ |s0, πn(s0)) − P(⋅ |s0, πn(s0))) ⋅ ̂V n

1 + P(⋅ |s0, πn(s0)) ⋅ (̂V n
1 − Vπn

1)
=

H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

(̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1 ≤ ∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1∥ ̂V n

h+1∥∞

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

(̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1 ≤ ∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1∥ ̂V n

h+1∥∞

≤ H∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1 ≤ H

S ln(SAHN/δ)
Nn

h(s, a)
, ∀s, a, h, n, with prob1 − δ

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

(̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1 ≤ ∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1∥ ̂V n

h+1∥∞

≤ H∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1 ≤ H

S ln(SAHN/δ)
Nn

h(s, a)
, ∀s, a, h, n, with prob1 − δ

≤
H−1

∑
h=0

𝔼s,a∼dπn
h

bn
h(s, a) + H

S ln(SAHN/δ)
Nn(s, a)

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

(̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1 ≤ ∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1∥ ̂V n

h+1∥∞

≤ H∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1 ≤ H

S ln(SAHN/δ)
Nn

h(s, a)
, ∀s, a, h, n, with prob1 − δ

≤
H−1

∑
h=0

𝔼s,a∼dπn
h

bn
h(s, a) + H

S ln(SAHN/δ)
Nn(s, a)

≤ 2
H−1

∑
h=0

𝔼s,a∼dπn
h

H
S ln(SAHN/δ)

Nn(s, a)

4. Upper bounding Regret via Simulation Lemma

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

But is data-dependent
(this is different from) !!!

̂V n
h

V⋆
h

Let’s do Holder’s
inequality

(̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1 ≤ ∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1∥ ̂V n

h+1∥∞

≤ H∥Ph(⋅ |s, a) − ̂P n
h(⋅ |s, a)∥1 ≤ H

S ln(SAHN/δ)
Nn

h(s, a)
, ∀s, a, h, n, with prob1 − δ

≤
H−1

∑
h=0

𝔼s,a∼dπn
h

bn
h(s, a) + H

S ln(SAHN/δ)
Nn(s, a)

≤ 2
H−1

∑
h=0

𝔼s,a∼dπn
h

H
S ln(SAHN/δ)

Nn(s, a)
= 2H S ln(SAHN/δ)

H−1

∑
h=0

𝔼s,a∼dπn
h

1
Nn(s, a)

5. Final Step

Remember we had two failure events for bounding transitions errors.

5. Final Step

Remember we had two failure events for bounding transitions errors.

RegretN =
N

∑
n=1

(V⋆
0 (s0) − Vπn

0 (s0)) ≤ 2H S ln(SAHN/δ)
N

∑
n=1

H−1

∑
h=0

𝔼s,a∼dπn
h

1
Nn(s, a)

5. Final Step

Remember we had two failure events for bounding transitions errors.

RegretN =
N

∑
n=1

(V⋆
0 (s0) − Vπn

0 (s0)) ≤ 2H S ln(SAHN/δ)
N

∑
n=1

H−1

∑
h=0

𝔼s,a∼dπn
h

1
Nn(s, a)

≤ 4H S ln(SAHN/δ) ∑
n,h

1
Nn(sn

h , an
h)

+ H log(N/δ)

5. Final Step

Remember we had two failure events for bounding transitions errors.

RegretN =
N

∑
n=1

(V⋆
0 (s0) − Vπn

0 (s0)) ≤ 2H S ln(SAHN/δ)
N

∑
n=1

H−1

∑
h=0

𝔼s,a∼dπn
h

1
Nn(s, a)

≤ 4H S ln(SAHN/δ) ∑
n,h

1
Nn(sn

h , an
h)

+ H log(N/δ)

≤ 4H S ln(SANH/δ) (2 SAHN + H log(N/δ)) ∈ Õ (H1.5S AN)

5. Final Step

Remember we had two failure events for bounding transitions errors.

RegretN =
N

∑
n=1

(V⋆
0 (s0) − Vπn

0 (s0)) ≤ 2H S ln(SAHN/δ)
N

∑
n=1

H−1

∑
h=0

𝔼s,a∼dπn
h

1
Nn(s, a)

≤ 4H S ln(SAHN/δ) ∑
n,h

1
Nn(sn

h , an
h)

+ H log(N/δ)

≤ 4H S ln(SANH/δ) (2 SAHN + H log(N/δ)) ∈ Õ (H1.5S AN)
N

∑
n=1

H−1

∑
h=0

1

Nn(sn
h , an

h)
= ∑

s,a

NN(s,a)

∑
i=1

1

i
≤ 2∑

s,a

NN(s, a) ≤ 2 SA∑
s,a

NN(s, a) ≤ 2 SANH

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≤ ϵ

Then is close to , i.e., we are doing exploitationπn π⋆

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≤ ϵ

2. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≥ ϵ

Then is close to , i.e., we are doing exploitationπn π⋆

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≤ ϵ

2. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≥ ϵ

Then is close to , i.e., we are doing exploitationπn π⋆

ϵ ≤ ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≤ ϵ

2. What if ? ̂V n
0(s0) − Vπn

0 (s0) ≥ ϵ

Then is close to , i.e., we are doing exploitationπn π⋆

ϵ ≤ ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n(⋅ |s, a) − P(⋅ |s, a)) ⋅ ̂V n
h+1]

We collect data at steps where bonus is large or model is wrong, i.e., exploration

