
Homework 3: Policy Gradient, Policy Evaluation,
& Exploration

CS 6789: Foundations of Reinforcement Learning

Due May 2rd 11:59 pm ET

1 Exploration in Absorbing MDPs (30 Points)
Let’s first recall Problem 3 in HW2 where we constructed absorbing MDPs and have shown that
the absorbing MDP can be used to provide optimism. We complete the rest exercise regarding
absorbing MDPs in this section.

Specifically, we will see the Explore-or-Terminate phenomena, where the algorithm either has
already found a near optimal policy—hence we terminate, or the algorithm can guarantee to ex-
plore new state-action pairs outside the current known set.

1.1 Exploration or Termination

Note that we know P̂ †, as it uses our learned model P̂ and it has deterministic absorbing structure
at unknown state-action pairs. So we can plan in this model using r†. Let’s define π̂⋆ as the optimal
policy of P̂ † and r† (imagine we run PI under P̂ † and r† until convergence).

We will consider two cases.
In case one, when we execute π̂⋆ under the real model P , π̂⋆ does not escape the known set K

with big probability, i.e.,
∑

s,a∈(S×A)\K dπ̂
⋆
(s, a) ≤ ϵ for some small ϵ ∈ R+.

Q (a) (15 points): Let us prove the following inequality:

V π⋆ ≤ V π̂⋆

+ O

(
1

(1− γ)2
ϵ+

1

(1− γ)2

√
S ln(SA/δ)

k

)
.

This says that if k is big enough, and the escape probability is small, then we find a near-optimal
policy π̂⋆.
(Hint: here we need to consider the difference between V̂ †,π and V †,π using simulation lemma)

1



Q (b) (15 points): On the other hand, we encounter the case where π̂⋆ escapes, i.e.,
∑

s,a∈(S×A)\K dπ̂
⋆
(s, a) ≥

ϵ. Let us assume that we have sampling oracle O(π) that samples an i.i.d state-action pair from dπ,
i.e., (s, a) ∼ dπ

Prove the following conclusion. With probability at least 1 − δ, after M = Ω
(

kSA
ϵ

+ ln(1/δ)
ϵ2

)
many sampling oracle O(π̂⋆) calls, at least one state-action pair from the unknown set (S×A)\K
becomes known, i.e., it will be sampled more than k times.
(Hint: First let’s ask ourselves that after M many calls of O(π̂⋆), how many (s, a) samples out of
M samples will fall into (S×A)\K? Now, if I have N many (s, a) samples falling into (S×A)\K,
can I say anything useful here using the Pigeon hole principle here?)

1.2 Summary (no questions)

To this end, we have seen that using P̂ † and r†, we plan a policy π̂⋆ that either is near optimal
if it stays inside the known set with big probability, or we guarantee to explore, i.e., making at
least one previous unknown state-action pair to be known, by executing π̂⋆ in the real MDP for
polynomially many times. With the new known set, we can repeat the above whole process again
which will either terminate with a near optimal policy or will guarantee to identify another known
state-action pair. Note that the total number of state-action pairs that can be made to the known set
is at most SA. Thus, we can expect that the algorithm will find a near optimal policy in polynomial
sample complexity.

2 Policy Gradient Theorem (30 Points)
We will focus on infinite horizon discounted MDP here.

2.1 Baslines
Q (15 points): For any function f(s) (that is only a function of the states) show that:

∇V πθ =
1

1− γ
Es∼dπθ Ea∼πθ(·|s)

[(
Qπθ(s, a)− f(s)

)
∇ log πθ(a|s)

]
2.2 Action-dependent Baselines for Factored Policies
We consider the following factored policy representation. We assume action a ∈ Rd. We denote
a[i] as the i-th component of the d-dim vector a. Also we denote a[−i] as all the components of a
except the i-th component.

Following the most common open-source implementations in the RL community, we represent
our parameterized policy as follows πθ(a|s) =

∏d
i=1 πi;θ(a[i]|s), where each πi;θ maps state s to

a distribution in R. Note that one of the most common examples of this in practice is in continu-
ous control where πθ(·|s) is a Gaussian distribution with a diagonal covariance matrix (i.e., each
coordinate of the action is independent).

2



Now let us consider d many baselines, f1, . . . , fd, where each fi(s, a[−i]) ∈ R. Namely, each
fi takes both state and action information, but fi ignores the i-th component of the action vector a.

Q (15 points): Prove the following:

∇V πθ =
1

1− γ
Es∼dπθEa∼πθ(·|s)

[
d∑

i=1

∇θ lnπi;θ(a[i]|s) (Qπθ(s, a)− fi(s, a [−i]))

]
.

Namely, we indeed can use action-dependent baselines if our policy is factorized over dimensions.

2.3 Best Baseline (Bonus)
Q Find the f(·) which leads to the minimum variance estimate of our gradient, assuming that our
gradient estimate will be:

∇̂V πθ =
1

1− γ

(
Qπθ(s, a)− f(s)

)
∇ log πθ(a|s)

where s ∼ dπθ , a ∼ πθ(·|s).

3 Batch Policy Evaluation via Regression (40 Points)
Often in practice, instead of using an unbiased estimate of policy gradient, one would like to use a
biased estimate, i.e., one would like to perform bias-variance tradeoff for policy gradient. In this
homework problem, let us derive a specific algorithm that performs policy evaluation in a dynamic
programming fashion.

Let’s take a look at the setup below. We consider finite horizon setting M = {S,A, H, r, P, ρ}
with ρ being the initial state distribution. We consider offline setting where we have a H many
datasets Dh = {sih, aih, sih, rih}Ni=1, where sih, a

i
h ∼ νh, and rih = r(sih, a

i
h), and sih ∼ P (·|sih, aih);

We consider linear function approximation with feature mapping ϕ : S×A 7→ Rd.
To make sure the problem is tractable, we make the following two key assumptions:

• Assumption 1: Realizability, i.e., for any π : S → A, we have for all h, Qπ
h(s, a) = θ⊤h ϕ(s, a),

for some w which has bounded norm ∥θh∥2 ≤ W ∈ R+; In other words, Qπ
h is a linear function

with respect to feature ϕ, for all h;
• Assumption 2: Coverage: i.e., for data distribution νh at any h, we have σmin

(
Es,a∼νhϕ(s, a)ϕ(s, a)

⊤) ≥
κ ∈ R+. In other words, the data distribution νh’s induced feature covariance matrix is full rank
and has lower bounded eigenvalues. This assumption ensures that with reasonably enough data,
our data matrix, i.e., Φh = [ϕ(s1h, a

1
h), . . . , ϕ(s

N
h , a

N
h )]

⊤ ∈ RN×d will be full rank.

We fix a policy π : S → A, and we would like to estimate Qπ
0 and its parameter θ0 using the

offline datasets Dh for h = 0, . . . , H − 1.

3



3.1 Least square regression at h = H − 1

From a dynamic programming perspective, it is obvious what we would like to do at h = H − 1,
i.e., the last time step. We use DH−1 to perform regression:

ŵH−1 = argmin
w

N∑
i=1

(
ϕ(siH−1, a

i
H−1)

⊤w − riH−1

)2
.

Let’s write ΦH−1 ∈ RN×d, where the i-th row of ΦH−1 is ϕ(siH−1, a
i
H−1)

⊤, and let’s write rH−1 ∈
RN where the i-th element of rH−1 is riH−1.

Assume ΦH−1 is full rank (i.e., assume N > d, and rank of ΦH−1 is d)

Q (10 points): Derive that:

ŵH−1 =
(
Φ⊤

H−1ΦH−1

)−1
Φ⊤

H−1rH−1.

3.2 Linear square regression at h
Now let’s do dynamic programming. Assume that we have learned ŵh+1 already. We use ŵh+1 to
learn ŵh. Specifically, we consider the following least square regression using the dataset Dh:

ŵh = argmin
w

N∑
i=0

(
ϕ(sih, a

i
h)

⊤w −
(
rih + ŵ⊤

h+1

[
ϕ(sih, π(s

i
h))
]))2

.

Note that if we believed that ŵh+1 is a good estimator, then we would believe that rih+ŵ⊤
h+1ϕ(s

i
h, π(s

i
h)) ≈

Qπ
h(s

i
h, a

i
h), since sih+1 ∼ P (·|sih, aih). From an induction perspective, we started at H − 1 where

we should expect that ŵH−1 is a good fit because the reward itself is a linear function with respect
to ϕ, and if we were doing linear regression correctly, we should expect ŵh+1 is a good estimator
as well, as Qπ

h+1 is a linear function with respect to ϕ.
Let’s denote Φh ∈ RN×d as a matrix where the i-th row is ϕ(sih, a

i
h)

⊤, and Φh ∈ RN×d as a
matrix where the i-th row is ϕ(sih, π(s

i
h)), and rh ∈ RN where the i-th element of r is rih.

Q (10 points): Derive that:

ŵh =
(
Φ⊤

hΦh

)−1
Φ⊤

h rh +
(
Φ⊤

hΦh

)−1
Φ⊤

hΦhŵh+1.

3.3 Solution at h = 0

We can repeat the same process above for all h = H − 1 to h = 0.

Q (20 Points): Show that for ŵ0:

ŵ0 =
H−1∑
h=0

(
h−1∏
τ=0

(
Φ⊤

τ Φτ

)−1
Φ⊤

τ Φτ

)(
Φ⊤

hΦh

)−1
Φ⊤

h rh

4



3.4 Quality of the Solution (Bonus)
We further simplify the setting by assuming that rih = 0 for all h = 0 . . . H − 2, i.e., we have
nonzero reward at H − 1 but zero reward in all previous time steps (i.e., we get reward 1 or 0 at
the end of the game). In this case, the solution ŵ0 has a very simple expression:

ŵ0 =

(
H−2∏
τ=0

(
Φ⊤

τ Φτ

)−1
Φ⊤

τ Φτ

)(
Φ⊤

H−1ΦH−1

)−1
Φ⊤

H−1rH−1

Given ϕ(s0, π(s0)), we are interested in the prediction error |Qπ
0 (s0, π(s0)) − ŵ0ϕ(s0, π(s0))|

at the initial state s0.
Recall our assumption where for all h = 0, . . . , H − 1, we have that for all s, a, Qπ

h(s, a) =
θh · ϕ(s, a) for some θh.

Let us denote δih = θh+1 · ϕ(sih, π(sih))−Es′∼P (·|sih,a
i
h)
θ⊤h+1ϕ(s

′, π(s′)). Since sih ∼ P (·|sih, aih),
we have that E[δih|sih, aih] = 0. Denote δh ∈ RN as a vector whose i-th element is δih.

Q Prove that:

ŵ0 − θ0 =
H−1∑
h=0

[(
h−1∏
τ=0

(Φ⊤
τ Φτ )

−1Φ⊤
τ Φτ

)
(Φ⊤

hΦh)
−1Φ⊤

h δh

]

Remark (no question) As we can see above, ŵ0 is indeed an unbiased estimate of θ0! This is
because for any h, we have:

E

[(
h−1∏
τ=0

(Φ⊤
τ Φτ )

−1Φ⊤
τ Φτ

)
(Φ⊤

hΦh)
−1Φ⊤

h δh
∣∣D0, . . . ,Dh

]
= 0,

as E[δih|sih, aih] = 0. However, the variance of our estimator ŵ0 could be exponential in H in worst
case (notice the term

∏h−1
τ=0(Φ

⊤
τ Φτ )

−1Φ⊤
τ Φτ ). For people who are interested in the potential expo-

nentially large variance worst case, we encourage you to think about a lower bound construction.

5


	Exploration in Absorbing MDPs (30 Points)
	Exploration or Termination
	Summary (no questions)

	Policy Gradient Theorem (30 Points)
	Baslines
	Action-dependent Baselines for Factored Policies
	Best Baseline (Bonus)

	Batch Policy Evaluation via Regression (40 Points)
	Least square regression at h = H-1
	Linear square regression at h
	Solution at h = 0
	Quality of the Solution (Bonus)

	Linear Quadratic Regulator (Bonus)
	Policy Iteration


