Learning with Linear Bellman Completion \& Generative Model

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Announcements

1. HW1 is out.
2. Please sign up reading materials (see course website for the link)
3. Wen's office hour: every Friday 2-3 pm

Recap: Generative model + Tabular

1. Generative model assumption:

$$
\text { At any }(s, a), \text { we can sample } s^{\prime} \sim P(\cdot \mid s, a)
$$

Recap: Generative model + Tabular

1. Generative model assumption:

$$
\text { At any }(s, a), \text { we can sample } s^{\prime} \sim P(\cdot \mid s, a)
$$

Q: why this could be a strong assumption in practice?

Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s_{i}^{\prime} \sim P(\cdot \mid s, a)$

Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s_{i}^{\prime} \sim P(\cdot \mid s, a)$
2. For each (s, a, s^{\prime}), construct $\hat{P}\left(s^{\prime} \mid s, a\right)=\frac{\sum_{i=1}^{N} \mathbf{1}\left(s_{i}^{\prime}=s^{\prime}\right)}{N}$

Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s_{i}^{\prime} \sim P(\cdot \mid s, a)$
2. For each $\left(s, a, s^{\prime}\right)$, construct $\hat{P}\left(s^{\prime} \mid s, a\right)=\frac{\sum_{i=1}^{N} \mathbf{1}\left(s_{i}^{\prime}=s^{\prime}\right)}{N}$
3. Find optimal policy under \hat{P}, i.e., $\hat{\pi}^{\star}=\operatorname{PI}(\hat{P}, r)$

Recap: Generative model + Tabular

Result:

When $N \geq \frac{\ln (S A / \delta)}{\epsilon^{2}(1-\gamma)^{6}}$, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^{\star}$, such that $\left\|Q^{\star}-Q^{\hat{\pi}^{\star}}\right\|_{\infty} \leq \epsilon$

Remarks:

Recap: Generative model + Tabular

Result:

When $N \geq \frac{\ln (S A / \delta)}{\epsilon^{2}(1-\gamma)^{6}}$, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^{\star}$, such that $\left\|Q^{\star}-Q^{\hat{\pi}^{\star}}\right\|_{\infty} \leq \epsilon$

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $\left.1 /(1-\gamma)^{5}\right)$

Recap: Generative model + Tabular

Result:

When $N \geq \frac{\ln (S A / \delta)}{\epsilon^{2}(1-\gamma)^{6}}$, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^{\star}$, such that $\left\|Q^{\star}-Q^{\hat{\pi}^{\star}}\right\|_{\infty} \leq \epsilon$

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $\left.1 /(1-\gamma)^{5}\right)$
2. Remarkably, our learned model \hat{P} in this case is not necessarily accurate at all

Today: Generative model + linear function approximation

Key question: what happens when state-action space is large or even continuous?

Outline:

1. The Linear Bellman Completion Condition
2. The Least Square Value Iteration Algorithm
3. Guarantee and the proof sketch

Finite Horizon MDPs and DP

$$
\begin{gathered}
\left.\mathscr{M}=\left\{S, A, P_{h}, r, H\right\} \quad H \in Q Z\right\} \\
P_{h}: S \times A \mapsto \Delta(S), \quad r: S \times A \rightarrow[0,1]
\end{gathered}
$$

Compute π^{\star} via DP (backward in time):

Finite Horizon MDPs and DP

$$
\begin{gathered}
\mathscr{M}=\left\{S, A, P_{h}, r, H\right\} \\
P_{h}: S \times A \mapsto \Delta(S), \quad r: S \times A \rightarrow[0,1]
\end{gathered}
$$

Compute π^{\star} via DP (backward in time):

1. set $Q_{H-1}^{\star}(s, a)=r(s, a), \pi_{H-1}^{\star}(s)=\arg \max _{a} Q_{H-1}^{\star}(s, a), V_{H-1}^{\star}(s)=\max _{a} Q_{H-1}^{\star}(s, a)$

Finite Horizon MDPs and DP

$$
\begin{gathered}
\mathscr{M}=\left\{S, A, P_{h}, r, H\right\} \\
P_{h}: S \times A \mapsto \Delta(S), \quad r: S \times A \rightarrow[0,1]
\end{gathered}
$$

Compute π^{\star} via DP (backward in time):

1. set $Q_{H-1}^{\star}(s, a)=r(s, a), \pi_{H-1}^{\star}(s)=\arg \max _{a} Q_{H-1}^{\star}(s, a), V_{H-1}^{\star}(s)=\max _{a} Q_{H-1}^{\star}(s, a)$

$$
\begin{aligned}
& \text { 2. At } h \text {, set } Q_{h}^{\star}(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)} V_{h+1}^{\star}\left(s^{\prime}\right), \\
& \pi_{h}^{\star}(s)=\arg \max _{a} Q_{h}^{\star}(s, a), V_{h}^{\star}(s)=\max _{a} Q_{h}^{\star}(s, a)
\end{aligned}
$$

Recall Error amplification

1. Bellman optimality: $\|Q-\mathscr{T} Q\|_{\infty}=0$, then $Q=Q^{\star}$

Bell-operetor

$$
(T Q)(s a)=r(s a)+\gamma \sum_{s p^{2} p(s)}{ }^{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
$$

Recall Error amplification

1. Bellman optimality: $\|Q-\mathscr{T} Q\|_{\infty}=0$, then $Q=Q^{\star}$
2. If nearly Bellman-consistent, i.e., $\|Q-\mathscr{T} Q\|_{\infty} \leq \epsilon$,

Recall Error amplification

1. Bellman optimality: $\|Q-\mathscr{T} Q\|_{\infty}=0$, then $Q=Q^{\star}$
2. If nearly Bellman-consistent, i.e., $\|Q-\mathscr{T} Q\|_{\infty} \leq \epsilon$,

Then we have error amplification:

$$
\left\|Q-Q^{\star}\right\|_{\infty} \leq \epsilon /(1-\gamma), \Rightarrow y^{\star}-V^{\hat{\pi}} \leq \epsilon /(1-\gamma)^{2}
$$

Recall Error amplification

1. Bellman optimality: $\|Q-\mathscr{T} Q\|_{\infty}=0$, then $Q=Q^{\star}$
2. If nearly Bellman-consistent, i.e., $\|Q-\mathscr{T} Q\|_{\infty} \leq \epsilon$,

> Then we have error amplification:

$$
\left\|Q-Q^{\star}\right\|_{\infty} \leq \epsilon /(1-\gamma), \Rightarrow V^{\star}-V^{\hat{\pi}} \leq \epsilon /(1-\gamma)^{2}
$$

Similar results hold in finite horizon, with the effective horizon $1 /(1-\gamma)$ being replaced by H

Linear Bellman Completion

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:
$\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a$

Linear Bellman Completion

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:
$\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a$
This is a function of (s, a), and it's linear in $\phi(s, a)$

Linear Bellman Completion

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:
$\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a$
This is a function of (s, a), and it's linear in $\phi(s, a)$ Notation: we will denote such $\theta:=\mathscr{T}_{h}(w)$, where $\mathscr{T}_{h}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$

What does Linear Bellman completion imply

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

What does Linear Bellman completion imply

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:

$$
\begin{gathered}
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a \\
\text { It implies that } Q_{h}^{\star} \text { is linear in } \phi: \quad \omega=\rightarrow \\
Q_{h}^{\star}=\left(\theta^{\star}\right)^{\top} \phi, \forall h
\end{gathered}
$$

Why?

What does Linear Bellman completion imply

Given feature ϕ, take any linear function $w^{\top} \phi(s, a)$:

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

It implies that Q_{h}^{\star} is linear in ϕ :

$$
Q_{h}^{\star}=\left(\theta^{\star}\right)^{\top} \phi, \forall h
$$

Why?
reward $r(s, a)$ is linear in ϕ, i.e., $Q_{H-1}^{\star}(s, a)$ is linear, now recursively show that Q_{h}^{\star} is linear

Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in $\mathbb{R}^{S A}$, i.e., $\phi(s, a)=[0, \ldots, 0,1,0, \ldots 0]^{\top}$

Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in $\mathbb{R}^{S A}$, i.e., $\phi(s, a)=[0, \ldots, 0,1,0, \ldots .0]^{\top}$
2. Linear System with Quadratic feature ϕ

$$
s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(\left(A s+b a, \sigma^{2} I\right)\right.
$$

Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in $\mathbb{R}^{S A}$, i.e., $\phi(s, a)=[0, \ldots, 0,1,0, \ldots 0]^{\top}$
2. Linear System with Quadratic feature ϕ

$$
\begin{gathered}
s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right) \\
\phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1\right]^{\top}
\end{gathered}
$$

Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in $\mathbb{R}^{S A}$, i.e., $\phi(s, a)=[0, \ldots, 0,1,0, \ldots 0]^{\top}$
2. Linear System with Quadratic feature ϕ

$$
\begin{gathered}
s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right) \\
\phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1\right]^{\top}
\end{gathered}
$$

Claim: $r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} \max ^{\prime} w^{T} \phi\left(s^{\prime}, a^{\prime}\right)$ is a linear function in ϕ

Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in $\mathbb{R}^{S A}$, i.e., $\phi(s, a)=[0, \ldots, 0,1,0, \ldots 0]^{\top}$
2. Linear System with Quadratic feature ϕ

$$
\begin{array}{r}
s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right) \\
\phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1\right]^{\top}
\end{array}
$$

Claim: $r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} \max _{a^{\prime}} w^{T} \phi\left(s^{\prime}, a^{\prime}\right)$ is a linear function in ϕ
(we will see the details when we get to the LQR lectures)

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$ Adding additional elements to ϕ can break the condition!

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

Adding additional elements to ϕ can break the condition!

$$
s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right)
$$

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

Adding additional elements to ϕ can break the condition!

$$
\begin{aligned}
& s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} T\right) \\
& \phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1, \mathbf{s}_{\mathbf{1}}^{3}\right]^{\top}
\end{aligned}
$$

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$

Adding additional elements to ϕ can break the condition!

$$
\begin{aligned}
& s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right) \\
& \phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1, \mathbf{s}_{\mathbf{1}}^{3}\right]^{\top}
\end{aligned}
$$

Linear Bellman completion breaks!

Why this is a strong assumption?

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$
\forall h, \exists \theta \in \mathbb{R}^{d}, s . t ., \theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right), \forall s, a
$$ Adding additional elements to ϕ can break the condition!

$$
\begin{aligned}
& s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot \mid s, a)=\mathcal{N}\left(A s+b a, \sigma^{2} I\right) \\
& \phi(s, a)=\left[s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1} s_{2}, s_{1} a, s_{2} a, a, a^{2}, 1, \mathbf{s}_{\mathbf{1}}^{3}\right]^{\top}
\end{aligned}
$$

Linear Bellman completion breaks!
This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_{h}^{\star}(s, a)$ is linear in $\phi(s, a)$ (known), such that in order to find a policy π with $V^{\pi}\left(s_{1}\right) \geq V^{\star}\left(s_{1}\right)-0.05$, it requires at least $\min \left\{2^{d}, 2^{H}\right\}$ many samples!

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_{h}^{\star}(s, a)$ is linear in $\phi(s, a)$ (known), such that in order to find a policy π with $V^{\pi}\left(s_{1}\right) \geq V^{\star}\left(s_{1}\right)-0.05$, it requires at least $\min \left\{2^{d}, 2^{H}\right\}$ many samples!
i.e., polynomial bound poly (d, H) is not possible for linear Q^{\star} (Ch5 AJKS)

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_{h}^{\star}(s, a)$ is linear in $\phi(s, a)$ (known), such that in order to find a policy π with $V^{\pi}\left(s_{1}\right) \geq V^{\star}\left(s_{1}\right)-0.05$, it requires at least $\min \left\{2^{d}, 2^{H}\right\}$ many samples!
i.e., polynomial bound poly (d, H) is not possible for linear Q^{\star} (Ch5 AJKS)
(We will work on a slightly different result later when we talk about online learning in MDPs)

What we will show today:

1. Generative Model
(i.e., we can reset system to any (s, a), query $r(s, a), s^{\prime} \sim P(. \mid s, a)$)

2. Linear Bellman Completion
=

Sample efficient Learning
(poly time)

Outline:

1. The Linear Bellman Completion Condition
2. Learning: The Least Square Value Iteration Algorithm
3. Guarantee and the proof sketch

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$
Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}$, w/

$$
D_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)
$$

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$
Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}, \mathrm{w} /$

$$
\mathscr{D}_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)
$$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$

$$
\text { Set } V_{H}(s)=0, \forall s
$$

Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}$, w/

$$
\mathscr{D}_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)
$$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$

Set $V_{H}(s)=0, \forall s$
For $h=H-1$ to 0 :

$$
\theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2}
$$

Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}$, w/

$$
\mathscr{D}_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)
$$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$

Set $V_{H}(s)=0, \forall s$
For $\mathrm{h}=\mathrm{H}-1$ to 0 :
$\theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2}$
Set $V_{h}(s):=\max \theta_{h}^{\top} \phi(s, a), \forall s$

Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}$, w/ $\mathscr{D}_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

LSVI: Least-Square Value Iteration

Recall linear bellman-completion implies $Q_{h}^{\star}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \forall s, a, h$

Set $V_{H}(s)=0, \forall s$
For $\mathrm{h}=\mathrm{H}-1$ to 0 :

$$
\theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2}
$$

Set $V_{h}(s):=\max \theta_{h}^{\top} \phi(s, a), \forall s$

Given datasets $\mathscr{D}_{0}, \ldots, \mathscr{D}_{H-1}$, w/

$$
\mathscr{D}_{h}=\left\{s, a, r, s^{\prime}\right\}, r=r(s, a), s^{\prime} \sim P_{h}(\cdot \mid s, a)
$$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

Return $\hat{\pi}_{h}(s)=\arg \max \theta_{h}^{\top} \phi(s, a), \forall h$

Set $V_{H}(s)=0, \forall s$
Why LSVI may work?

When we do linear regression at step h :

$$
x:=\phi(s, a), \quad y:=r+V_{h+1}\left(s^{\prime}\right)
$$

Furtive

For $\mathrm{h}=\mathrm{H}-1$ to 0 :

$$
\theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2}
$$

Set $V_{h}(s):=\max _{a} \theta_{h}^{\top} \phi(s, a), \forall s$
Return $\hat{\pi}_{h}(s)=\arg \max _{a} \theta_{h}^{\top} \phi(s, a), \forall h$

Why LSVI may work?

When we do linear regression at step h :

$$
x:=\phi(s, a), \quad y:=r+V_{h+1}\left(s^{\prime}\right)
$$

We note that:
$\mathbb{E}[y \mid x]=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} \theta_{h+1}^{\top} \phi\left(s^{\prime}, a^{\prime}\right)$

Set $V_{H}(s)=0, \forall s$
For $\mathrm{h}=\mathrm{H}-1$ to 0 :

$$
\begin{aligned}
& \theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2} \\
& \text { Set } V_{h}(s):=\max _{a} \theta_{h}^{\top} \phi(s, a), \forall s
\end{aligned}
$$

Return $\hat{\pi}_{h}(s)=\arg \max \theta_{h}^{\top} \phi(s, a), \forall h$

Why LSVI may work?

When we do linear regression at step h :

$$
x:=\phi(s, a), \quad y:=r+V_{h+1}\left(s^{\prime}\right)
$$

We note that:
$\mathbb{E}[y \mid x]=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} \theta_{h+1}^{\top} \phi\left(s^{\prime}, a^{\prime}\right)$ $\mathscr{T}_{h}\left(\theta_{h+1}\right)^{\top} \phi(s, a)$ due to Linear BC
i.e., our regression target is indeed linear in ϕ, and it is close to Q_{h}^{\star} if

$$
V_{h+1} \approx V_{h+1}^{\star}
$$

Why LSVI may work?

When we do linear regression at step h :

$$
x:=\phi(s, a), \quad y:=r+V_{h+1}\left(s^{\prime}\right)
$$

We note that:
$\mathbb{E}[y \mid x]=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} \theta_{h+1}^{\top} \phi\left(s^{\prime}, a^{\prime}\right)$

$$
\mathscr{T}_{h}\left(\theta_{h+1}\right)^{\top} \phi(s, a) \text { due to Linear BC }
$$

i.e., our regression target is indeed linear in ϕ, and it is close to Q_{h}^{\star} if

$$
V_{h+1} \approx V_{h+1}^{\star}
$$

Set $V_{H}(s)=0, \forall s$
For $\mathrm{h}=\mathrm{H}-1$ to 0 :

$$
\begin{aligned}
& \theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2} \\
& \text { Set } V_{h}(s):=\max _{a} \theta_{h}^{\top} \phi(s, a), \forall s
\end{aligned}
$$

Return $\hat{\pi}_{h}(s)=\arg \max \theta_{h}^{\top} \phi(s, a), \forall h$
If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_{h} \approx \mathscr{T}_{h}\left(\theta_{h+1}\right)$),

Why LSVI may work?

When we do linear regression at step h :

$$
x:=\phi(s, a), \quad y:=r+V_{h+1}\left(s^{\prime}\right)
$$

We note that:
$\mathbb{E}[y \mid x]=r(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(s, a)} \max _{a^{\prime}} \theta_{h+1}^{\top} \phi\left(s^{\prime}, a^{\prime}\right)$

$$
\mathscr{T}_{h}\left(\theta_{h+1}\right)^{\top} \phi(s, a) \text { due to Linear BC }
$$

i.e., our regression target is indeed linear in ϕ, and it is close to Q_{h}^{\star} if

$$
V_{h+1} \approx V_{h+1}^{\star}
$$

Set $V_{H}(s)=0, \forall s$

For $\mathrm{h}=\mathrm{H}-1$ to 0 :
$\theta_{h}=\arg \min _{\theta} \sum_{\mathscr{D}_{h}}\left(\theta^{T} \phi(s, a)-\left(r+V_{h+1}\left(s^{\prime}\right)\right)\right)^{2}$ Set $V_{h}(s):=\max \theta_{h}^{\top} \phi(s, a), \forall s$

Return $\hat{\pi}_{h}(s)=\arg \max \theta_{h}^{\top} \phi(s, a), \forall h$
If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_{h} \approx \mathscr{T}_{h}\left(\theta_{h+1}\right)$),
Then we should hope $\theta_{h}^{\top} \phi(s, a) \approx Q_{h}^{\star}(s, a)$

Outline:

1. The Linear Bellman Completion Condition
2. Learning: The Least Square Value Iteration Algorithm
3. Guarantee and the proof sketch

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\left\{\mathscr{D}_{h}\right\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$
V^{\hat{\pi}}-V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^{2}+H^{6} d^{2} / \epsilon^{2}\right)$

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\left\{\mathscr{D}_{h}\right\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$
V^{\hat{\pi}}-V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^{2}+H^{6} d^{2} / \epsilon^{2}\right)$
Plans: (1) OLS and D-optimal design; (2) construct \mathscr{D}_{h} using D-optimal design; (3) transfer regression error to $\left\|\theta_{h}^{\top} \phi-Q_{h}^{\star}\right\|_{\infty}$

Detour: Ordinary Linear Squares

Consider a dataset $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$, where $y_{i}=\left(\theta^{\star}\right)^{\top} x_{i}+\epsilon_{i}, \quad \mathbb{E}\left[\epsilon_{i} \mid x_{i}\right]=0, \epsilon_{i}$ are independent

$$
\text { with }\left|\epsilon_{i}\right| \leq \sigma \text {, assume } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N \text { is full rank; }
$$

Detour: Ordinary Linear Squares

Consider a dataset $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$, where $y_{i}=\left(\theta^{\star}\right)^{\top} x_{i}+\epsilon_{i}, \quad \mathbb{E}\left[\epsilon_{i} \mid x_{i}\right]=0, \epsilon_{i}$ are independent
with $\left|\epsilon_{i}\right| \leq \sigma$, assume $\Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N$ is full rank;

$$
\text { OLS }: \hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{N}\left(\theta^{\top} x_{i}-y_{i}\right)^{2}
$$

Detour: Ordinary Linear Squares

Consider a dataset $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$, where $y_{i}=\left(\theta^{\star}\right)^{\top} x_{i}+\epsilon_{i}, \quad \mathbb{E}\left[\epsilon_{i} \mid x_{i}\right]=0, \epsilon_{i}$ are independent with $\left|\epsilon_{i}\right| \leq \sigma$, assume $\Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N$ is full rank;

$$
\text { OLS }: \hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{N}\left(\theta^{\top} x_{i}-y_{i}\right)^{2}
$$

Standard OLS guarantee: with probability at least $1-\delta$, we have:

$$
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
$$

Detour: Issues in Ordinary Linear Squares

$$
\begin{array}{lc}
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N ; \quad \text { With probability at least } 1-\delta: \\
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
\end{array}
$$

Detour: Issues in Ordinary Linear Squares

$$
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N
$$

With probability at least $1-\delta$:

$$
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
$$

If the test point x is not covered by the training data, i.e. $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^{\top} x$ is close to $\left(\theta^{\star}\right)^{\top} x$

Detour: Issues in Ordinary Linear Squares

$$
\begin{array}{lc}
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N ; \quad \text { With probability at least } 1-\delta: \\
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
\end{array}
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^{\top} x$ is close to $\left(\theta^{\star}\right)^{\top} x$

Detour: Issues in Ordinary Linear Squares

$$
\begin{array}{lc}
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N ; \quad \text { With probability at least } 1-\delta \text { : } \\
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
\end{array}
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^{\top} x$ is close to $\left(\theta^{\star}\right)^{\top} x$

Detour: Issues in Ordinary Linear Squares

$$
\begin{array}{lc}
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N ; \quad \text { With probability at least } 1-\delta: \\
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
\end{array}
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^{\top} x$ is close to $\left(\theta^{\star}\right)^{\top} x$

Detour: Issues in Ordinary Linear Squares

$$
\text { Recall } \Lambda=\sum_{i=1}^{N} x_{i} x_{i}^{\top} / N
$$

With probability at least $1-\delta$:

$$
\left(\hat{\theta}-\theta^{\star}\right)^{\top} \Lambda\left(\hat{\theta}-\theta^{\star}\right) \leq O\left(\frac{\sigma^{2} d \ln (1 / \delta)}{N}\right)
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^{\top} x$ is close to $\left(\theta^{\star}\right)^{\top} x$

Let's actively design a diverse dataset !
(D-optimal Design)

Detour: D-optimal Design

Consider a compact space $\mathscr{X} \subset \mathbb{R}^{d}$ (without loss of generality, assume $\operatorname{span}(\mathcal{X})=\mathbb{R}^{d}$)

Detour: D-optimal Design

Consider a compact space $\mathscr{X} \subset \mathbb{R}^{d}$ (without loss of generality, assume $\operatorname{span}(\mathcal{X})=\mathbb{R}^{d}$)
D-optimal Design $\rho^{\star} \in \Delta(\mathscr{X}): \rho^{\star}=\arg \max _{\rho \in \Delta(X)} \ln \operatorname{det}\left(\mathbb{E}_{x \sim \rho}\left[x x^{\top}\right]\right)$

Detour: D-optimal Design

Consider a compact space $\mathscr{X} \subset \mathbb{R}^{d}$ (without loss of generality, assume $\operatorname{span}(\mathcal{X})=\mathbb{R}^{d}$)

$$
\text { D-optimal Design } \rho^{\star} \in \Delta(X): \quad \rho^{\star}=\arg \max _{\rho \in \Delta(X)} \ln \operatorname{det}\left(\mathbb{E}_{x \sim \rho}\left[x x^{\top}\right]\right)
$$

Properties of the D-optimal Design:

$$
\operatorname{support}\left(\rho^{\star}\right) \leq d(d+1) / 2
$$

Detour: D-optimal Design

Consider a compact space $\mathscr{X} \subset \mathbb{R}^{d}$ (without loss of generality, assume $\operatorname{span}(\mathcal{X})=\mathbb{R}^{d}$)

$$
\text { D-optimal Design } \rho^{\star} \in \Delta(\mathscr{X}): \quad \rho^{\star}=\arg \max _{\rho \in \Delta(X)} \ln \operatorname{det}\left(\mathbb{E}_{x \sim \rho}\left[x x^{\top}\right]\right)
$$

Properties of the D-optimal Design:

$$
\operatorname{support}\left(\rho^{\star}\right) \leq d(d+1) / 2
$$

$$
\max _{y \in \mathcal{X}} y^{\top} \underbrace{\left[\mathbb{E}_{x \sim \star} x x^{\top}\right.}]^{-1} y \leq d
$$

