Exploration in Tabular MDPs

Kaiwen Wang and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1
Arm 2
Arm 3

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1
Arm 2
Arm 3

Recap:

Multi-armed Bandits and UCB Algorithm

Arm 1
Arm 2 Arm 3

Recap:

Multi-armed Bandits and UCB Algorithm

$$
\begin{aligned}
& \text { Arm } 1 \quad \text { Arm } 2 \quad \text { Arm } 3 \\
& \quad \because O p^{\text {minimm }} \mu\left(a^{\star}\right) \leq U C B\left(a^{\star}\right) \leq \mu\left(a^{n}\right) \leq \hat{\mu}\left(a^{n}\right)+\sqrt{\frac{\ln (K N / \delta)}{N^{n}\left(a_{n}\right)}}-\mu\left(a^{n}\right)
\end{aligned}
$$

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP $\mathscr{M}=\left\{\left\{r_{h}\right\}_{h=0}^{H-1}, \underline{P}, \underline{H}, \underline{\mu}, \underline{S}, \underline{A}\right\}$

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP $\mathscr{M}=\left\{\left\{r_{h}\right\}_{h=0}^{H-1}, P, H Щ S, A\right\}$

Only reset from μ : we assume it's a delta distribution, all mass at a fixed s_{0}
Unknown Transition P (for simplicity assume reward is known)

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP $\mathscr{M}=\left\{\left\{r_{h}\right\}_{h=0}^{H-1}, P, H, \mu, S, A\right\}$

Only reset from μ : we assume it's a delta distribution, all mass at a fixed s_{0}
Unknown Transition P (for simplicity assume reward is known)

Different from the Generative Model Setting!

Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP $\mathscr{M}=\{\underbrace{1}_{\left.r_{h}\right\}_{h} H-1}, P, \underbrace{H, \mu, S, A}_{\text {known }}\}$
Only reset from μ : we assume it's a delta distribution, all mass at a fixed s_{0}
Unknown Transition $\underset{\sim}{P}$ (for simplicity assume reward is known)

Different from the Generative Model Setting!

EXPLORATION!

Why we need strategic exploration?

Why we need strategic exploration?

Probability of random walk hitting reward 1 is $(1 / 3)^{H}$

Learning Protocol

Learning Protocol

1. Learner initializes a policy π^{1}

Learning Protocol

1. Learner initializes a policy π^{1}
2. At episode n , learner executes π^{n} :
$\left\{s_{h}^{n}, a_{h}^{n}, r_{h}^{n}\right\}_{h=0}^{H-1}$, with $a_{h}^{n}=\pi^{n}\left(s_{h}^{n}\right), r_{h}^{n}=r\left(s_{h}^{n}, a_{h}^{n}\right), s_{h+1}^{n} \sim P\left(\cdot \mid s_{h}^{n}, a_{h}^{n}\right)$

Learning Protocol

1. Learner initializes a policy π^{1}
2. At episode n , learner executes π^{n} :
$\left\{s_{h}^{n}, a_{h}^{n}, r_{h}^{n}\right\}_{h=0}^{H-1}$, with $a_{h}^{n}=\pi^{n}\left(s_{h}^{n}\right), r_{h}^{n}=r\left(s_{h}^{n}, a_{h}^{n}\right), s_{h+1}^{n} \sim P\left(\cdot \mid s_{h}^{n}, a_{h}^{n}\right)$
3. Learner updates policy to π^{n+1} using all prior information

Learning Protocol

1. Learner initializes a policy π^{1}
2. At episode n , learner executes π^{n} :

$$
\mu=\delta\left(S_{0}\right)
$$

$$
\left\{s_{h}^{n}, a_{h}^{n}, r_{h}^{n}\right\}_{h=0}^{H-1} \text {, with } \underbrace{a_{h}^{n}}_{\underbrace{n}_{h}}=\pi^{n}\left(s_{h}^{n}\right), r_{h}^{n}=r\left(s_{h}^{n}, a_{h}^{n}\right), \underbrace{s_{h+1}^{n}}_{\uparrow=1} \sim P\left(\cdot \mid s_{h}^{n}, a_{h}^{n}\right)
$$

3. Learner updates policy to π^{n+1} using all prior information

Performance measure: REGRET

$$
V^{t}=\max _{\pi} V^{\pi}
$$

$$
\text { Regret }(N)=\{\mathbb{E}[\sum_{n=1}^{N}(\underbrace{V^{\star}-\left(r^{n}\right.})]=\operatorname{poly}(\underbrace{S, A, H}) \sqrt{N}
$$

$$
\int_{\text {all possible }}
$$

Notations for Today

$$
\quad \underset{\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[f\left(s^{\prime}\right)\right]:=P(\cdot \mid s, a) \cdot f}{\downarrow} \downarrow \left\lvert\, \begin{gathered}
\text { sines } \\
\downarrow \\
\left.f\left(s_{s}\right)\right]
\end{gathered}\right.
$$

- $d_{h}^{\pi}(s, a)$: state-action distribution induced by π at time step h (i.e., probability of π visiting (s, a) at time step h starting from s_{0})

$$
\pi=\left\{\pi_{0}, \ldots, \pi_{H-1}\right\}
$$

Outline for Today

1a. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

1b. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)
2. UCB-VI's regret bound and the analysis

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

$$
\begin{array}{ll}
\underbrace{\left.A^{S}\right)^{(1)}} & \begin{array}{l}
\pi_{n}: S \rightarrow A \\
\pi=\left[\pi_{n} \ldots \pi_{4},-1\right]
\end{array}
\end{array}
$$

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

$$
\left(A^{S}\right)^{H}
$$

So treating each policy as an "arm", and runn UCB gives us $\tilde{O}\left(\sqrt{A^{S H}}\right)$

$$
\dot{\theta}(\sqrt{A \cdot N})
$$

Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

$$
\left(A^{S}\right)^{H}
$$

So treating each policy as an "arm", and runn UCB gives us $O\left(\sqrt{A^{S H} K}\right)$

Key lesson: shouldn't treat policies as independent arms - they do share information

Outline for Today

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB
2. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)
3. UCB-VI's regret bound and the analysis

UCBVI: Optimistic Model-based Learning

Inside iteration n :

UCBVI: Optimistic Model-based Learning

Inside iteration n :
Use all previous data to estimate transitions $\widehat{P}^{n} \approx \rho$

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions \widehat{P}^{n}
Design reward bonus $b_{h}^{n}(s, a), \forall s, a, h$

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions \widehat{P}^{n}
Design reward bonus $b_{h}^{n}(s, a), \forall s, a, h$
Optimistic planning with learned model: $\pi^{n}=\operatorname{Value-Iter}\left(\widehat{P}^{n},\left\{r_{h}+b_{h}^{n}\right\}_{h=1}^{H-1}\right)$

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions \widehat{P}^{n}
Design reward bonus $b_{h}^{n}(s, a), \forall s, a, h$
Optimistic planning with learned model: $\pi^{n}=$ Value-Iter $\left.\left(\widehat{P}^{n},\left\{r_{h}+b_{h}^{n}\right\}\right\}_{h=1}^{H-1}\right)$
Collect a new trajectory by executing π^{n} in the real world P starting from s_{0}

UCBVI-Part 1: Model Estimation

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h
$$

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h
$$

Let's also maintain some statistics using these datasets:

UCBVI-Part 1: Model Estimation

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h
$$

Let's also maintain some statistics using these datasets:

$$
\begin{array}{lc}
N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, & N^{n}\left(s, a, s^{\prime}\right)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right)=\left(s, a, s^{\prime}\right)\right\} . \\
\text { ๆ } & \text { (niits } . \\
\text { \# wishto to } & \left(s, a s^{\prime}\right)
\end{array}
$$

UCBVI-Part 1: Model Estimation

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h
$$

Let's also maintain some statistics using these datasets:

$$
N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \quad N^{n}\left(s, a, s^{\prime}\right)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right)=\left(s, a, s^{\prime}\right)\right\}
$$

$$
\text { Estimate model } \widehat{P}^{n}\left(s^{\prime} \mid s, a\right), \forall s, a, s^{\prime} \text { : }
$$

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)} \quad \text { MLE }
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a,
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{gathered}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} 1\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{\underbrace{N^{n}(s, a)}}}
\end{gathered}
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}} \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}} \quad \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

Value Iteration (aka DP) at episode \mathbf{n} using \widehat{P}^{n} and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}} \quad \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

Value Iteration (aka DP) at episode \mathbf{n} using \widehat{P}^{n} and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$
$\widehat{V}_{H}^{n}(s)=0, \forall s$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}} \quad \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

Value Iteration (aka DP) at episode \mathbf{n} using \widehat{P}^{n} and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$

$$
\widehat{V}_{H}^{n}(s)=0, \forall s \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H\right\}, \forall s, a
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}} \quad \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

Value Iteration (aka DP) at episode \mathbf{n} using \widehat{P}^{n} and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \forall s \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H\right\}, \forall s, a \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\underset{a}{\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s}
\end{gathered}
$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \quad N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a
$$

$$
b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}}
$$

Encourage to explore new state-actions

$$
Q^{\pi} \in[O, H]
$$

Value Iteration (aka DP) at episode \mathbf{n} using \widehat{P}^{n} and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$

UCBVI: Put All Together

For $n=1 \rightarrow N$:

1. Set $N^{n}(s, a)=\sum_{i=1}^{n-1} \sum_{n-\nmid} 1\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a$
2. Set $N^{n}\left(s, a, s^{\prime}\right)=\sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right)=\left(s, a, s^{\prime}\right)\right\}, \forall s, a, s^{\prime}$
3. Estimate model: $\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}$
4. Plan: $\pi^{n}=V I\left(\widehat{P}^{n},\left\{r_{h}+b_{h}^{n}\right\}_{h}\right)$, with $b_{h}^{n}(s, a)=c H \sqrt{\frac{\ln (S A H N / \delta)}{N^{n}(s, a)}}$
5. Execute $\pi^{n}:\left\{s_{0}^{n}, a_{0}^{n}, r_{0}^{n}, \ldots, s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\right\}$

Outline for Today

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

1 Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)
2. UCB-VI's regret bound and the analysis

Theorem: UCBVI Regret Bound

With probability $1-\delta$, we have

$$
\text { Regret }_{N}:=\sum_{n=1}^{N}\left(V^{\star}-V^{\pi^{n}}\right) \leq \widetilde{O}\left(H^{1.5} \sqrt{S^{2} A N \log (1 / \delta)}\right)
$$

Theorem: UCBVI Regret Bound

With probability $1-\delta$, we have

$$
\text { Regret }_{N}:=\sum_{n=1}^{N}\left(V^{\star}-V^{\pi^{n}}\right) \leq \widetilde{O}\left(H^{1.5} \sqrt{S^{2} A N \log (1 / \delta)}\right)
$$

Remarks:

High probability regret implies bound on the expected regret by integrating over δ.

Theorem: UCBVI Regret Bound

With probability $1-\delta$, we have

$$
\begin{array}{r}
\text { Regret }_{N}:=\sum_{n=1}^{N}\left(V^{\star}-V^{\pi^{n}}\right) \leq \widetilde{O}\left(H^{1.5} \sqrt{S^{2} A N \log (1 / \delta)}\right) \\
\text { Remarks: } \\
\mathbb{E X}=\int \rho_{c}(x>1) d t \\
\text { if } x \geq 0
\end{array}
$$

High probability regret implies bound on the expected regret by integrating over δ.

Dependency on H and S are suboptimal; but the same algorithm can achieve $H^{1.5} \sqrt{S A N}$ in the leading term [Azar et.al 17 ICML, and the book Chapter 7]

Outline of Proof

$$
\text { Bonus } b_{h}^{n}(s, a) \text { is related to }\left(\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star}\right)
$$

Outline of Proof

$$
\text { Bonus } b_{h}^{n}(s, a) \text { is related to }\left(\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star}\right)
$$

VI with bonus inside the learned model gives optimism, i.e., $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall h, n, s, a$

Outline of Proof

$$
\text { Bonus } b_{h}^{n}(s, a) \text { is related to }\left(\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star}\right)
$$

VI with bonus inside the learned model gives optimism, i.e., $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall h, n, s, a$

$$
\text { Upper bound per-episode regret: } V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)
$$

Outline of Proof

$$
\text { Bonus } b_{h}^{n}(s, a) \text { is related to }\left(\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star}\right)
$$

VI with bonus inside the learned model gives optimism, i.e., $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall h, n, s, a$

$$
\text { Upper bound per-episode regret: } V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)
$$

Apply simulation lemma: $\widehat{V}_{0}^{n}\left(s_{0}\right)-V^{\pi^{n}}\left(s_{0}\right)$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H]$, w/ prob $1-\delta$:

$$
\left|\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right)^{\top} f\right| \leq O\left(H \sqrt{\ln (S A H N / \delta) / N^{n}(s, a)}\right), \forall s, a, N
$$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H]$, w/ prob $1-\delta$:

$$
\left|\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right)^{\top} f\right|<\underbrace{<O\left(H \sqrt{\ln (S A H N / \delta) / N^{n}(s, a)}\right),}_{\text {Bonus } b_{h}^{n}(s, a)} \forall s, a, N
$$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H]$, w/ prob $1-\delta$:

$$
\left|\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right)^{\top} f\right|<\underbrace{\leq O\left(H \sqrt{\ln (S A H N / \delta) / N^{n}(s, a)}\right),}_{\text {Bonus } b_{h}^{n}(s, a)} \forall s, a, N
$$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H], \mathrm{w} /$ prob $1-\delta:$

$$
\left|\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right)^{\top} f\right|<\underbrace{\left\langle O\left(H \sqrt{\ln (S A H N / \delta) / N^{n}(s, a)}\right), \forall s, a, N\right.}_{\text {Bonus } b_{h}^{n}(s, a)} \begin{aligned}
\text { From now on, assume this event being true }
\end{aligned}
$$

Intuition:

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H]$, w/ prob $1-\delta:$

1. Assume for some i, $s_{h}^{i}=s, a_{h}^{i}=a$, then $f\left(s_{h+1}^{i}\right)$ is an unbiased estimate of $\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)} f\left(s^{\prime}\right)$

1. Model Error using Hoeffing's inequality \& Union Bound

$$
\widehat{P}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N^{n}\left(s, a, s^{\prime}\right)}{N^{n}(s, a)}, \forall s, a, s^{\prime}
$$

Given a fixed function $f: S \mapsto[0, H]$, w/ prob $1-\delta$:

$$
\left|\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right)^{\top} f\right|<\underbrace{\left\langle O\left(H \sqrt{\ln (S A H N / \delta) / N^{n}(s, a)}\right), \forall s, a, N\right.}_{\text {Bonus } b_{h}^{n}(s, a)} \begin{gathered}
\text { From now on, assume this event being true }
\end{gathered}
$$

Intuition:

1. Assume for some i, $s_{h}^{i}=s, a_{h}^{i}=a$, then $f\left(s_{h+1}^{i}\right)$ is an unbiased estimate of $\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)} f\left(s^{\prime}\right)$

$$
\text { 2. Note } \widehat{P}^{n}(\cdot \mid s, a) \cdot f=\frac{1}{N^{n}(s, a)} \sum_{i=1}^{n-1} \sum_{h} \mathbf{1}\left[\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right] f\left(s_{h+1}^{i}\right)
$$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$
Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$

Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Inductive hypothesis: $\widehat{V}_{h+1}^{n}(s) \geq V_{h+1}^{\star}(s), \quad \forall s$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$

Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\}^{\swarrow} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Inductive hypothesis: $\widehat{V}_{h+1}^{n}(s) \geq V_{h+1}^{\star}(s), \quad \forall s$
$\widehat{Q}_{h}^{n}(s, a)-Q_{h}^{\star}(s, a) \geqslant \underbrace{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a)} \cdot \widehat{V}_{h+1}^{n}-\underbrace{r_{h}(s, a)-P(\cdot \mid s, a) \cdot V_{h+1}^{\star}}$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$

Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Inductive hypothesis: $\widehat{V}_{h+1}^{n}(s) \geq V_{h+1}^{\star}(s), \quad \forall s$

$$
\geq b_{h}^{n}(s, a)+\underbrace{\widehat{P}^{n}(\cdot \mid s, a) \cdot V_{h+1}^{\star}-P(\cdot \mid s, a) \cdot V_{h+1}^{\star}}
$$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$

Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Inductive hypothesis: $\widehat{V}_{h+1}^{n}(s) \geq V_{h+1}^{\star}(s), \quad \forall s$

$$
\begin{aligned}
& \underbrace{\widehat{Q}_{h}^{n}(s, a)-Q_{h}^{\star}}(s, a)=r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}-r_{h}(s, a)-P(\cdot \mid s, a) \cdot V_{h+1}^{\star} \\
& \geq b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot V_{h+1}^{\star}-P(\cdot \mid s, a) \cdot V_{h+1}^{\star} \\
& \left.\quad=b_{h}^{n}(s, a)+\mid \widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star} \mid \in[0, H] \\
& \leq 1+\sqrt{\frac{1}{\sim}}=b_{h}^{h}
\end{aligned}
$$

2. Proving Optimism via Induction

Lemma [Optimism]: $\widehat{V}_{h}^{n}(s) \geq V_{h}^{\star}(s), \forall n, h, s$

Recall Bonus-enhanced Value Iteration at episode n:

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Inductive hypothesis: $\widehat{V}_{h+1}^{n}(s) \geq V_{h+1}^{\star}(s), \quad \forall s$
$\widehat{Q}_{h}^{n}(s, a)-Q_{h}^{\star}(s, a)=r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}-r_{h}(s, a)-P(\cdot \mid s, a) \cdot V_{h+1}^{\star}$
\uparrow

$$
\begin{aligned}
& \geq b_{h}^{n}(s, a)+\widehat{P}^{n}(\cdot \mid s, a) \cdot V_{h+1}^{\star}-P(\cdot \mid s, a) \cdot V_{h+1}^{\star} \\
& =b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot V_{h+1}^{\star} \\
& \geq b_{h}^{n}(s, a)-b_{h}^{n}(s, a)=0, \quad \forall s, a
\end{aligned}
$$

$$
\begin{aligned}
\left.V_{h}^{(s)}\right) \hat{V}_{h}^{n}(s) & =\max _{a} Q_{h}^{\#}(s a)-\max _{a} \hat{Q}_{h}^{h}((a)) \\
& \leq \max _{a}\left(Q_{h}^{\#}-\hat{Q}_{h}^{n}\right)\left(\sigma_{1} a\right)
\end{aligned}
$$

3. Upper Bounding Regret using Optimism

$$
\text { per-episode regret }:=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right)
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Lemma [Simulation lemma]:

4. Upper bounding Regret via Simulation Lemma

$$
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\}
$$

$$
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
$$

Lemma [Simulation lemma]:

$$
\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{n^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{n^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\underset{a}{\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s} \\
\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n}}\left[b_{h}^{n}(s, a)+\left(\widehat{P^{n}}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \\
\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{\pi^{n}}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right) \\
\leq r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}}
\end{gathered}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Lemma [Simulation lemma]:

$$
\begin{aligned}
& \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{\pi^{n}}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right) \\
& \leq r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
& =b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}}
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Lemma [Simulation lemma]:

$$
\begin{aligned}
& \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{\pi^{n}}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right) \\
& \leq r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
& =b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
& =b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\left(\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)\right) \cdot \widehat{V}_{1}^{n}+P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot\left(\widehat{V}_{1}^{n}-V_{1}^{\pi^{n}}\right) \\
& P \cdot \widehat{V}_{1}^{n}
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s
\end{gathered}
$$

Lemma [Simulation lemma]:

$$
\begin{aligned}
& \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{\pi^{n}}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right) \\
& \leq r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
& =b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
& =b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\left(\widehat{P}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)-P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)\right) \cdot \widehat{V}_{1}^{n}+P\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot\left(\widehat{V}_{1}^{n}-V_{1}^{\pi^{n}}\right) \\
& =\sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right]
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
\text { per-episode regret } & :=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right]
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
\text { per-episode regret } & :=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \begin{array}{c}
\text { Let's do Holder's } \\
\text { inequality }
\end{array}
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
& \text { per-episode regret }:=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \text { Let's do Holder's } \\
& \text { inequality }
\end{aligned}
$$

$$
\left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n} \leq\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1}\left\|\widehat{V}_{h+1}^{n}\right\|_{\infty}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
& \text { per-episode regret }:=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \text { Let's do Holder's }
\end{aligned}
$$

$$
\begin{gathered}
x \cdot y \leq\|x\|_{1} \cdot n y \|_{\infty}(\text { (Hitiduis ; - } \cdot) \\
\left.\left(\widehat{P}_{h}^{n} \cdot \mid s, a\right)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n} \leq\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1}\left\|\widehat{V}_{h+1}^{n}\right\|_{\infty} \\
\leq H\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1} \leq H \sqrt{\frac{S \ln (S A H N / \delta)}{N_{h}^{n}(s, a)}}, \forall s, a, h, n \text {, with prob 1 }-\delta
\end{gathered}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
\text { per-episode regret }: & =V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \begin{array}{c}
\text { Let's do Ho } \\
\text { inequal }
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n}}\left[b_{h}^{n}(s, a)+H \sqrt{\left.\frac{S \ln (S A H N / \delta)}{N^{n}(s, a)}\right]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n} \leq\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1}\left\|\widehat{V}_{h+1}^{n}\right\|_{\infty} \\
& \quad \leq H\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1} \leq H \sqrt{\frac{S \ln (S A H N / \delta)}{N_{h}^{n}(s, a)}}, \forall s, a, h, n, \text { with prob1 }-\delta
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
& \text { per-episode regret }:=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \begin{array}{l}
\text { Let's do Holder's } \\
\text { inequality }
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n}}\left[b_{h}^{n}(s, a)+H \sqrt{\frac{S \ln (S A H N / \delta)}{N^{n}(s, a)}}\right] \quad b=H \sqrt{\frac{\log \cdot \cdots}{N}} \\
& \leq 2 \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[H \sqrt{\frac{S \ln (S A H N / \delta)}{N^{n}(s, a)}}\right] \\
&\left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n} \leq\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1}\left\|\widehat{V}_{h+1}^{n}\right\|_{\infty} \\
& \leq H\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1} \leq H \sqrt{\frac{S \ln (S A H N / \delta)}{N_{h}^{n}(s, a)}}, \forall s, a, h, n, \text { with prob1 }-\delta
\end{aligned}
$$

4. Upper bounding Regret via Simulation Lemma

$$
\begin{aligned}
& \text { per-episode regret }:=V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}}\left(s_{0}\right) \quad \begin{array}{l}
\text { But } \widehat{V}_{h}^{n} \text { is data-dependent } \\
\text { (this is different from } \left.V_{h}^{\star}\right)!!!
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \quad \begin{array}{c}
\text { Let's do Holder's } \\
\text { inequality }
\end{array} \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[b_{h}^{n}(s, a)+H \sqrt{\frac{S \ln (S A H N / \delta)}{N^{n}(s, a)}}\right] \\
& \leq 2 \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[H \sqrt{\frac{S \ln (S A H N / \delta)}{N^{n}(s, a)}}\right]=2 H \sqrt{S \ln (S A H N / \delta)} \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n^{n}}}\left[\sqrt{\frac{1}{N^{n}(s, a)}}\right] \\
&\left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n} \leq\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1}\left\|\widehat{V}_{h+1}^{n}\right\|_{\infty} \\
& \leq H\left\|P_{h}(\cdot \mid s, a)-\widehat{P}_{h}^{n}(\cdot \mid s, a)\right\|_{1} \leq H \sqrt{\frac{S \ln (S A H N / \delta)}{N_{h}^{n}(s, a)}, \forall s, a, h, n, \text { with prob1 }-\delta}
\end{aligned}
$$

5. Final Step

Remember we had two failure events for bounding transitions errors.

5. Final Step

Remember we had two failure events for bounding transitions errors.

$$
\operatorname{Regret}_{N}=\sum_{n=1}^{N}\left(V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)\right) \leq 2 H \sqrt{S \ln (S A H N / \delta)} \sum_{n=1}^{N} \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[\sqrt{\frac{1}{N^{n}(s, a)}}\right]
$$

5. Final Step

Remember we had two failure events for bounding transitions errors.

$$
\begin{aligned}
\operatorname{Regret}_{N} & =\sum_{n=1}^{N}\left(V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)\right) \leq 2 H \sqrt{S \ln (S A H N / \delta)} \sum_{n=1}^{N} \sum_{h=0}^{H-1} \underbrace{\mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}}\left[\sqrt{\frac{1}{N^{n}(s, a)}}\right] \\
& \leq 4 H \sqrt{S \ln (S A H N / \delta)}(\sum_{n, h} \sqrt{\frac{1}{N^{n}(\underbrace{\left.s_{h}^{n}, a_{h}^{n}\right)}}}+H \log (N / \delta)) \quad \text { (Azuma's aeq.) }
\end{aligned}
$$

5. Final Step

Remember we had two failure events for bounding transitions errors.

$$
\begin{aligned}
\text { Regret }_{N} & =\sum_{n=1}^{N}\left(V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)\right) \leq 2 H \sqrt{S \ln (S A H N / \delta)} \sum_{n=1}^{N} \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{\pi^{n}}}\left[\sqrt{\frac{1}{N^{n}(s, a)}}\right] \\
& \leq 4 H \sqrt{S \ln (S A H N / \delta)}\left(\sum_{n, h} \sqrt{\frac{1}{N^{n}\left(s_{h}^{n}, a_{h}^{n}\right)}}+H \log (N / \delta)\right) \\
& \leq 4 H \sqrt{S \ln (S A N H / \delta)}(2 \sqrt{S A H N}+H \log (N / \delta)) \in \widetilde{O}\left(H^{1.5} S \sqrt{A N}\right)
\end{aligned}
$$

5. Final Step

Remember we had two failure events for bounding transitions errors.

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: $V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$

$$
\text { 1. What if } \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \epsilon \text { ? }
$$

Then π^{n} is close to π^{\star}, i.e., we are doing exploitation

$$
\begin{aligned}
& \text { for my algarition e.g. UCBVI } \\
& \geqq \text { MDP sit. } \quad \text { Regret } \geqslant O(H \sqrt{S A K})
\end{aligned}
$$

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: $V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$

1. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \epsilon$?

Then π^{n} is close to π^{\star}, i.e., we are doing exploitation
2. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \geq \epsilon$?

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: $V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$

1) optimisu
1. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \epsilon$?
2) simulatio lemans

Then π^{n} is close to π^{\star}, i.e., we are doing exploitation
2. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \geq \epsilon$?
$\epsilon \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi_{n}^{n}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{n_{h}^{n}}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right]$

High-level Idea: Exploration or Exploitation Tradeoff

Upper bound per-episode regret: $V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$

1. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \epsilon$?

Then π^{n} is close to π^{\star}, i.e., we are doing exploitation
2. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \geq \epsilon$?

$$
\epsilon \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{V^{n}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n n}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}^{n}(\cdot \mid s, a)-P(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right]
$$

