
Learning with Linear Bellman
Completion & Generative Model

 
Wen Sun 

CS 6789: Foundations of Reinforcement Learning

Recap: Linear Bellman Completion
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + &s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Recap: Linear Bellman Completion
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + &s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆

h)⊤ϕ, ∀hIt implies that is linear in :Q⋆
h ϕ

Recap: Linear Bellman Completion
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + &s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆

h)⊤ϕ, ∀hIt implies that is linear in :Q⋆
h ϕ

Captures Tabular MDPs, and Linear Quadratic Regulators

Recap: Linear Bellman Completion
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + &s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆

h)⊤ϕ, ∀hIt implies that is linear in :Q⋆
h ϕ

Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition

Recap: Least-Square Value Iteration

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set VH(s) = 0,∀s

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

Recap: Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

BC always ensures linear
regression is realizable:

i.e., our regression target

is always linear:
r(s, a) + &s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Theorem
Theorem: There exists a way to construct datasets , such that

with probability at least , we have:
{*h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

Theorem
Theorem: There exists a way to construct datasets , such that

with probability at least , we have:
{*h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

1. How to actively design / construct datasets via the Generative Model property*h

Theorem
Theorem: There exists a way to construct datasets , such that

with probability at least , we have:
{*h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

1. How to actively design / construct datasets via the Generative Model property*h

2. Show that our estimators are near-bellman consistent: is small∥θ⊤
h ϕ − 0h(θ⊤

h+1ϕ)∥∞

Theorem
Theorem: There exists a way to construct datasets , such that

with probability at least , we have:
{*h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

1. How to actively design / construct datasets via the Generative Model property*h

2. Show that our estimators are near-bellman consistent: is small∥θ⊤
h ϕ − 0h(θ⊤

h+1ϕ)∥∞

3. Near-Bellman consistency implies near optimal performance (s.t. error amplification)H

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

max
y∈2

y⊤ [&x∼ρ⋆xx⊤]
−1

y ≤ d

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of * ⌈ρ⋆(x)N⌉ x

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of * ⌈ρ⋆(x)N⌉ x

For each , query (noisy measure);x ∈ * y

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of * ⌈ρ⋆(x)N⌉ x

For each , query (noisy measure);x ∈ * y

The OLS solution on has the following point-wise guarantee: w/ prob ̂θ * 1 − δ

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)2 ⊂ ℝd span(2) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max
ρ∈Δ(2)

ln det (&x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of * ⌈ρ⋆(x)N⌉ x

For each , query (noisy measure);x ∈ * y

The OLS solution on has the following point-wise guarantee: w/ prob ̂θ * 1 − δ

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

(̂θ − θ⋆)⊤x ≤ Λ1/2(̂θ − θ⋆)
2

Λ−1/2x 2

Summary so far on OLS & D-optimal Design
D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max

ρ∈Δ(2)
ln det (&x∼ρ [xx⊤])

Summary so far on OLS & D-optimal Design
D-optimal Design : ρ⋆ ∈ Δ(2) ρ⋆ = arg max

ρ∈Δ(2)
ln det (&x∼ρ [xx⊤])

max
x∈2

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

D-optimal design allows us to actively construct a dataset ,
such that OLS solution is POINT-WISE accurate:

* = {x, y}

Using D-optimal design to construct in LSVI*h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

Using D-optimal design to construct in LSVI*h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (&s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])

Using D-optimal design to construct in LSVI*h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (&s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])
Construct that contains many copies of ,

for each , query

*h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′), s′ ∼ Ph(. |s, a)

Using D-optimal design to construct in LSVI*h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (&s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])
Construct that contains many copies of ,

for each , query

*h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′), s′ ∼ Ph(. |s, a)

What’s the Bayes optimal &[y |s, a]?

Using D-optimal design to construct in LSVI*h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (&s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])
Construct that contains many copies of ,

for each , query

*h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′), s′ ∼ Ph(. |s, a)

OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a) ≤ Õ (Hd/ N) .

What’s the Bayes optimal &[y |s, a]?

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 0hQh+1 ∞
≤ O (Hd/ N)

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 0hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies is close to (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 0hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies is close to (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Offline Reinforcement Learning

Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:

*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:

*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Offline Distribution (e.g., maybe is for
some behavior policy)

dπb

πb

Offline Reinforcement Learning
Learner cannot interact with the environment, instead, learner is given static datasets:

*h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Offline Distribution (e.g., maybe is for
some behavior policy)

dπb

πb

Offline RL is promising for safety critical applications

(i.e., learning from logged data for health applications…)

Recall Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

Recall Least-Square Value Iteration
Datasets , w/ *0, …, *H−1

*h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

*h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

LSVI directly can directly
operate in offline model!

Least-Square Value Iteration Guarantee
Recall *h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Least-Square Value Iteration Guarantee
Recall *h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Assumptions

1. Full offline data coverage:

2. Linear Bellman completion
σmin (&s,a∼νϕ(s, a)ϕ(s, a)⊤) ≥ κ

Least-Square Value Iteration Guarantee
Recall *h = {s, a, r, s′ }, s, a ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Assumptions

1. Full offline data coverage:

2. Linear Bellman completion
σmin (&s,a∼νϕ(s, a)ϕ(s, a)⊤) ≥ κ

Then, with probability at least , LSVI return with , using at most
1 − δ ̂π V⋆ − V ̂π ≤ ϵ
poly (H,1/ϵ,1/κ, d, ln(1/δ))

The proof for the offline set is almost identical
Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., is small∥Qh − 0hQh+1∥∞

The proof for the offline set is almost identical
Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., is small∥Qh − 0hQh+1∥∞

e.g., with N training examples where and we have (s, a) ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a),
&s,a∼ν (θ⊤

h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a))2 ≤ poly(H, d,1/N)

The proof for the offline set is almost identical
Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., is small∥Qh − 0hQh+1∥∞

e.g., with N training examples where and we have (s, a) ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a),
&s,a∼ν (θ⊤

h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a))2 ≤ poly(H, d,1/N)

∀s, a, (θh − 0h(θh+1))⊤ϕ(s, a) ≤ ∥θh − 0h(θh+1)∥Σ∥ϕ(s, a)∥Σ−1

Then with Cauchy-Schwartz, we get

The proof for the offline set is almost identical
Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., is small∥Qh − 0hQh+1∥∞

e.g., with N training examples where and we have (s, a) ∼ ν, r = r(s, a), s′ ∼ Ph(⋅ |s, a),
&s,a∼ν (θ⊤

h ϕ(s, a) − 0h(θh+1)⊤ϕ(s, a))2 ≤ poly(H, d,1/N)

∀s, a, (θh − 0h(θh+1))⊤ϕ(s, a) ≤ ∥θh − 0h(θh+1)∥Σ∥ϕ(s, a)∥Σ−1

Then with Cauchy-Schwartz, we get

(we will give a HW question on a related topic)

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

3. Leverage D-optimal design, we make sure that is point-wise accurate, which ensures
near Bellman consistent, i.e., is small

θh
Qh − 0hQh+1 ∞

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

3. Leverage D-optimal design, we make sure that is point-wise accurate, which ensures
near Bellman consistent, i.e., is small

θh
Qh − 0hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of (holds in general)Qh

Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP

