Contextual Bandits

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_{t} \sim \nu_{I_{t}}$ of arm I_{t}

Learning metric:

$$Regret_T = T\mu^* - \sum_{t=0}^{T-1} \mu_{I_t}$$

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

Learning metric:

$$\mathsf{Regret}_T = T\mu^* - \sum_{I=1}^{T-1} \mu_{I_t}$$

Arm distributions are fixed across learning. t=0

Question for Today:

Incorporate contexts into the interactive learning framework

Outline for today:

1. Introduction of the model

2. A general framework and its guarantees

3. An instantiation from the general framework

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

1. A new context $x_t \in \mathcal{X}$ appears

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

- 1. A new context $x_t \in \mathcal{X}$ appears
- 2. Learner picks action $a_t \in \mathcal{A}$

(# based on context x_t and historical information)

Interactive learning process:

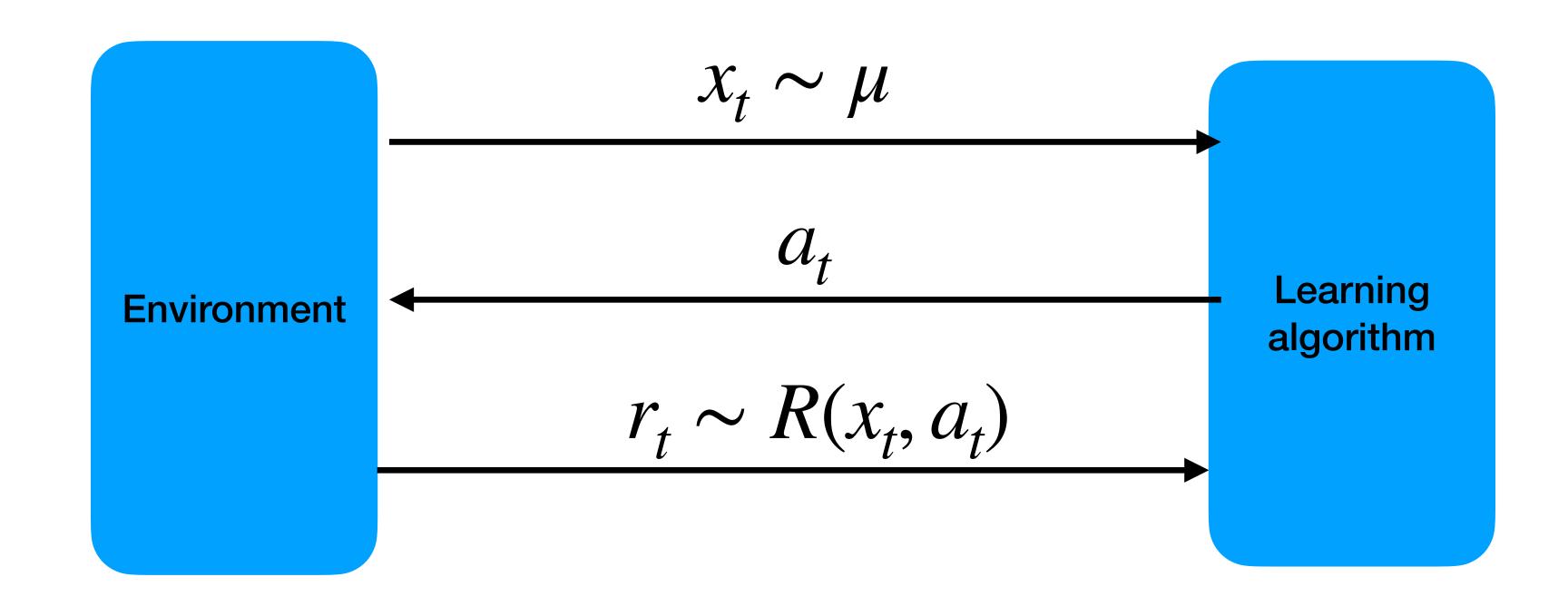
For
$$t = 0 \rightarrow T - 1$$

- 1. A new context $x_t \in \mathcal{X}$ appears
- 2. Learner picks action $a_t \in \mathcal{A}$

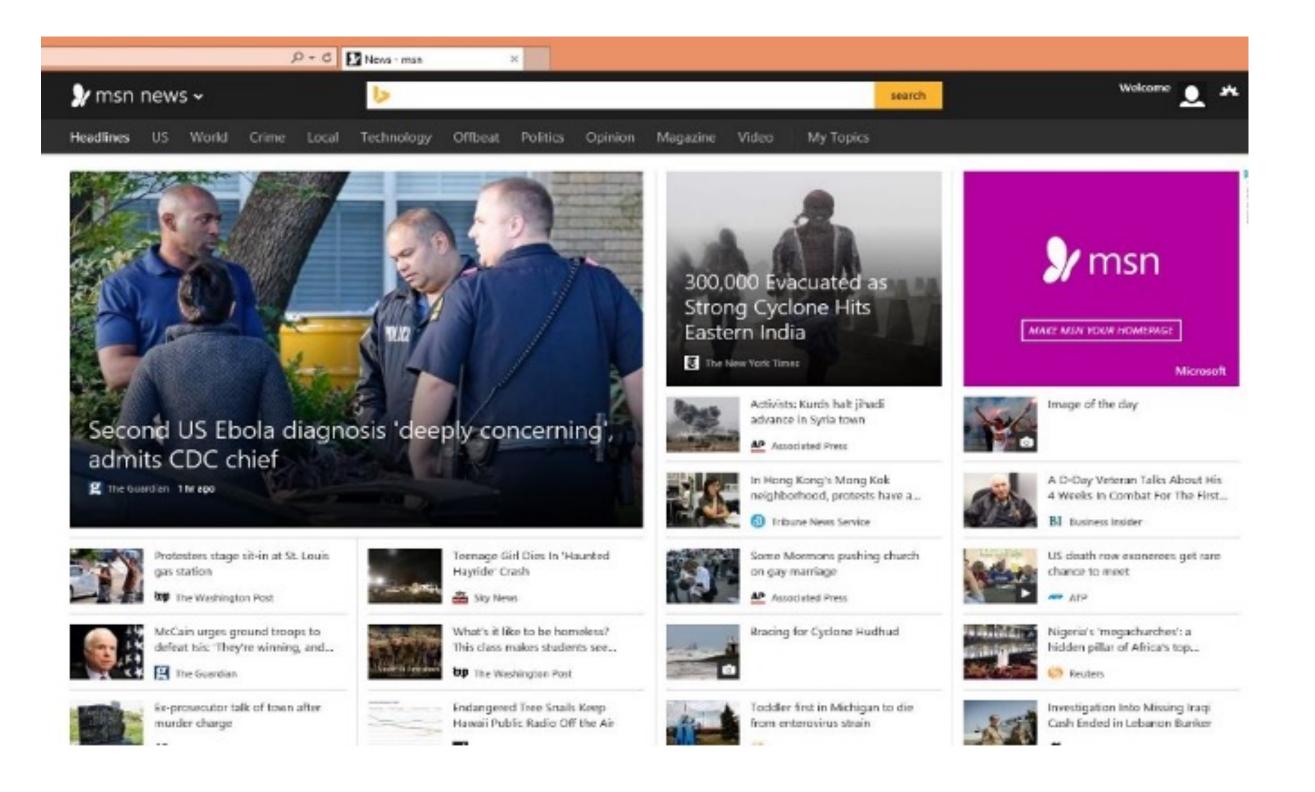
- (# based on context x_t and historical information)
- 3. Learner observes an reward $r_t \sim R(x_t, a_t)$

Reward is context and arm dependent now!

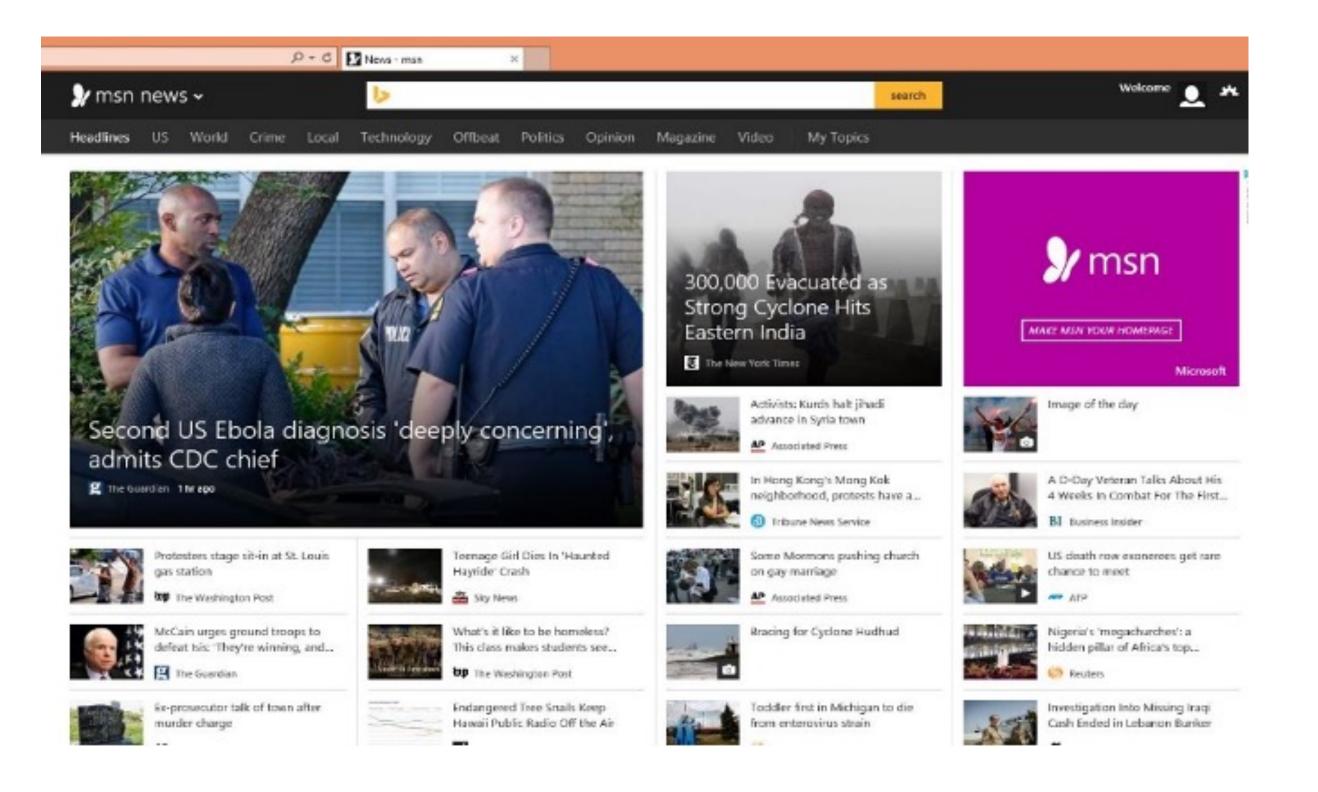
Interactive learning process:



Personalize recommendation system

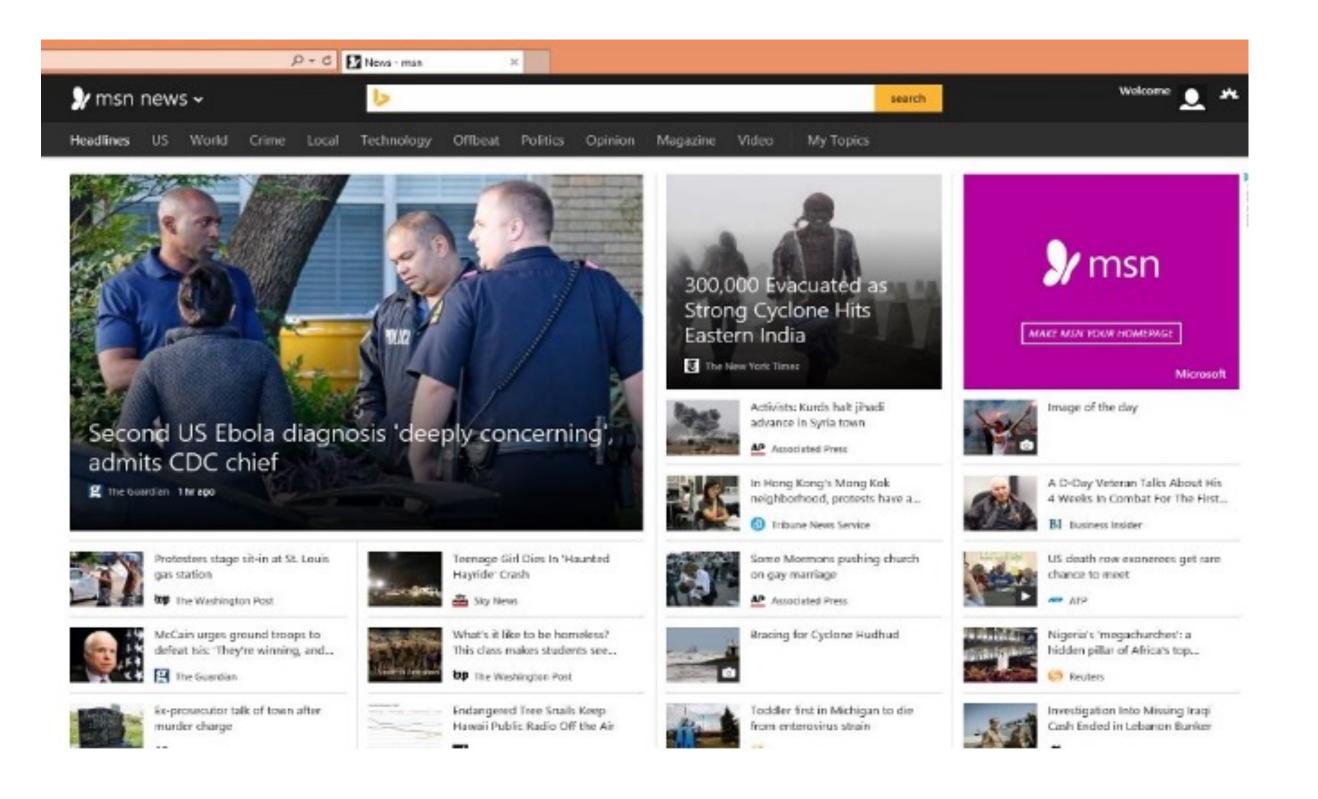


Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

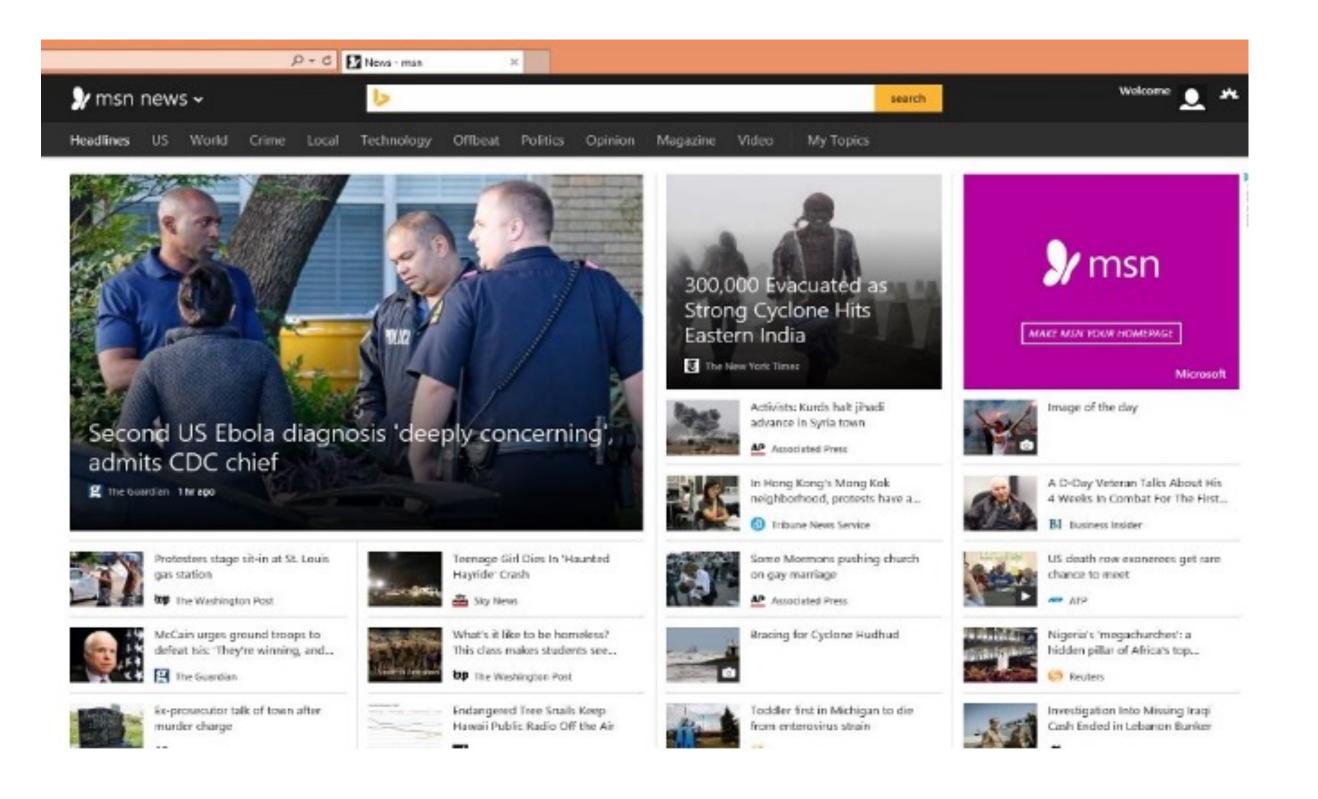
Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Personalize recommendation system

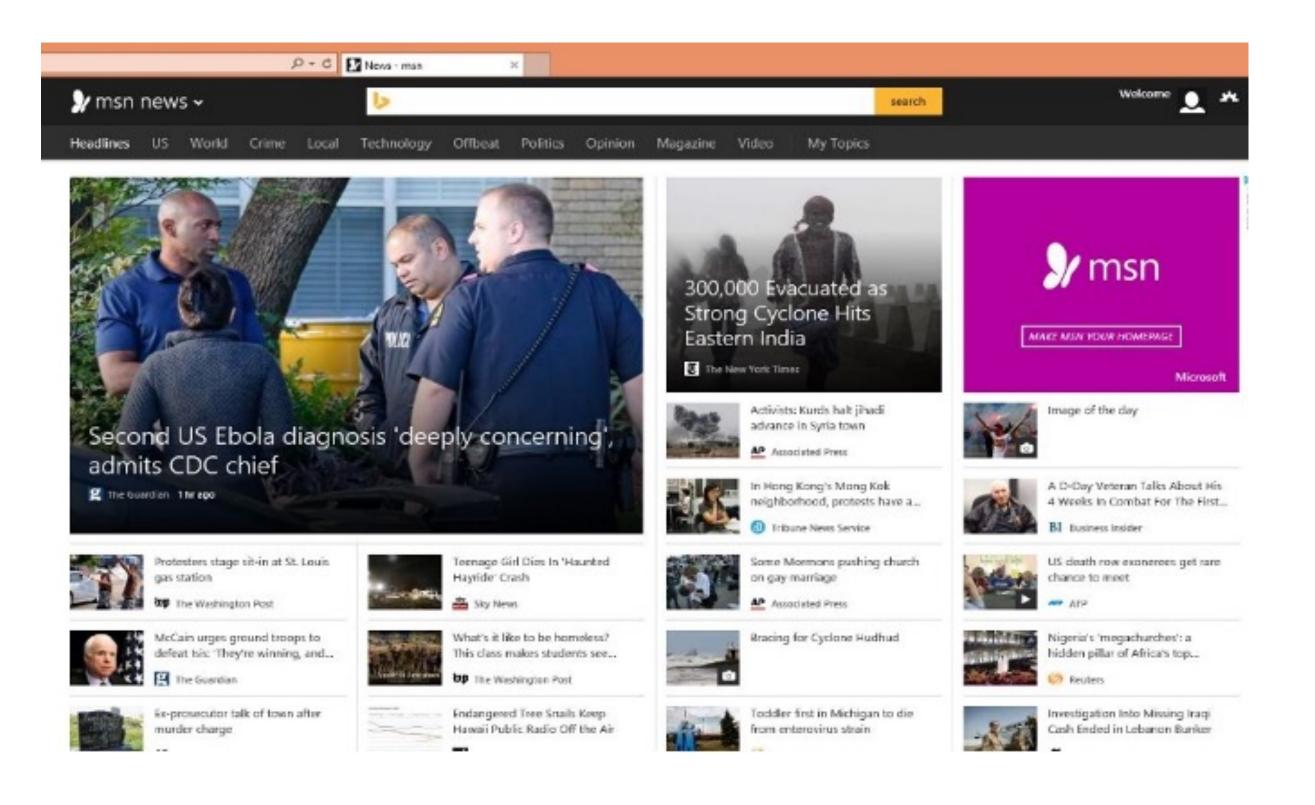


Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes user click rate

Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes user click rate

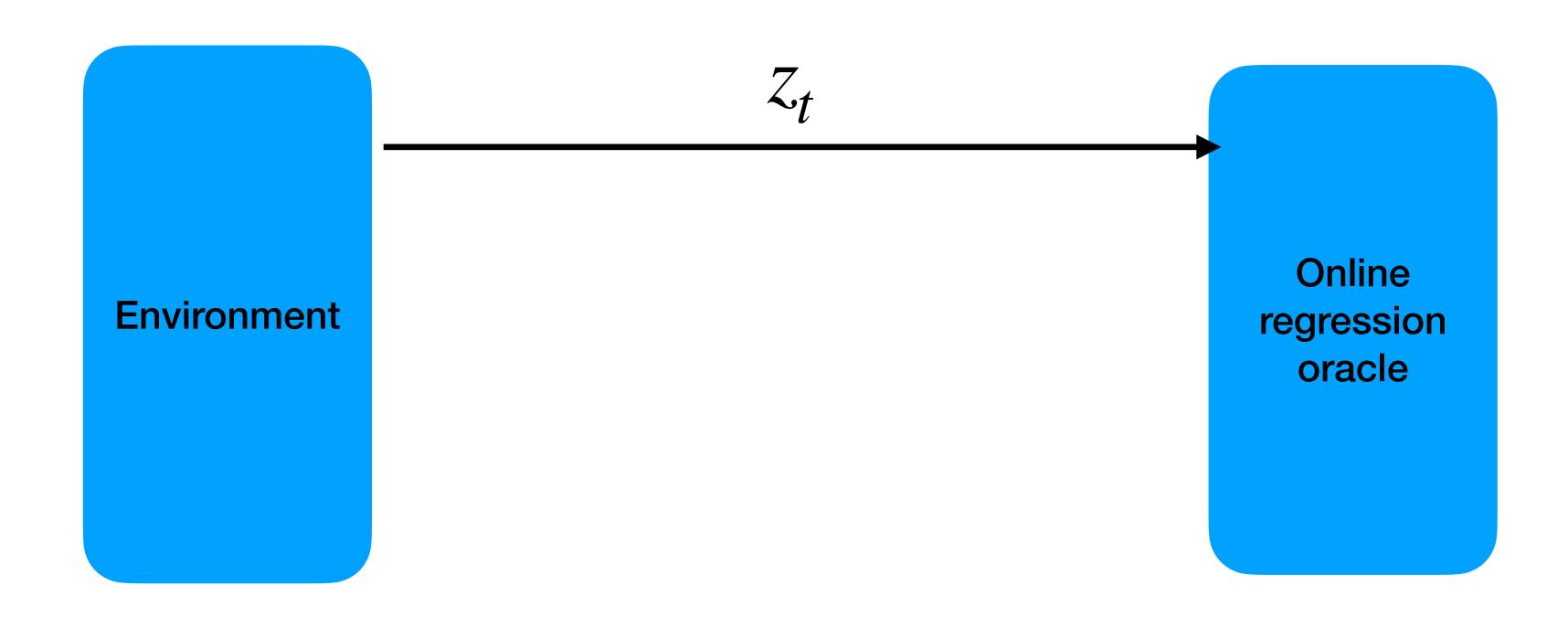
Different users have different preferences on news, so need to personalize

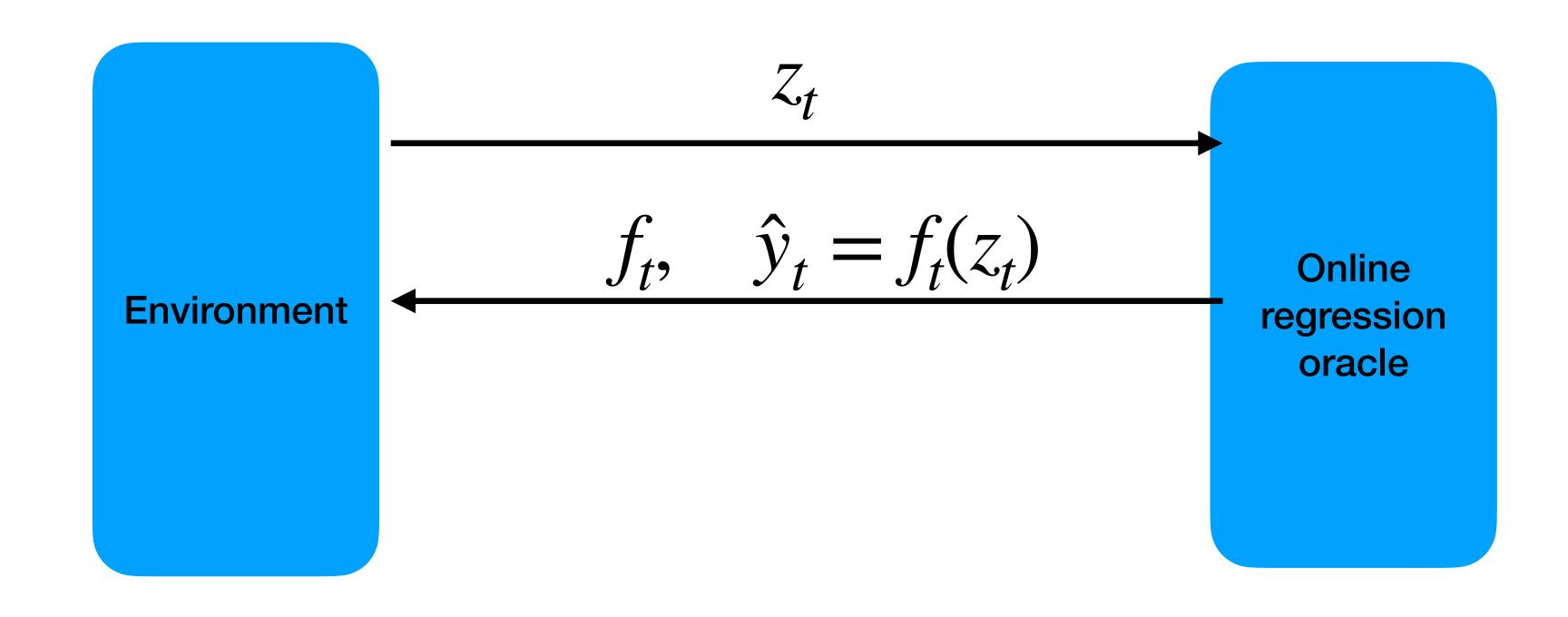
Outline for today:

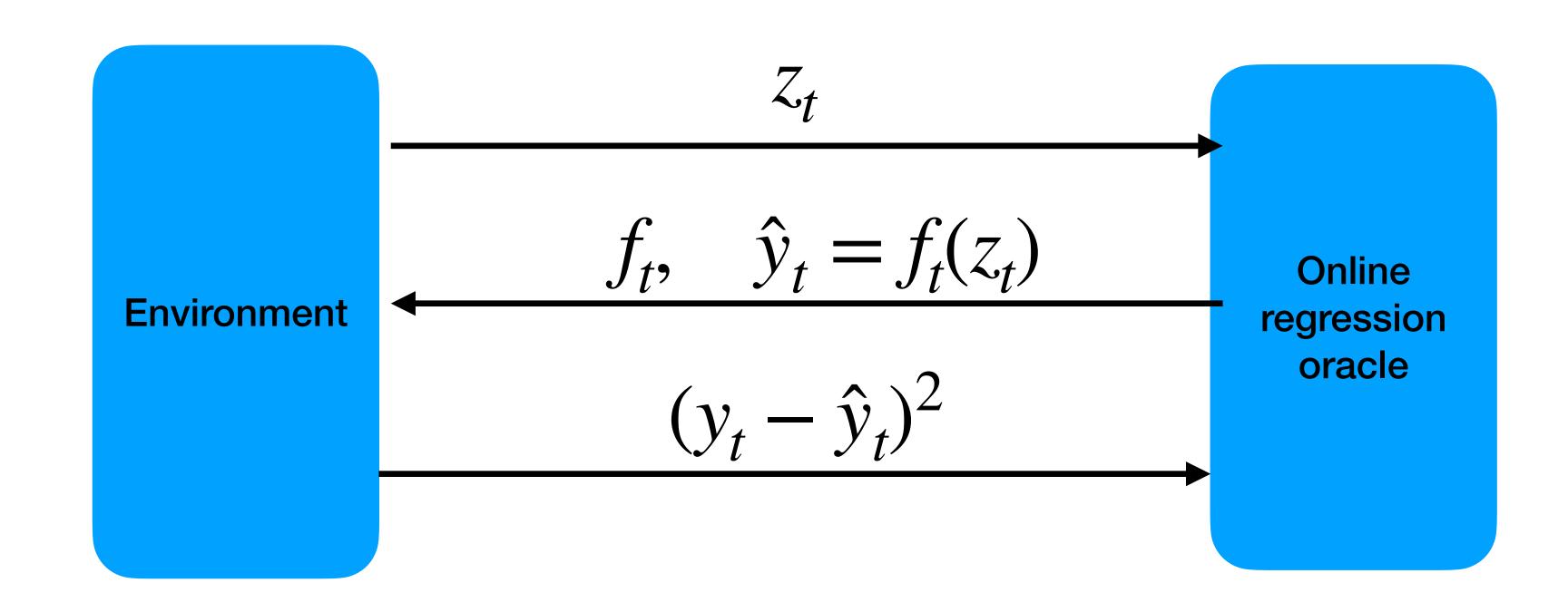
1. Introduction of the model

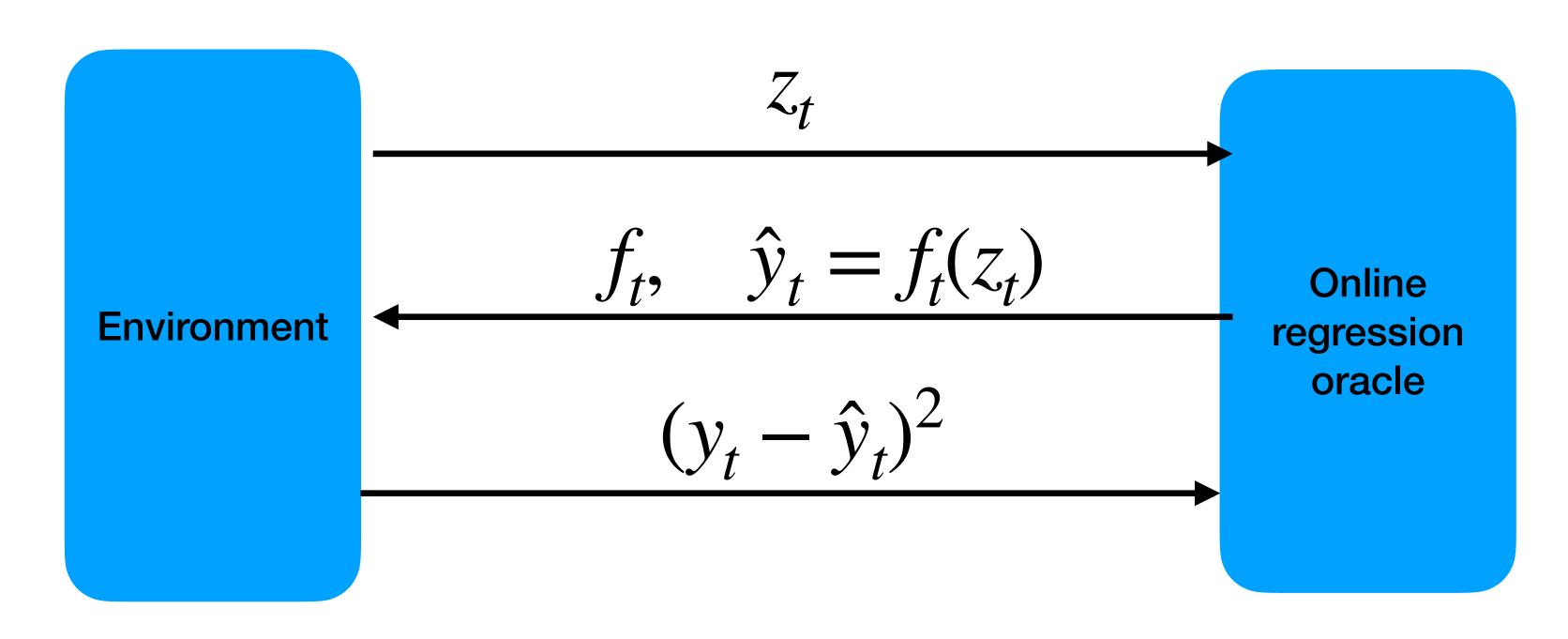
2. A general framework and its guarantees

3. An instantiation from the general framework









$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(z_t) - y_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(z_t) - y_t)^2$$

Some examples of regret bounds in theory:

When
$$\mathcal{F}$$
 is linear, $\operatorname{Reg}_{ls}(T) = \tilde{O}(d\ln(T))$

When
$$\mathscr{F}$$
 is discrete, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(|\mathscr{F}|))$

When
$$\mathscr{F}$$
 is convex, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(T))$

Some examples of regret bounds in theory:

When
$$\mathcal{F}$$
 is linear, $\operatorname{Reg}_{ls}(T) = \tilde{O}(d\ln(T))$

When
$$\mathscr{F}$$
 is discrete, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(|\mathscr{F}|))$

When
$$\mathcal{F}$$
 is convex, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(T))$

In practice, simple gradient descent often works quite well

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

A reduction to online regression

$$\text{Initialize} f_0 \in \mathscr{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

Observe reward $r_t \sim R(x_t, a_t)$

A reduction to online regression

$$\text{Initialize} f_0 \in \mathscr{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

Observe reward $r_t \sim R(x_t, a_t)$

 $\mathsf{Update}\,f_{t+1} = \mathsf{Online}\,\,\mathsf{Regression}(\hat{r}_t := f_t(x_t, a_t), r_t)$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

Learner then samples $a_t \sim p_t$

General theorem

Assume there exists $\beta \in \mathbb{R}^+$, such that:

$$\forall x, g \in \mathcal{F} : \min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^*} f(x, a^*) - \mathbb{E}_{a \sim p} f(x, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x, a) - g(x, a) \right)^2 \right] \leq \beta / \lambda$$

and realizability holds, i.e., $\mathbb{E}_{r\sim R(x,a)}[r]\in \mathscr{F}$, then, the regret of the algorithm is

$$\widetilde{O}\left(\sqrt{Teta\cdot\mathsf{Reg}_{ls}(T)}\right)$$

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathcal{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

$$\sum_{t=0}^{T-1} \mathbb{E}_{a_t \sim p_t} \left(f_t(x_t, a_t) - f^*(x_t, a_t) \right)^2 \lesssim \text{Reg}_{ls}(T) + \ln(1/\delta)$$

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

$$\sum_{t=0}^{T-1} \mathbb{E}_{a_t \sim p_t} \left(f_t(x_t, a_t) - f^{\star}(x_t, a_t) \right)^2 \lesssim \text{Reg}_{ls}(T) + \ln(1/\delta)$$
Bayes opt $f^{\star}(x, a) := \mathbb{E}[r \mid x, a]$

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{*}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{*}(x_{t}, a_{t})$$

Proof

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{\star}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{\star}(x_{t}, a_{t})$$

$$= \sum_{t=0}^{T-1} \left[\max_{a} f^{\star}(x, a) - \mathbb{E}_{a_{t} \sim p_{t}} f^{\star}(x_{t}, a_{t}) - \lambda \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a_{t}) - f_{t}(x_{t}, a_{t}))^{2} \right] + \lambda \sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a) - f_{t}(x_{t}, a))^{2}$$

Proof

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{*}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{*}(x_{t}, a_{t})$$

$$= \sum_{t=0}^{T-1} \left[\max_{a} f^{\star}(x, a) - \mathbb{E}_{a_{t} \sim p_{t}} f^{\star}(x_{t}, a_{t}) - \lambda \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a_{t}) - f_{t}(x_{t}, a_{t}))^{2} \right] + \lambda \sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a) - f_{t}(x_{t}, a))^{2}$$

$$\leq T\beta/\lambda + \lambda(\text{Reg}_{ls}(T) + \ln(1/\delta))$$

Outline for today:

1. Introduction of the model

- 2. A general framework and its guarantees
- 3. An instantiation from the general framework

Instantiation of the general framework

How to efficiently compute p_t ?

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

Instantiation of the general framework

How to efficiently compute p_t ?

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

For finite actions, there is a simple trick that finds an approximate minimizer

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Lemma

For p_t computed from IGW using f_t , we must have:

$$\forall x : \max_{f \in \mathscr{F}} \left[(\max_{a^*} f(x, a) - \mathbb{E}_{a_t \sim p_t} f(x, a_t)) - \lambda \mathbb{E}_{a \sim p_t} (f(x, a) - f_t(x, a))^2 \right] \le \frac{A}{\lambda}$$

(See lecture notes for proof)

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Case 1: when f_t is a good predictor under x_t

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Case 1: when f_t is a good predictor under x_t

Case 2: when f_t is a bad predictor under x_t ,