Contextual Bandits

CS 6789: Foundations of Reinforcement Learning
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Recap: MAB

Interactive learning process:

ort=0 - (# based on historical information)

1. Learnerpullsarm [, € { 1,..., K}

2. Learner observes an i.i.d reward r; ~ v; of arm /,

Learning metric:

Regret.. @ 2”1

Arm distributions are fixed across learning..’



Question for Today:

Incorporate contexts into the interactive learning framework



Outline for today:

1. Introduction of the model

2. A general framework and its guarantees

3. An instantiation from the general framework
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Make the framework Context Dependent:

Interactive learning process:

Fort=0—->T1T-—-1

1. A new context x, € 2 appears
(# based on context x, and

2. Learner picks action a, € <f historical information)

3. Learner observes an reward r, ~ R(x,, a,)

Reward I1s context and arm
dependent now!



Make the framework Context Dependent:

Interactive learning process:

Xy~ U

i,

r, ~ R(x, a,)
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Examples:

Personalize | |
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

300,000 Evacuatéed as
Strong Cyclone Hits
Eastern India

_ ) 4 ._ Goal: learn to maximizes
ISRl - W user click rate
Different users have different

preferences on Nnews, so
need to personalize




Outline for today:

1. Introduction of the model

2. A general framework and its guarantees

3. An instantiation from the general framework
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Consider the following prediction game:
<

Jo Vi =1(2)

(yt o j\}t)z

fex#

T—1 T—1
Reg, (1) = Z (f{z) — Yt)z — min Z (f(z) — yt)2
t=0 t=0
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Some examples of regret bounds in theory:
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Detour: online regression

Some examples of regret bounds in theory:
When # is linear, Reg, (1) = O(d In(T))
When # is discrete, Reg, (T') = O(n(| F|))

When # is convex, Reg, (1) = O(In(T))

In practice, simple gradient descent often works quite well
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A general algorithmic framework for CB

A reduction to online regression

Initialize f, € #
Fort=0—->T-1
Recelve context X,

Learner recommends a,

Observe reward r, ~ R(x,, a,)

Update f,. ; = Online Regression(r, := f(x,, a,), 1)
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A general algorithmic framework for CB

How learner recommends a,?

we use f, to construct a distribution p, € A(A)

p, = arg min max [(max fx,a*) — [ a~p f(x, a) ) — AE a~p (f(xt, a) — f(x, a))2

pEA(A) feF a*

Learner then samples a, ~ p;,



General theorem

Assume there exists # € R™, such that:

Vx,g € F . min max l(maxf(x, a*) — -apr(x, a) ) — A = 4mop (f(x, a) — g(x, a))2 < pl/A
peEAA) feF a*

and realizability holds, i.e., E, g 7] € F,
then, the regret of the algorithm is

0 (\/ 15 - Reg zs(T)>
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Step 1: reason about regression performance
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Proof

Step 1: reason about regression performance

T-1 -1
Reg, (1) = Z (i a) — 1 t)2 — min Z (fx,a) —r t)2
=0 t=0

fesF

Online regression regret implies that w/ prob 1 — ¢,

T—1

2

=0

= (fCa) —)2 < Reg, (T) + In(1/5)

Bayes opt /*(x,a) := E[r|x, d]
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Proof

Step 2:

Regret = Z max f*(x, a) — 2 = ~p, f*(x,a)

< TP/2 + A(Reg, (T) + In(1/6))

_aNPt(f *(Xt, Clt) _ft(xp at))z

T—1
+ Z
=0

= (P (i @) = £, @)



Outline for today:

1. Introduction of the model

2. A general framework and its guarantees

3. An Instantiation from the general framework



Instantiation of the general framework

p, = arg min max
pEA(A) feF

(

How to efficiently compute p,?

max f(x,, a*) —
a*x

= (6 N7) ) — A
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Instantiation of the general framework

How to efficiently compute p,?

pEA(A) feF a*

p, = arg min max [(max flx,a*) — = fx,, a) ) — A = (f(xt, a) — f(x, a))2

For finite actions, there is a simple trick that finds an approximate minimizer
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Inverse Gap Weighting (IGW) for computing the approximate minimizer

Given f,, construct p, as follows:

a = arg max f(x, a)

a

1

Fora #a: plal = A+ A(f(x;, a) — f(x;,a))

pt[d] =1 - Zpt[a]
ax+d



Inverse Gap Weighting (IGW) for computing the approximate minimizer

Lemma

For p, computed from IGW using f, , we must have:

Vx : max [(maxf(x,a) — E, _, fix,a)) — AE,_, (f(x,a) — fi(x,a))*| <

fes a*

A
A

(See lecture notes for proof)



Intuitively explanation of IGW

a = arg max f(x,, a)

d

1

Fora #ad: pla]l = A+ A(fx, a) — f(x;, a))

pt[d] =1 — sz[a]
ax+d
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Intuitively explanation of IGW

a = arg max f(x,, a)

a Case 1: when f is a good

| predictor under x,

Fora #ad: pla]l = A+ A(fx, a) — f(x;, a))

Case 2: when [, is a bad

plal=1- Zpt[a] predictor under x,,
ax+d



