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Recap: 

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3

an := arg max
a

{ ̂μn(a) + ln(KN/δ)/Nn(a)}

𝔼 [Nμ(a⋆) −
N

∑
n=1

μ(an)] ≤ Õ ( KN)

Key step in the proof:

μ(a⋆) − μ(an) ≤ ̂μ(an) +
ln(KN/δ)

Nn(an)
− μ(an)
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Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , P, H, μ, S, A}

Only reset from : we assume it’s a delta distribution, all mass at a fixed μ s0

Unknown Transition  (for simplicity assume reward is known)P

EXPLORATION!

Different from the Generative Model Setting!
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Why we need strategic exploration? 

Probability of random walk hitting reward 1 is (1/3)H

s0

Initialization:       s0

Length of chain is H
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Learning Protocol 

1. Learner initializes a policy π1

2. At episode n, learner executes : πn

{sn
h , an

h , rn
h}H−1

h=0 , with an
h = πn(sn

h), rn
h = r(sn

h , an
h), sn

h+1 ∼ P( ⋅ |sn
h , an

h)

3. Learner updates policy to  using all prior informationπn+1

Performance measure: REGRET

𝔼 [
N

∑
n=1

(V⋆ − Vπn)] = poly(S, A, H) N



Notations for Today

𝔼s′ ∼P(⋅|s,a) [f(s′ )] := P( ⋅ |s, a) ⋅ f

: state-action distribution induced by  at time step h

(i.e., probability of  visiting  at time step  starting from )

dπ
h (s, a) π

π (s, a) h s0

π = {π0, …, πH−1}
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Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

(AS)H

So treating each policy as an “arm”, and runn UCB gives us O( ASHK)

Key lesson: shouldn’t treat policies as independent arms — they do share information
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UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions  ̂P n

Optimistic planning with learned model: πn = Value-Iter ( ̂P n, {rh + bn
h}H−1

h=1 )
Collect a new trajectory by executing  in the real world  starting from πn P s0

Design reward bonus bn
h(s, a), ∀s, a, h
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Let’s also maintain some statistics using these datasets: 

Nn(s, a) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, Nn(s, a, s′ ) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h, si
h+1) = (s, a, s′ )} .

Estimate model  :̂P n(s′ |s, a), ∀s, a, s′ 

̂P n(s′ |s, a) =
Nn(s, a, s′ )

Nn(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 

Value Iteration (aka DP) at episode n using  and ̂P n {rh + bn
h}h



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 

Value Iteration (aka DP) at episode n using  and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 

Value Iteration (aka DP) at episode n using  and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n( ⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 

Value Iteration (aka DP) at episode n using  and ̂P n {rh + bn
h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n( ⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , Nn(s, a) =

n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn(s, a)

Encourage to explore 
new state-actions 
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h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n( ⋅ |s, a) ⋅ ̂V n
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UCBVI: Put All Together

For n = 1 → N :

3. Estimate model: ̂P n(s′ |s, a) =
Nn(s, a, s′ )

Nn(s, a)
, ∀s, a, s′ 

1. Set Nn(s, a) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h) = (s, a)}, ∀s, a

2. Set Nn(s, a, s′ ) =
n−1

∑
i=1

∑
h

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, s′ 

4. Plan: πn = VI ( ̂P n, {rh + bn
h}h), with bn

h(s, a) = cH
ln(SAHN/δ)

Nn(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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(V⋆ − Vπn) ≤ Õ (H1.5 S2AN log(1/δ))

High probability regret implies bound on the expected regret by integrating over .δ

Remarks:

With probability , we have1 − δ



Theorem: UCBVI Regret Bound

RegretN :=
N

∑
n=1

(V⋆ − Vπn) ≤ Õ (H1.5 S2AN log(1/δ))

Dependency on H and S are suboptimal; but the same algorithm can achieve  in the 
leading term [Azar et.al 17 ICML, and the book Chapter 7]


H1.5 SAN

High probability regret implies bound on the expected regret by integrating over .δ

Remarks:

With probability , we have1 − δ
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Outline of Proof

Bonus  is related to bn
h(s, a) (( ̂P n( ⋅ |s, a) − P( ⋅ |s, a)) ⋅ V⋆

h+1)
VI with bonus inside the learned model gives optimism, i.e., ̂V n

h(s) ≥ V⋆
h (s), ∀h, n, s, a

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Apply simulation lemma: ̂V n
0(s0) − Vπn(s0)
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̂P n(s′ |s, a) =
Nn(s, a, s′ )

Nn(s, a)
, ∀s, a, s′ 

Given a fixed function , w/ prob 
f : S ↦ [0,H] 1 − δ :

( ̂P n( ⋅ |s, a) − P( ⋅ |s, a))
⊤

f ≤ O(H ln(SAHN/δ)/Nn(s, a)), ∀s, a, N

Bonus bn
h(s, a)

Intuition: 

1. Assume for some i, , then  is an unbiased estimate of si
h = s, ai

h = a f(si
h+1) 𝔼s′ ∼Ph(⋅|s,a) f(s′ )

2. Note ̂P n( ⋅ |s, a) ⋅ f =
1

Nn(s, a)

n−1

∑
i=1

∑
h

1[(si
h, ai

h) = (s, a)]f(si
h+1)

From now on, assume this event being true
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