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Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition
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Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

BC always ensures linear 
regression is realizable:

i.e., our regression target 
 

is always linear:
r(s, a) + &s′ ∼Ph(s,a) max

a′ 

θ⊤
h+1ϕ(s′ , a′ )
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2. LSVI in Offline RL
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Theorem
Theorem: There exists a way to construct datasets , such that 

with probability at least , we have:
{*h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)
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w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

1. How to actively design / construct datasets  via the Generative Model property*h

2. Show that our estimators are near-bellman consistent:  is small∥θ⊤
h ϕ − 0h(θ⊤

h+1ϕ)∥∞

3. Near-Bellman consistency implies near optimal performance (s.t.  error amplification)H
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−1

y ≤ d



Detour: OLS w/ D-optimal Design
Consider a compact space  (without loss of generality, assume )2 ⊂ ℝd span(2) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])



Detour: OLS w/ D-optimal Design
Consider a compact space  (without loss of generality, assume )2 ⊂ ℝd span(2) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of * ⌈ρ⋆(x)N⌉ x



Detour: OLS w/ D-optimal Design
Consider a compact space  (without loss of generality, assume )2 ⊂ ℝd span(2) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of * ⌈ρ⋆(x)N⌉ x

For each , query  (noisy measure);x ∈ * y



Detour: OLS w/ D-optimal Design
Consider a compact space  (without loss of generality, assume )2 ⊂ ℝd span(2) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of * ⌈ρ⋆(x)N⌉ x

For each , query  (noisy measure);x ∈ * y

The OLS solution  on  has the following point-wise guarantee: w/ prob ̂θ * 1 − δ

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N



Detour: OLS w/ D-optimal Design
Consider a compact space  (without loss of generality, assume )2 ⊂ ℝd span(2) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of * ⌈ρ⋆(x)N⌉ x
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The OLS solution  on  has the following point-wise guarantee: w/ prob ̂θ * 1 − δ

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

( ̂θ − θ⋆)⊤x ≤ Λ1/2( ̂θ − θ⋆)
2

Λ−1/2x 2
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Summary so far on OLS & D-optimal Design
D-optimal Design :   ρ⋆ ∈ Δ(2) ρ⋆ = arg max

ρ∈Δ(2)
ln det (&x∼ρ [xx⊤])

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

D-optimal design allows us to actively construct a dataset , 
such that OLS solution is POINT-WISE accurate:

* = {x, y}
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3. Nearly-Bellman consistency implies  is close to  (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)



Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL



Offline Reinforcement Learning



Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:


*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph( ⋅ |s, a)



Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:


*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph( ⋅ |s, a)

Offline Distribution (e.g., maybe is  for 
some behavior policy )

dπb

πb



Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:


*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph( ⋅ |s, a)

Offline Distribution (e.g., maybe is  for 
some behavior policy )

dπb

πb

Offline RL is promising for safety critical applications 

(i.e., learning from logged data for health applications…)
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LSVI directly can directly 
operate in offline model!
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Assumptions 

1. Full offline data coverage: 


2. Linear Bellman completion 
σmin (&s,a∼νϕ(s, a)ϕ(s, a)⊤) ≥ κ

Then, with probability at least , LSVI return  with , using at most 
1 − δ ̂π V⋆ − V ̂π ≤ ϵ
poly (H,1/ϵ,1/κ, d, ln(1/δ))
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The proof for the offline set is almost identical
Key step:  

Linear Bellman completion + Linear Regression w/ full data coverage 

=> Near-Bellman consistency, i.e.,  is small∥Qh − 0hQh+1∥∞

e.g., with N training examples where and we have (s, a) ∼ ν, r = r(s, a), s′ ∼ Ph( ⋅ |s, a),
&s,a∼ν (θ⊤

h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a))2 ≤ poly(H, d,1/N)

∀s, a, (θh − 0h(θh+1))⊤ϕ(s, a) ≤ ∥θh − 0h(θh+1)∥Σ∥ϕ(s, a)∥Σ−1

Then with Cauchy-Schwartz, we get

(we will give a HW question on a related topic)
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Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e.,  viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′ 

θ⊤
h+1ϕ(s′ , a′ )

3. Leverage D-optimal design, we make sure that  is point-wise accurate, which ensures 
near Bellman consistent, i.e.,  is small

θh
Qh − 0hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of  (holds in general)Qh



Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP


