Learning with Linear Bellman Completion & Generative Model

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$: $\forall h, \exists \theta \in \mathbb{R}^{d}, s.t., \theta^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_{h}(s,a)} \max_{a'} w^{\mathsf{T}}\phi(s',a'), \forall s, a$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\mathsf{T}} \phi, \forall h$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a \in \mathbb{R}^d$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\mathsf{T}} \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\mathsf{T}} \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition

Datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$V_H(s) = 0, \forall s$$

Datasets
$$\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$$

 $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$V_{H}(s) = 0, \forall s$$

For h = H-1 to 0:
 $\theta_{h} = \arg \min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^{2}$

Datasets
$$\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$$

 $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2 \\ \text{Set } V_h(s) := \max_a \theta_h^T \phi(s, a), \forall s \end{array} \right|$

Datasets
$$\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$$

 $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left|\begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s')\right)\right)^2 \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array}\right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

Datasets
$$\mathcal{D}_{0}, ..., \mathcal{D}_{H-1}, w/$$

 $\mathcal{D}_{h} = \{s, a, r, s'\}, r = r(s, a), s' \sim P_{h}(\cdot | s, a)$
Set $V_{H}(s) = 0, \forall s$
For h = H-1 to 0:
 $\theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - (r + V_{h+1}(s')) \right)^{2}$
Set $V_{h}(s) := \max_{a} \theta_{h}^{T} \phi(s, a), \forall s$
Return $\hat{\pi}_{h}(s) = \arg\max_{a} \theta_{h}^{T} \phi(s, a), \forall h$
BC always ensures linear
regression is realizable:
i.e., our regression target
 $r(s, a) + \mathbb{E}_{s' \sim P_{h}(s, a)} \max_{a'} \theta_{h+1}^{T} \phi(s', a')$
is always linear:

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon \qquad \qquad V'' = V_{\mathcal{O}}(\varsigma)$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property

2. Show that our estimators are near-bellman consistent: $\|\theta_h^{\mathsf{T}}\phi - \mathcal{T}_h(\theta_{h+1}^{\mathsf{T}}\phi)\|_{\infty}$ is small

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

- 1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property
- 2. Show that our estimators are near-bellman consistent: $\|\theta_h^{\mathsf{T}}\phi \mathcal{T}_h(\theta_{h+1}^{\mathsf{T}}\phi)\|_{\infty}$ is small
- 3. Near-Bellman consistency implies near optimal performance (s.t. *H* error amplification)

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^T \right] \right)$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Properties of the D-optimal Design:

 $\operatorname{support}(\rho^{\star}) \leq d(d+1)/2$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$ poly(d, In $z = z = x^T$ Properties of the D-optimal Design: $V = \{x: x^{\top}(z^{*})^{\top}x \leq d\}$ $support(\rho^{\star}) \leq d(d+1)/2$ $\max_{y \in \mathcal{X}} y^{\mathsf{T}} \left[\mathbb{E}_{x \sim \rho^{\star}} x x^{\mathsf{T}} \right]^{-1} y \le d$ $\frac{1}{\Sigma} \frac{1}{S} \left(\frac{1}{\Sigma} \text{ ui} \right)^2 \leq d$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\left[\rho^{\star}(x)N\right]$ many copies of x

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\left[\rho^{\star}(x)N\right]$ many copies of x

For each $x \in \mathcal{D}$, query y (noisy measure);

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\left[\rho^{\star}(x)N\right]$ many copies of x

For each $x \in \mathcal{D}$, query y (noisy measure);

The OLS solution $\hat{\theta}$ on \mathcal{D} has the following point-wise guarantee: w/ prob $1 - \delta$

$$\max_{x \in \mathcal{X}} \left| \left\langle \hat{\theta} - \theta^{\star}, x \right\rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\lceil \rho^*(x)N \rceil$ many copies of xFor each $x \in \mathcal{D}$, query y (noisy measure);

The OLS solution $\hat{\theta}$ on \mathcal{D} has the following point-wise guarantee: w/ prob $1 - \delta$ $= \sum_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^{\star}, x \rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$ $\left| (\hat{\theta} - \theta^{\star})^{\mathsf{T}} x \right| \leq \left\| \Lambda^{1/2} (\hat{\theta} - \theta^{\star}) \right\|_{2} \left\| \Lambda^{-1/2} x \right\|_{2}$ $= \sum_{x \in \mathcal{X}} \left\| \Delta^{1/2} (\hat{\theta} - \theta^{\star}) \right\|_{2} \left\| \Lambda^{-1/2} x \right\|_{2}$ $= \sum_{x \in \mathcal{X}} \left\| \Delta^{1/2} (\hat{\theta} - \theta^{\star}) \right\|_{2} \left\| \Lambda^{-1/2} x \right\|_{2}$ $= \sum_{x \in \mathcal{X}} \left\| \Delta^{1/2} (\hat{\theta} - \theta^{\star}) \right\|_{2} \left\| \Lambda^{-1/2} x \right\|_{2}$ Summary so far on OLS & D-optimal Design D-optimal Design $\rho^* \in \Delta(\mathcal{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^T \right] \right)$

Summary so far on OLS & D-optimal Design D-optimal Design $\rho^* \in \Delta(\mathcal{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^T \right] \right)$

D-optimal design allows us to **actively** construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

$$\max_{x \in \mathcal{X}} \left| \left\langle \hat{\theta} - \theta^{\star}, x \right\rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Using D-optimal design to construct \mathcal{D}_h in LSVI Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\} \subseteq \mathbb{R}^4$

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$

Construct \mathcal{D}_h that contains $\lceil \rho(s, a)N \rceil$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, query $y := r(s, a) + V_{h+1}(s'), s' \sim P_h(. | s, a)$

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$

Construct \mathcal{D}_h that contains $\lceil \rho(s, a) N \rceil$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, query $y := r(s, a) + V_{h+1}(s')$, $y' \sim P_h(. | s, a)$

What's the Bayes optimal $\mathbb{E}[y | s, a]$?

= r+ E Vhrils') BC, linens in 0

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$ Construct \mathcal{D}_h that contains $\left[\rho(s,a) N \right]$ many copies of $\phi(s,a)$,

Construct \mathcal{D}_h that contains $\lceil \rho(s, a) N \rceil$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, query $y := r(s, a) + V_{h+1}(s')$, $s' \sim P_h(. | s, a)$

What's the Bayes optimal $\mathbb{E}[y | s, a]$?

OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq \widetilde{O} \left(\frac{Hd}{\sqrt{N}} \right).$$

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N} \right).$$

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N} \right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|_{\infty} \le O\left(H d / \sqrt{N} \right)$$

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N} \right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\left\| Q_{h} - \mathcal{T}_{h} Q_{h+1} \right\|_{\infty} \leq O\left(H d / \sqrt{N} \right)$$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general) $\|Q_h - Q_h^{\star}\|_{\infty} \leq O(H^2 d/\sqrt{N})$

Concluding the proof of LSVI \times

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(H d/\sqrt{N} \right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|_{\infty} \leq O\left(Hd/\sqrt{N}\right)$$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general)

$$\|Q_h - Q_h^{\star}\|_{\infty} \leq O(H^2 d/\sqrt{N})$$

$$\Rightarrow V^{\star} - V^{\hat{\pi}} \leq \widetilde{O}(H^3 d/\sqrt{N}) \leq V^{\star} \leq V^{\star}$$

Outline for Today

2. LSVI in Offline RL

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_h = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_h = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Offline Distribution (e.g., maybe is d^{π_b} for some behavior policy π_b)

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_{h} = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_{h}(\cdot | s, a)$$

Offline Distribution (e.g., maybe is $d^{\pi_{b}}$ for some behavior policy π_{b})

Offline RL is promising for safety critical applications (i.e., learning from logged data for health applications...)

Recall Least-Square Value Iteration

Datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2 \\ \operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array} \right|$ Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

Recall Least-Square Value Iteration

Datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left|\begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s')\right)\right)^2 \\ \operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array}\right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

LSVI directly can directly operate in offline model!

Least-Square Value Iteration Guarantee

Recall
$$\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot | s, a)$$

Least-Square Value Iteration Guarantee

Recall
$$\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot | s, a)$$

Assumptions 1. Full offline data coverage: $\sigma_{\min} \left(\mathbb{E}_{s,a\sim\nu} \phi(s,a) \phi(s,a)^{\top} \right) \geq \kappa$ 2. Linear Bellman completion

`₹ sup V(x)≥c

Least-Square Value Iteration Guarantee

Recall
$$\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot | s, a)$$

Assumptions 1. Full offline data coverage: $\sigma_{\min} \left(\mathbb{E}_{s,a\sim\nu} \phi(s,a) \phi(s,a)^{\top} \right) \geq \kappa$ 2. Linear Bellman completion

Then, with probability at least $1 - \delta$, LSVI return $\hat{\pi}$ with $V^{\star} - V^{\hat{\pi}} \leq \epsilon$, using at most poly $(H, 1/\epsilon, 1/\kappa, d, \ln(1/\delta))$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage => Near-Bellman consistency, i.e., $||Q_h - \mathcal{T}_h Q_{h+1}||_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot | s, a)$, we have $\mathbb{E}_{s,a\sim\nu} \left(\theta_h^{\mathsf{T}}\phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^2 \leq \mathsf{poly}(H, d, 1/N)$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage => Near-Bellman consistency, i.e., $||Q_h - \mathcal{T}_h Q_{h+1}||_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot | s, a)$, we have $\mathbb{E}_{s,a\sim\nu}\left(\theta_{h}^{\mathsf{T}}\phi(s,a) - \mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^{2} \leq \mathsf{poly}(H,d,1/N)$ $\sum_{s=1}^{n} \left| \begin{array}{c} \mathbf{f}_{h} \mathbf{f}_{h}$ $(\partial_n - T_n(\partial_{n-n})) \Sigma^2 \Sigma^2 \phi(sc) = \sigma_{nn}(\Sigma)$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage => Near-Bellman consistency, i.e., $||Q_h - \mathcal{T}_h Q_{h+1}||_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot | s, a)$, we have

 $\mathbb{E}_{s,a\sim\nu}\left(\theta_{h}^{\mathsf{T}}\phi(s,a) - \mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^{2} \leq \mathsf{poly}(H,d,1/N)$

Then with Cauchy-Schwartz, we get $\forall s, a, \left| (\theta_h - \mathcal{T}_h(\theta_{h+1}))^\top \phi(s, a) \right| \leq \|\theta_h - \mathcal{T}_h(\theta_{h+1})\|_{\Sigma} \|\phi(s, a)\|_{\Sigma^{-1}}$

(we will give a HW question on a related topic)

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

 $\| \Lambda^{\frac{1}{2}}(\Theta - \Theta^{*}) \|_{U} = (\Theta - \Theta^{*}) \Lambda(\Theta - \Theta^{*})$ $\sum_{i=1}^{n} \chi_i \chi_i^T$ $= \frac{1}{N} \sum_{i=1}^{2} \left(x_{i}^{T} \mathbf{0} - x_{i}^{T} \mathbf{0}^{T} \right)^{2}$ jese N. $(\tilde{\theta} - \tilde{\theta})^{T} \times \mathcal{E} \left[\left[\tilde{\theta} - \tilde{\theta}^{*} \right] \right] \left[\left[\left[\tilde{\theta} \times 1 \right]_{n-1} \right] \right]$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$\phi(s,a) \mapsto r(s,a) + \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s',a')$$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$\phi(s,a) \mapsto r(s,a) + \max_{a'} \theta_{h+1}^{\top} \phi(s',a')$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\| Q_h - \mathcal{T}_h Q_{h+1} \|_{\infty}$ is small

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$\phi(s,a) \mapsto r(s,a) + \max_{a'} \theta_{h+1}^{\top} \phi(s',a')$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

4. Near-Bellman consistency implies small approximation error of Q_h (holds in general)

$$= \|Q_n - Q_n\| beig small \\ = \|V^T - V^*\| beig small$$

Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP