Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning



Announcements

1. HW1 is out.
2. Please sign up reading materials (see course website for the link)

3. Wen'’s office hour: every Friday 2-3 pm



Recap: Generative model + Tabular

1. Generative model assumption:

At any (s,a), we can sample s’ ~ P( - |s,a)
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1. Generative model assumption:

At any (s,a), we can sample s’ ~ P( - |s,a)

Q: why this could be a strong assumption in practice?
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Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, s ~ P( - |s, a)

>V s =)
N

2. For each (s, a, s’), construct }A’(s’l S,a) =

3. Find optimal policy under P, i.e., #* = PI(P, r)



Recap: Generative model + Tabular

Result:

In(SA/6) | - N -
When N > =)0 then w/ prob 1 — 9, we will learn a 7, such that ||Q™* — Q" ||, L €
€L =7

Remarks:
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Recap: Generative model + Tabular

Result:
In(SA/0) . ok N -
When N > 0= )6 then w/ prob 1 — 9, we will learn a 7™, such that ||Q™ — 0" ||, L €
€L =7
Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes itto 1/(1 — y)s)

2. Remarkably, our learned model P in this case is not necessarily accurate at all



Today: Generative model + linear function
approximation

Key question: what happens when state-action space is large or even continuous?



Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value lteration Algorithm

3. Guarantee and the proof sketch



Finite Horizon MDPs and DP

M = {S,A,P,,r,H}
P,:SXA— AES), r:SxA-10,1]

Compute 7* via DP (backward in time):
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Finite Horizon MDPs and DP

— {S,A,Ph,l’,H}
P,: SXA— A, r:SxA-[0,1]

Compute z* via DP (backward in time):
1.set Q)_ (s, a) = r(s,a), m;;_,(s) = argmax Q;_(s,a), V;,_,(s) = max Q7 _,(s, a)

2. At h, set Q) (s, a) = r(s,a) + Eyp (5.0 V. (s,

m(s) = arg mjx Qx(s,a), V) (s) = mle Q. (s, a)
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Recall Error amplification

1. Bellman optimality: ||Q — T Q|| = 0, then Q = O™

2. If nearly Bellman-consistent, i.e., ||Q — I Q|| , L €,

Then we have error amplification:

10— 0 |l < e/(1—y), => V¥ = Vi< e/l —y)?

Similar results hold in finite horizon, with the effective horizon
1/(1 — y) being replaced by H



Linear Bellman Completion

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 e R% s .t ., QTq/)(S, a) =r(s,a) + [ES,NPh(S’a) max WT¢(S’, a’),Vs,a
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Linear Bellman Completion

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 e R% s .t ., QTgb(s, a) 5 r(s,a) + [ES,NPh(S,a) max WT¢(S’, a)Vs,a

This is a function of (s, a), and it’s linear in ¢ (s, a)

Notation: we will denote such 6 := J,(w), where 7, : RY —» R
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What does Linear Bellman completion imply

Given feature ¢, take any linear function w' ¢(s, a):

Vh,30 e R% s .t ., ¢9Tqb(s, a)=r(s,a) + [ES,NPh(S’a) max WTgb(S’, a),Vs,a
It implies that Q" is linear in ¢:
QF =(0*)'¢,Vh
Why?

reward r(s, a) is linear in ¢, i.e., QI;(_I(S, a)is linear,
now recursively show that Q,f IS linear



Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set ¢(s, a) to be a one-hot encoding vector in R4 je., ¢(s,a) =10,...,0,1,0,.. 017
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1. Tabular MDP:
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Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:
Set (s, a) to be a one-hot encoding vector in R>, i.e., ¢ (s, a) = [0,...,0,1,0,...0]"

2. Linear System with Quadratic feature ¢

seR?aeR, P(-|s,a)=N (As+ba,021)
B(s,a) =[5}, 55, ST, 57, 515, 514, $,a, a, a*,1]7

Claim: (s, a) + Eg_p(; ,) Max wl¢(s’,a’) is a linear function in ¢
a/

( we will see the details when we get to the LQR lectures)
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Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,
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Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,
Vh,30 € R% s .t., HTgb(s, a)=r(s,a) + |Es/~Ph(s,a) maE}X ngb(S’, a),Vs,a
Adding additional elements to ¢) can break the condition!

seR%aeR, P(-|s,a)=N (As+ba,021)
¢(s,a) = [y, 5, slz, s22, 5189, 814, $Hd, A, a1, si’]T
Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression),
adding elements to features is ok!



Can we just assume Q™ being linear?

No! There are lower bounds (even under generative model):
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Can we just assume Q™ being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with QZ((S, a) is linear in ¢(s, a) (known),
such that in order to find a policy & with V*(s;) > V*(s,) — 0.05, it requires at
least min{2¢,2"} many samples!

i.e., polynomial bound poly(d, H) is not possible for linear O* (Ch5 AJKS)

(We will work on a slightly different result later when we talk about online learning in MDPs)



What we will show today:

1. Generative Model
(i.e., we can reset system to any (s, a), query r(s,a), s’ ~ P(.|s, a))

+

2. Linear Bellman Completion

Sample efficient Learning
(poly time)



Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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LSVI: Least-Square Value lteration
Recall linear bellman-completion implies Q*(s, a) = (6)" ¢(s, a), Vs, a, h

Set Viy(s) = 0,Vs Given datasets 9, ..., Dy_, W/
For h = H-1 to O: Dp=1{s,a,r,s},r=r(s,a),s"~ P(- |s,a)

2
6, = arg mein Z <6Tqb(s, a)— (r+ Vh+1(S'))) Let’s simulate the DP process w/

2y linear function to approximate Q*
Set V,(s) := max 6, ¢(s, a), Vs
a

Return 7,(s) = arg max 9; ¢(s,a),Vh



Why LSVI may work?

When we do linear regression at step h:
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We note that:
Ely|x] = r(s,a) + Eg.p,( o) max o) (s, a)
a

T 10, ¢(s,a) due to Linear BC
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linear in ¢, and it is close to Q}f if
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2
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Why LSVI may work??

When we do linear regression at step h:

x:=¢s,a), y:=r+V, )

We note that:
Ely|x] =r(s,a) + Egop (5.0 max QhTqu(S', a’)
a

T (0,1 ¢(s,a) due to Linear BC

l.e., our regression target is indeed
linear in ¢, and it is close to Q/ if

o~ K
Vh+1 ~ Vh+1
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Why LSVI may work?

When we do linear regression at step h:

x:=¢,a), y:=r+V,s)

We note that:
Ely|x] = r(s,a) + [ES’NPh(s,a) max QhTHgb(s’, a’)
a

T 1(0,.1) ¢(s,a) due to Linear BC

l.e., our regression target is indeed
linear in ¢, and it is close to Q}f if

o Uk
Vh+1 ~ Vh+1

Set Vi, (s) = 0,Vs
For h =H-1to O:

2
0, = arg mein Z <9T¢(S, a) — (’” + Vh+1(sl)>>

Dy,

Set V,(s) := max QhT ¢(s,a),Vs

Return 7,(s) = arg max HhT ¢(s,a),Vh

o 1K

succeeds (e.g., 0, =% T ,(0,,)),
Then we should hope 6, ¢(s, a) ~ Q. (s, a)

and linear regression
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Sample complexity of LSVI

Theorem: There exists a way to construct datasets {, 2{2—01, such that
with probability at least 1 — o, we have:

VE—V*<e

w/ total number of samples in these datasets scaling 5 <d2 + H6d2/€2)



Sample complexity of LSVI

Theorem: There exists a way to construct datasets {J, fz_ol, such that

with probability at least 1 — o, we have:
Vi—V*<e
w/ total number of samples in these datasets scaling 5 (d2 + H6d2/€2)

Plans: (1) OLS and D-optimal design; (2) construct &, using D-optimal
design; (3) transfer regression error to ||Hthb — Q}flloo



Detour: Ordinary Linear Squares

Consider a dataset {x;,y;}x |, where y; = (0*)'x; + ¢;, ~ E[¢;| x;] = 0, ¢, are independent

N
with | €;| < o, assume A = Z xl-xiT/N is full rank;
i=1
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Detour: Ordinary Linear Squares

Consider a dataset {x;,y;}x,, where y, = (0*)'x; + ¢, El¢;|x] = 0, ¢, are independent

N
with | €;| < o, assume A = Z x,-xiT/N is full rank;
i=1
N
OLS : 0 = arg min Z O x; — y,)*
g

Standard OLS guarantee: with probability at least 1 — 0, we have:

o2d In(1/8) )

N A\NTA(OD _ N*
CE W e)§0< >
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N T With probability at least 1 — ¢:
Recal A= ) xx.'/N; ) ) 2dIn(1/5)
i=1 O—0*)TAO—-0%) <0 "

If the test point x is not covered by the training data, i.e., x"A xis huge,
then we cannot guarantee 6' x is close to (0*)"x

t @ No hope to predict
well here!
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Detour: Issues in Ordinary Linear Squares

o - With probability at least 1 — &:
Recall A = ) xx; /N ; ) A 2dIn(1/5)
i=1 @ —-0*TAO-0% <0 >

If the test point x is not covered by the training data, i.e., xTA xis huge,
then we cannot guarantee 6' x is close to (0*)"x

t @ No hope to predict
well here!

T i ——

Let’s actively design a diverse dataset !
(D-optimal Design)
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Detour: D-optimal Design

Consider a compact space & C R4 (without loss of generality, assume span(Z) = [Rd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT])
pEA(X)

Properties of the D-optimal Design:

support(p™) < d(d + 1)/2

-1
maxy ' [[Epr*xxT] y<d
yeX



