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Announcements

1. HW1 is out. 

2. Please sign up reading materials (see course website for the link)

3. Wen’s office hour: every Friday 2-3 pm
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Algorithm:

1. For each  i.i.d sample  next states, (s, a), N s′ i ∼ P( ⋅ |s, a)

2. For each  construct (s, a, s′ ), ̂P(s′ |s, a) =
∑N

i=1 1(s′ i = s′ )

N

3. Find optimal policy under , i.e., ̂P ̂π⋆ = PI( ̂P, r)
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Recap: Generative model + Tabular 

Result: 

When , then w/ prob , we will learn a , such that N ≥
ln(SA/δ)
ϵ2(1 − γ)6

1 − δ ̂π⋆ ∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to )1/(1 − γ)5

2. Remarkably, our learned model  in this case is not necessarily accurate at all̂P



Today: Generative model + linear function 
approximation 

Key question: what happens when state-action space is large or even continuous?



Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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Compute  via DP (backward in time):π⋆

1. set , Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a), V⋆

H−1(s) = max
a

Q⋆
H−1(s, a)

2. At , set , h Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′ )
π⋆

h (s) = arg max
a

Q⋆
h (s, a), V⋆

h (s) = max
a

Q⋆
h (s, a)
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Recall Error amplification

2. If nearly Bellman-consistent, i.e., ∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification: 

,  =>  ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality:  then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Similar results hold in finite horizon, with the effective horizon 
 being replaced by H1/(1 − γ)
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Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′ 

w⊤ϕ(s′ , a′ ), ∀s, a

This is a function of , and it’s linear in (s, a) ϕ(s, a)

Notation: we will denote such θ := 𝒯h(w),  where 𝒯h : ℝd ↦ ℝd
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∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′ 

w⊤ϕ(s′ , a′ ), ∀s, a

Q⋆
h = (θ⋆)⊤ϕ, ∀h

It implies that  is linear in :Q⋆
h ϕ

Why?

reward  is linear in , i.e.,  is linear, 

now recursively show that  is linear 
r(s, a) ϕ Q⋆

H−1(s, a)
Q⋆

h
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It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set  to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph( ⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Claim:  is a linear function in r(s, a) + 𝔼s′ ∼P(s,a) max
a′ 

wTϕ(s′ , a′ ) ϕ

( we will see the details when we get to the LQR lectures )
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Why this is a strong assumption?
Assume the given feature  has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′ 

w⊤ϕ(s′ , a′ ), ∀s, a
Adding additional elements to  can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph( ⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]
⊤

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), 
adding elements to features is ok!
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Can we just assume  being linear?Q⋆

No! There are lower bounds (even under generative model):

i.e., polynomial bound  is not possible for linear  (Ch5 AJKS)poly(d, H) Q⋆

For any RL algorithm, there exist MDPs with  is linear in  (known), 
such that in order to find a policy  with , it requires at 

least  many samples!

Q⋆
h (s, a) ϕ(s, a)

π Vπ(s1) ≥ V⋆(s1) − 0.05
min{2d,2H}

(We will work on a slightly different result later when we talk about online learning in MDPs)



What we will show today:

1. Generative Model 

(i.e., we can reset system to any , query )(s, a) r(s, a), s′ ∼ P( . |s, a)

+
2. Linear Bellman Completion

= 
Sample efficient Learning 


(poly time)



Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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If , and linear regression 
succeeds (e.g., ),
Vh+1 ≈ V⋆

h+1
θh ≈ 𝒯h(θh+1)

Then we should hope θ⊤
h ϕ(s, a) ≈ Q⋆

h (s, a)
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Sample complexity of LSVI

Theorem: There exists a way to construct datasets , such that 
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)
Plans: (1) OLS and D-optimal design; (2) construct  using D-optimal 

design; (3) transfer regression error to 
𝒟h

∥θ⊤
h ϕ − Q⋆

h ∥∞
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Consider a dataset , where   are independent 

with  assume  is full rank; 

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

OLS : ̂θ = arg min
θ

N

∑
i=1

(θ⊤xi − yi)2

Standard OLS guarantee: with probability at least , we have:
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )
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Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict 
well here! Let’s actively design a diverse dataset !


(D-optimal Design)
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Consider a compact space  (without loss of generality, assume )𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

max
y∈𝒳

y⊤ [𝔼x∼ρ⋆xx⊤]
−1

y ≤ d
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Consider a compact space  (without loss of generality, assume )𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query  (noisy measure);x ∈ 𝒟 y

The OLS solution  on  has the following point-wise guarantee: w/ prob ̂θ 𝒟 1 − δ

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N
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Summary so far on OLS & D-optimal Design

D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N

D-optimal design allows us to actively construct a dataset , 
such that OLS solution is POINT-WISE accurate:

𝒟 = {x, y}
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for each , query 

𝒟h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′ ), s′ ∼ Ph( . |s, a)

OLS /w D-optimal design implies that  is point-wise accurate:̂θh

max
s,a

θ⊤
h ϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ Õ (Hd/ N) .
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Concluding the proof of LSVI
1. OLS /w D-optimal design implies that  is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator  is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies  is close to  (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)
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Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e.,  viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′ 

θ⊤
h+1ϕ(s′ , a′ )

3. Leverage D-optimal design, we make sure that  is point-wise accurate, which ensures 
near Bellman consistent, i.e.,  is small

θh
Qh − 𝒯hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of  (holds in general)Qh


