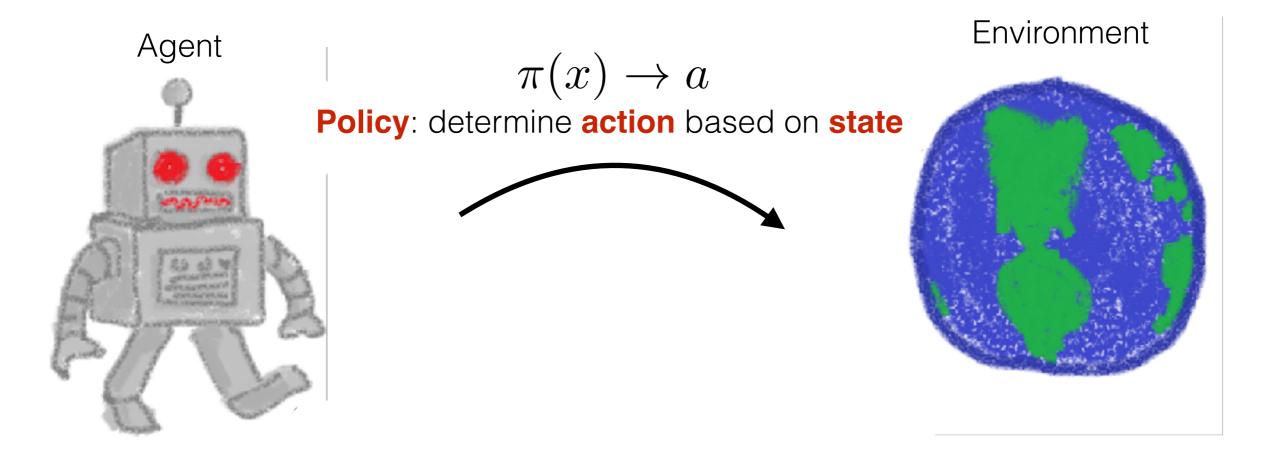
Model-based RL in Contextual Decision Processes: PAC Bounds and Exponential Improvements over Model-free Approaches

Wen Sun

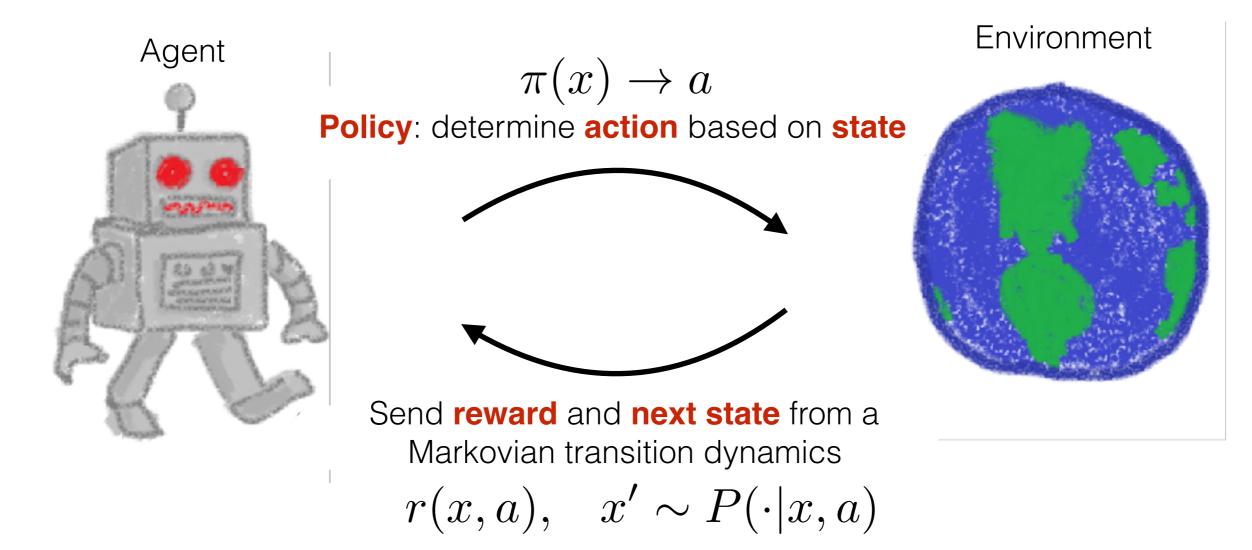
CMU -> MSR NYC

Joint work with Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford

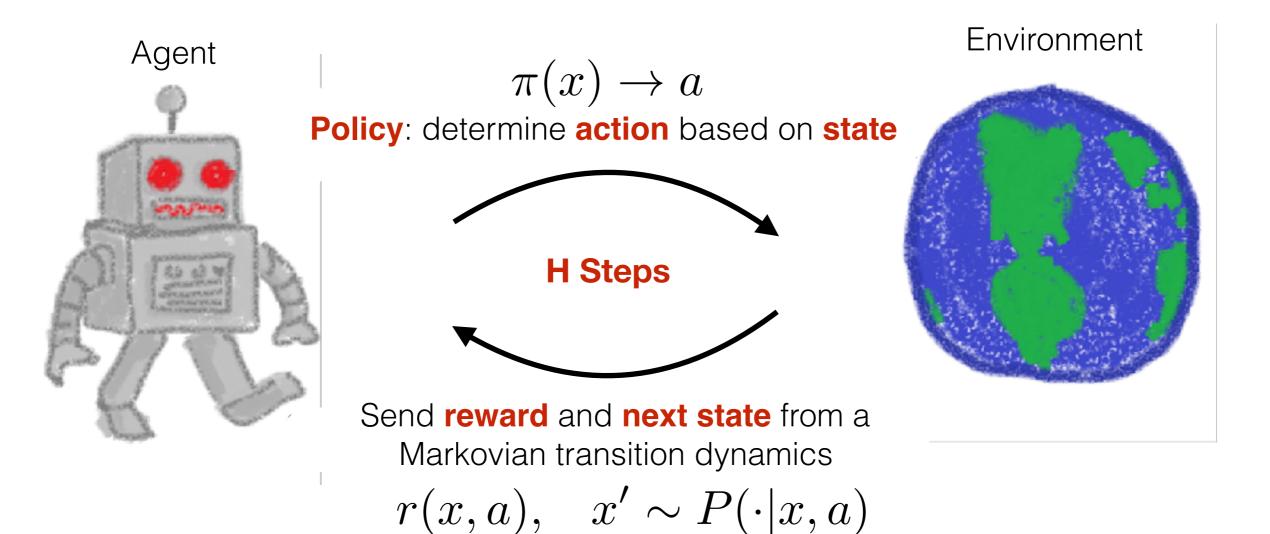
Markov Decision Process



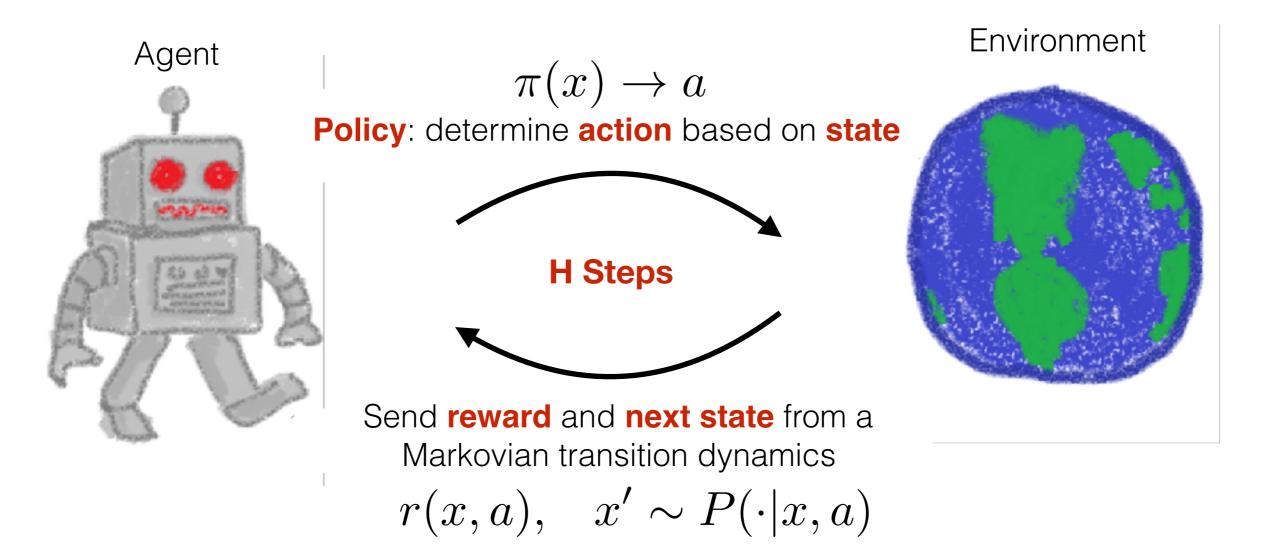
Markov Decision Process



Markov Decision Process



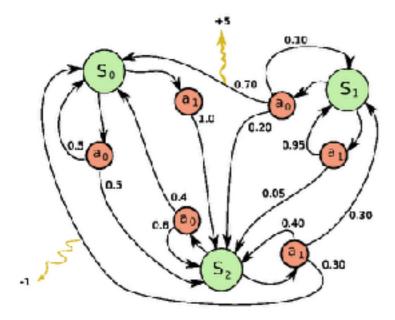
Markov Decision Process



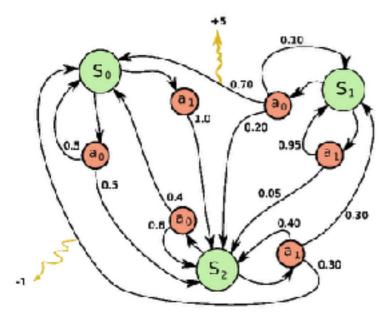
Maximize expected total reward:

 $J(\pi) = \mathbb{E}[r_1 + r_2 + \dots + r_H | \pi]$

Sample Efficiency in Small Discrete MDPs



Sample Efficiency in Small Discrete MDPs

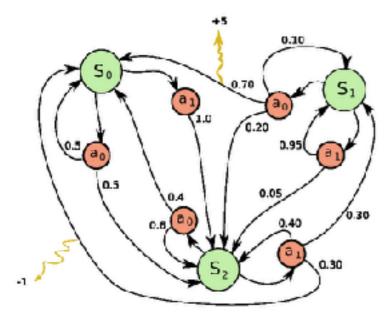


Sample Complexity: To achieve ϵ near-optimal policy, need at most

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

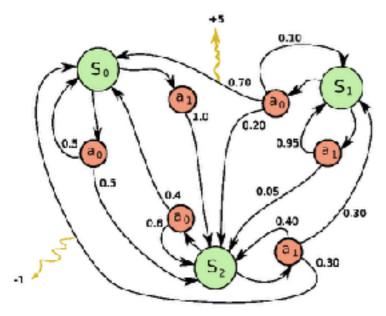
Sample Efficiency in Small Discrete MDPs



Sample Complexity: To achieve ϵ near-optimal policy, need at most $poly(\# \text{ of states}, \# \text{ of actions, Horizon}, 1/\epsilon)$ many interactions

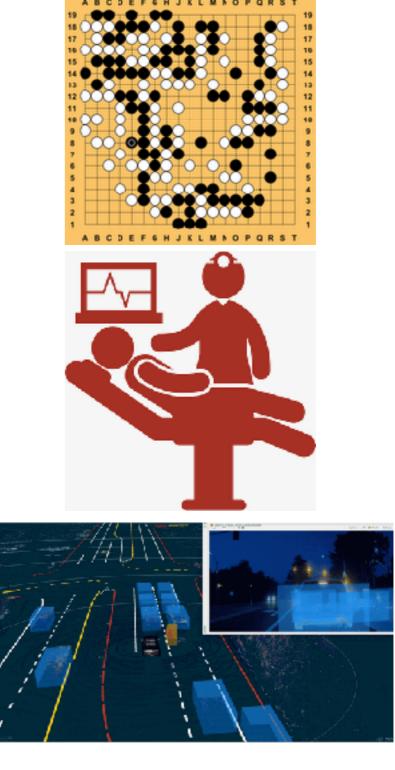
Large-Scale Decision Making Problems

Sample Efficiency in Small Discrete MDPs



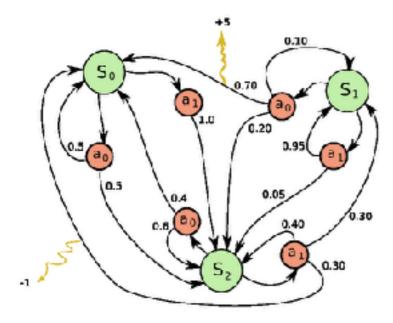
 \neq

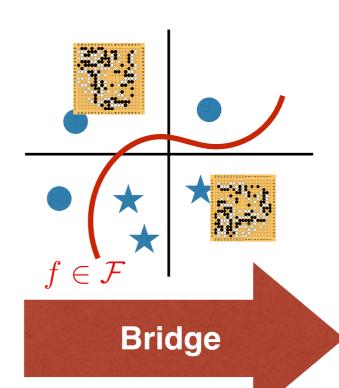
Sample Complexity: To achieve ϵ near-optimal policy, need at most $poly(\# \text{ of states}, \# \text{ of actions, Horizon}, 1/\epsilon)$ many interactions

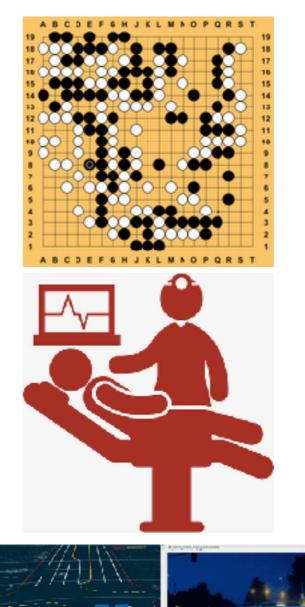


Large-Scale Decision Making Problems

Sample Efficiency in Small Discrete MDPs





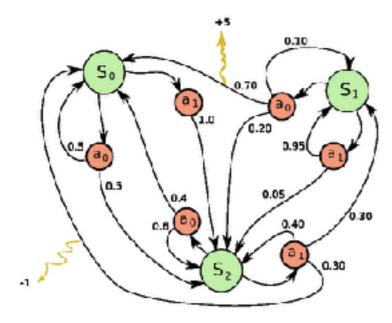


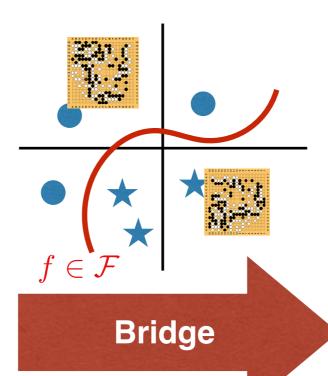
Sample Complexity:To achieve ϵ near-optimal policy,
need at mostpoly(# of states, # of actions, Horizon, $1/\epsilon$)

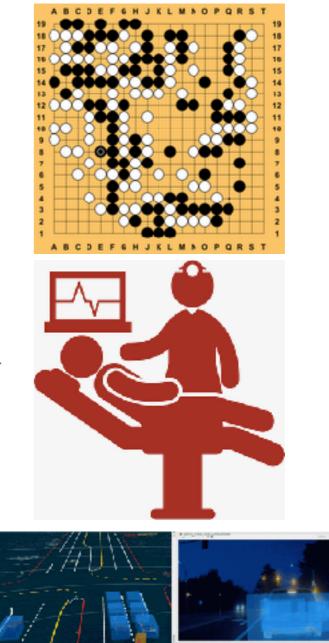
many interactions

Large-Scale Decision Making Problems

Sample Efficiency in Small Discrete MDPs







Sample Complexity: To achieve ε near-optimal policy, need at most poly(# of states, # of actions, Horizon, 1/ε) many interactions [e.g., Kearns & Singh, 02, Dann & Brunskill, 15, Azar et.al, 17]

VC-dim

Contextual Bandits (horizon=1)

(e.g., Auer et al., 02, Langford & Zhang, 07)

Contextual Bandits (horizon=1)

(e.g., Auer et al., 02, Langford & Zhang, 07)

Contextual Decision Process

(Krishnamurthy et al., 16, Jiang et al., 17, Dann et al, 18)

Contextual Bandits (horizon=1)

(e.g., Auer et al., 02, Langford & Zhang, 07)

Contextual Decision Process

(Krishnamurthy et al., 16, Jiang et al., 17, Dann et al, 18)

Model-based vs Model-free

Contextual Bandits (horizon=1)

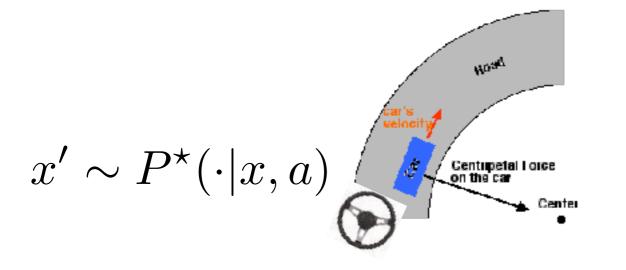
(e.g., Auer et al., 02, Langford & Zhang, 07)

Contextual Decision Process

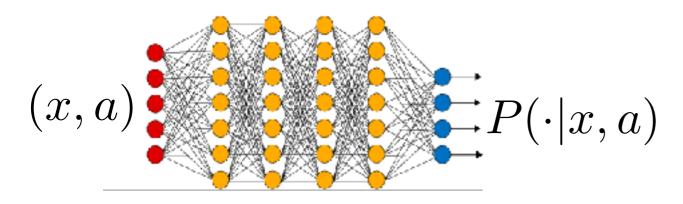
(Krishnamurthy et al., 16, Jiang et al., 17, Dann et al, 18)

Model-based vs Model-free

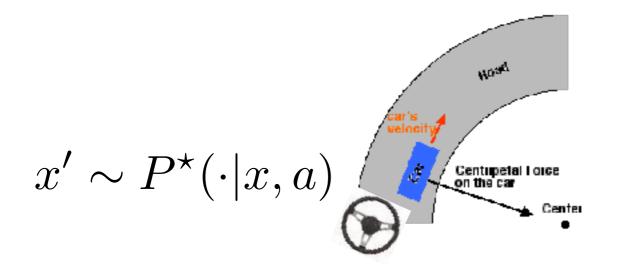
A PAC model-based Algorithm



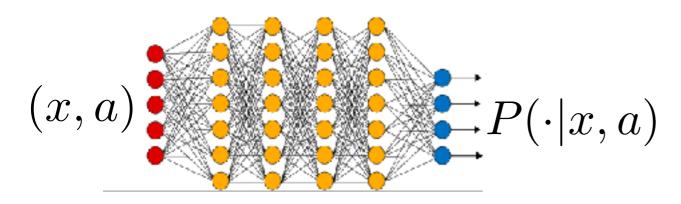
Function Approximators



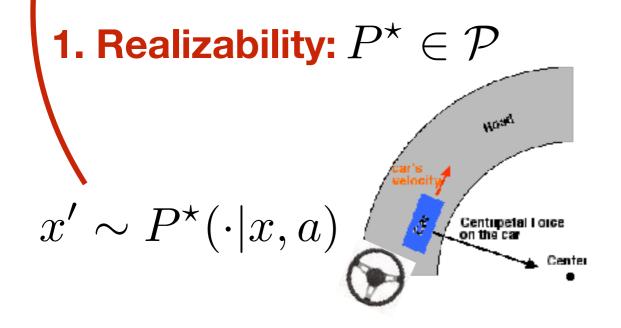
 $\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}$



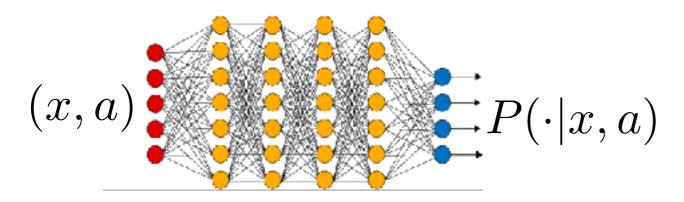
Function Approximators



$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}$$



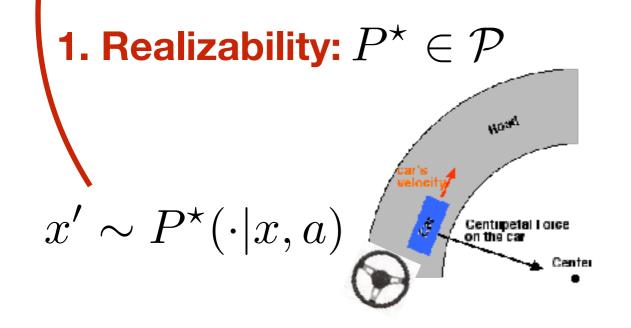
Function Approximators



$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}$$

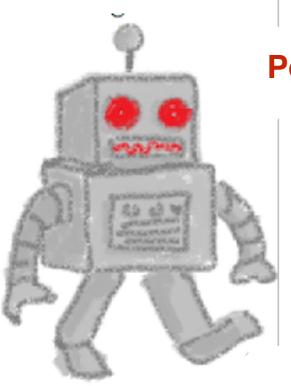
2. Access to Optimal Planner (OP)

$$OP(P,r) \Rightarrow \pi_P$$

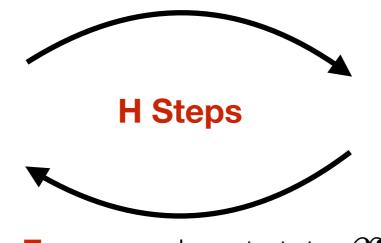


Input: $\mathcal{Q} \triangleq \{Q : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$

Input: $\mathcal{Q} \triangleq \{Q : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$

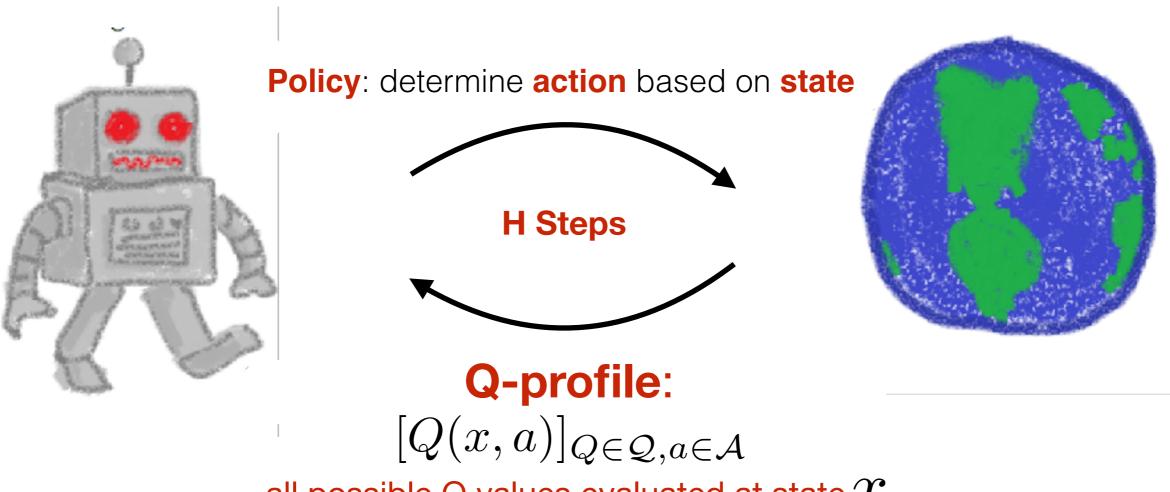


Policy: determine action based on state



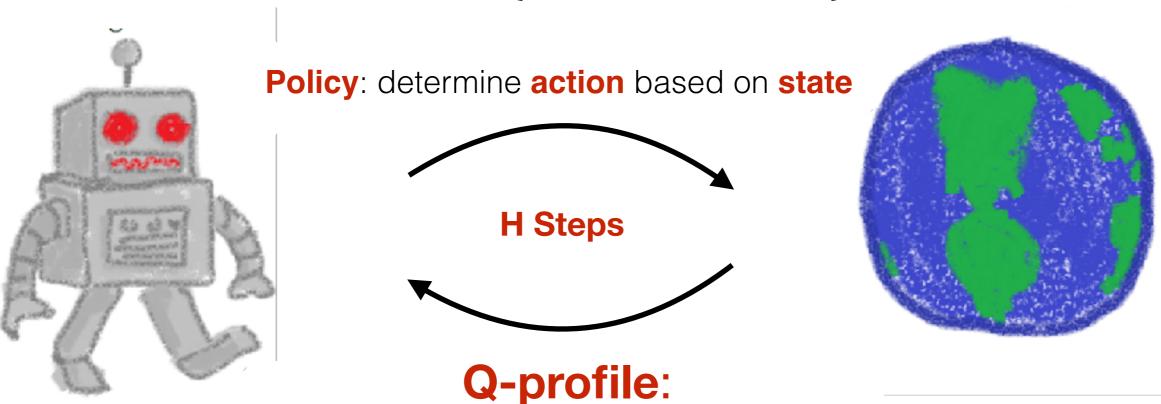
Env: reveal next state $\, \mathscr{X} \,$

Input: $\mathcal{Q} \triangleq \{Q : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$



all possible Q values evaluated at state ${\mathcal X}$

Input: $\mathcal{Q} \triangleq \{Q : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$

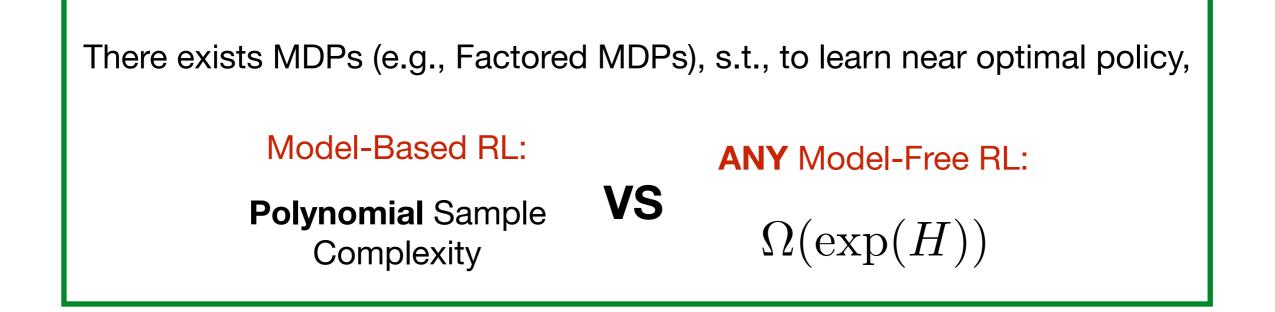


 $\ \ [Q(x,a)]_{Q\in\mathcal{Q},a\in\mathcal{A}}$ all possible Q values evaluated at state \mathcal{X}

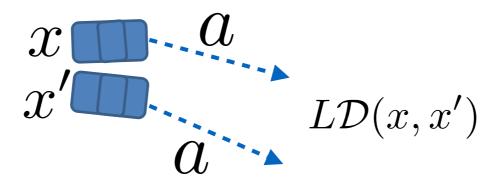
Efficient Q-learning (Jin et.al, 18) Fitted Q-Iteration (Ernst et.al., 05) OLIVE (Jiang et.al, 17) Policy Gradient (Williams 92)

An Exponential Improvement over Model-free RL

An Exponential Improvement over Model-free RL

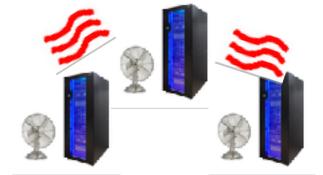


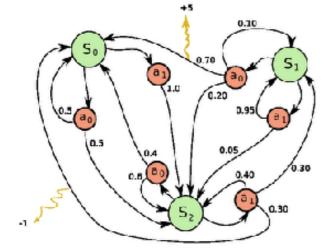
We have been studying model-based RL, BUT...



Lipschitz MDPs

[Kearn, Langford, Kakade, 03]





Small Tabular MDP

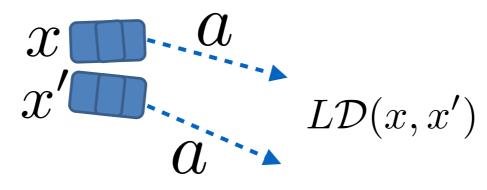
[Kearn & Singh, 02]

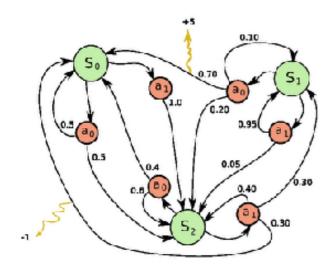
Linear Quadratic Regulator (LQR) [Dean et.al, 18]

Factored MDPs

[Guestrin et.al, 03; Osband & Van Roy,13]

We have been studying model-based RL, BUT...





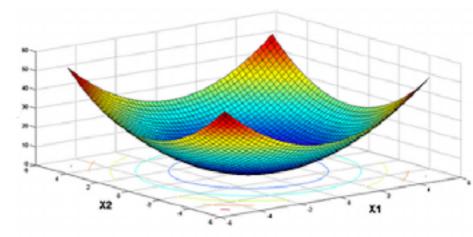
Small Tabular MDP

[Kearn & Singh, 02]

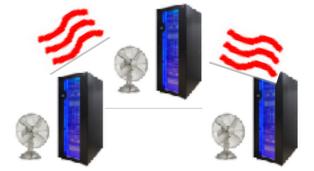
Lipschitz MDPs

[Kearn, Langford, Kakade, 03]

A Unified Algorithm?

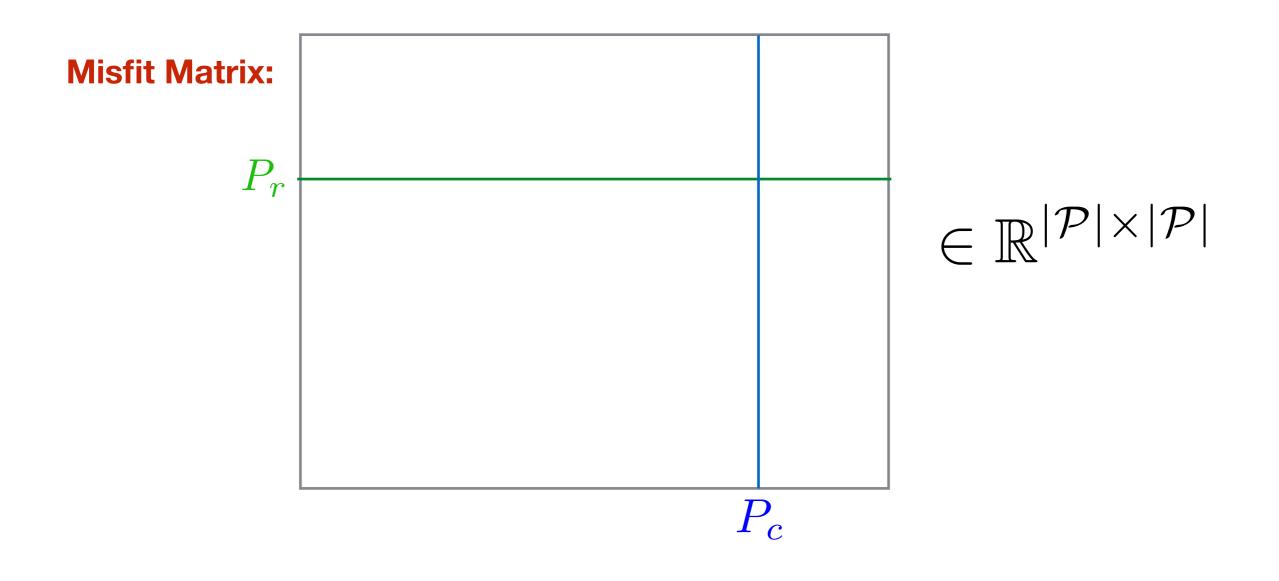


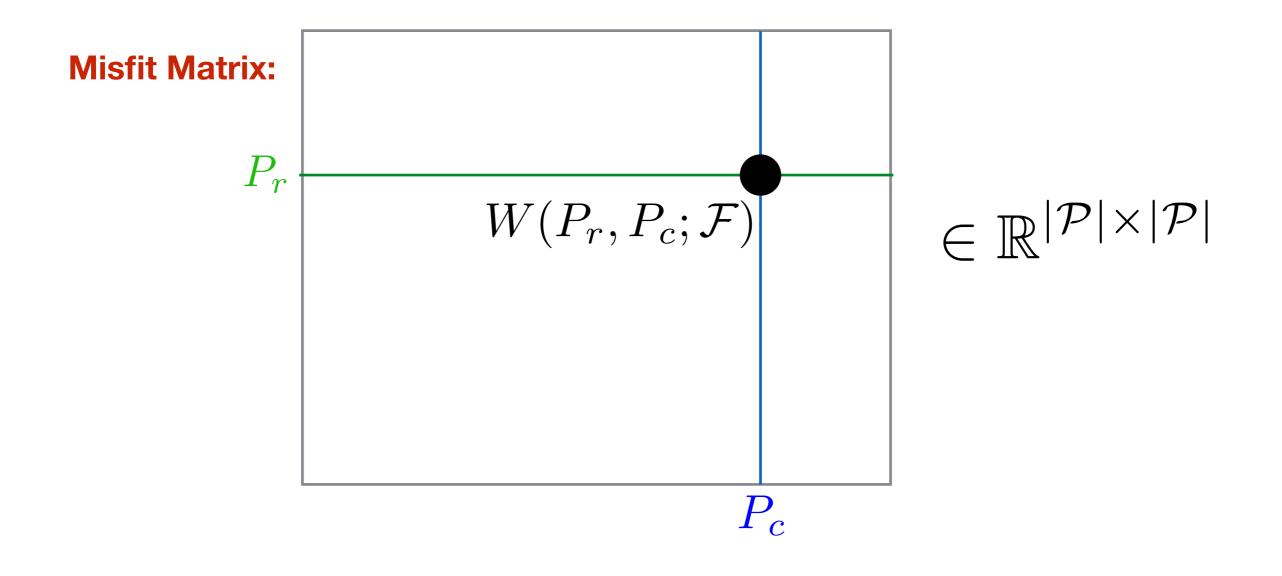
Linear Quadratic Regulator (LQR) [Dean et.al, 18]

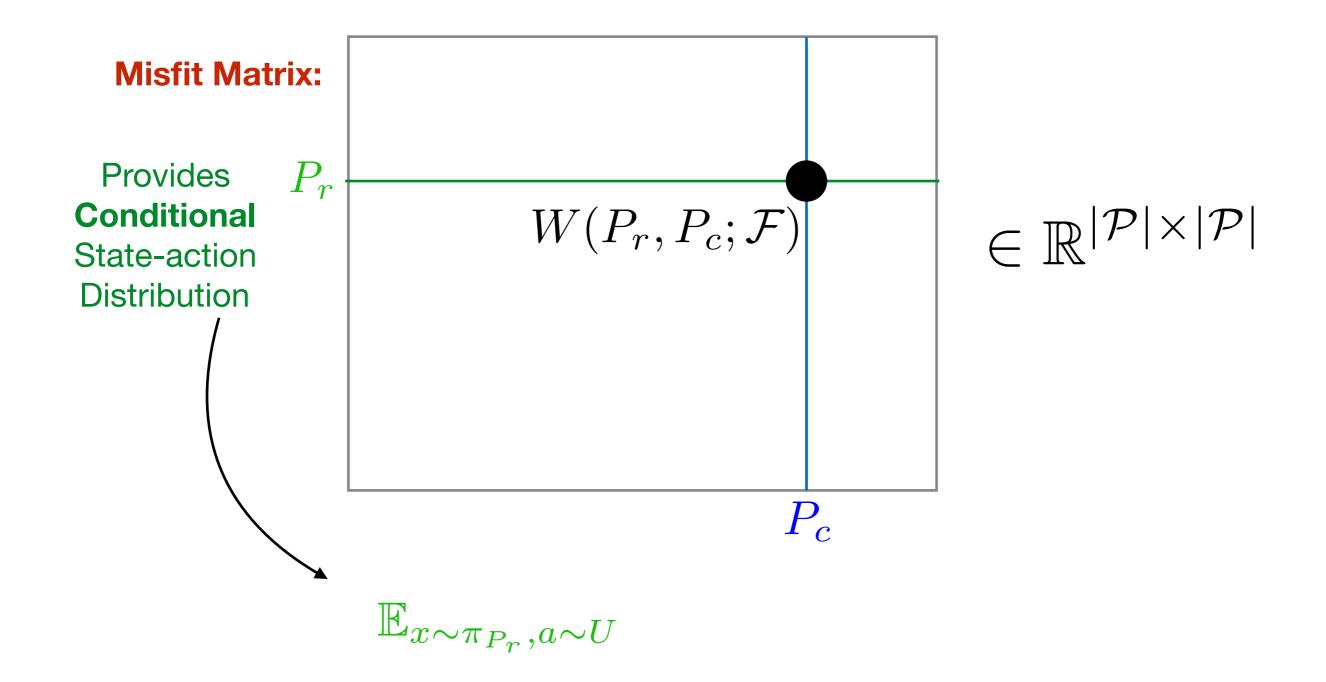


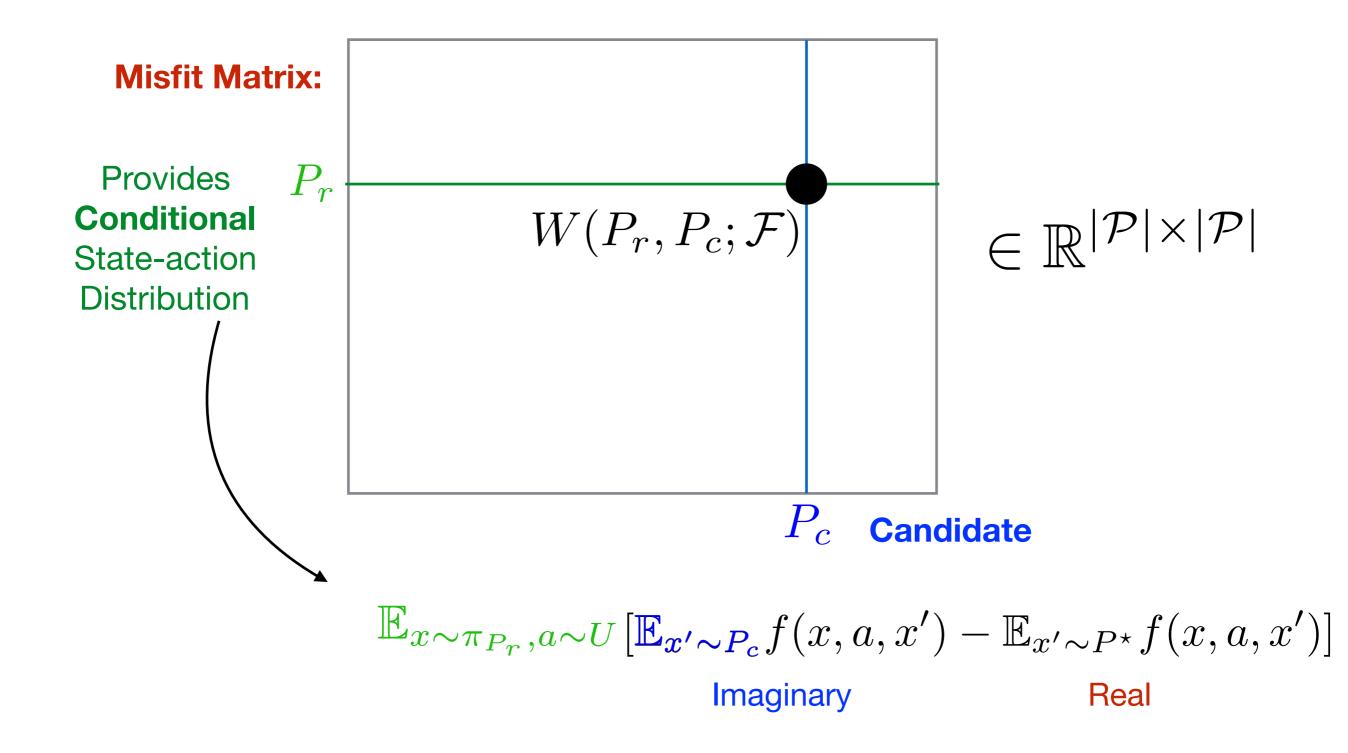
Factored MDPs

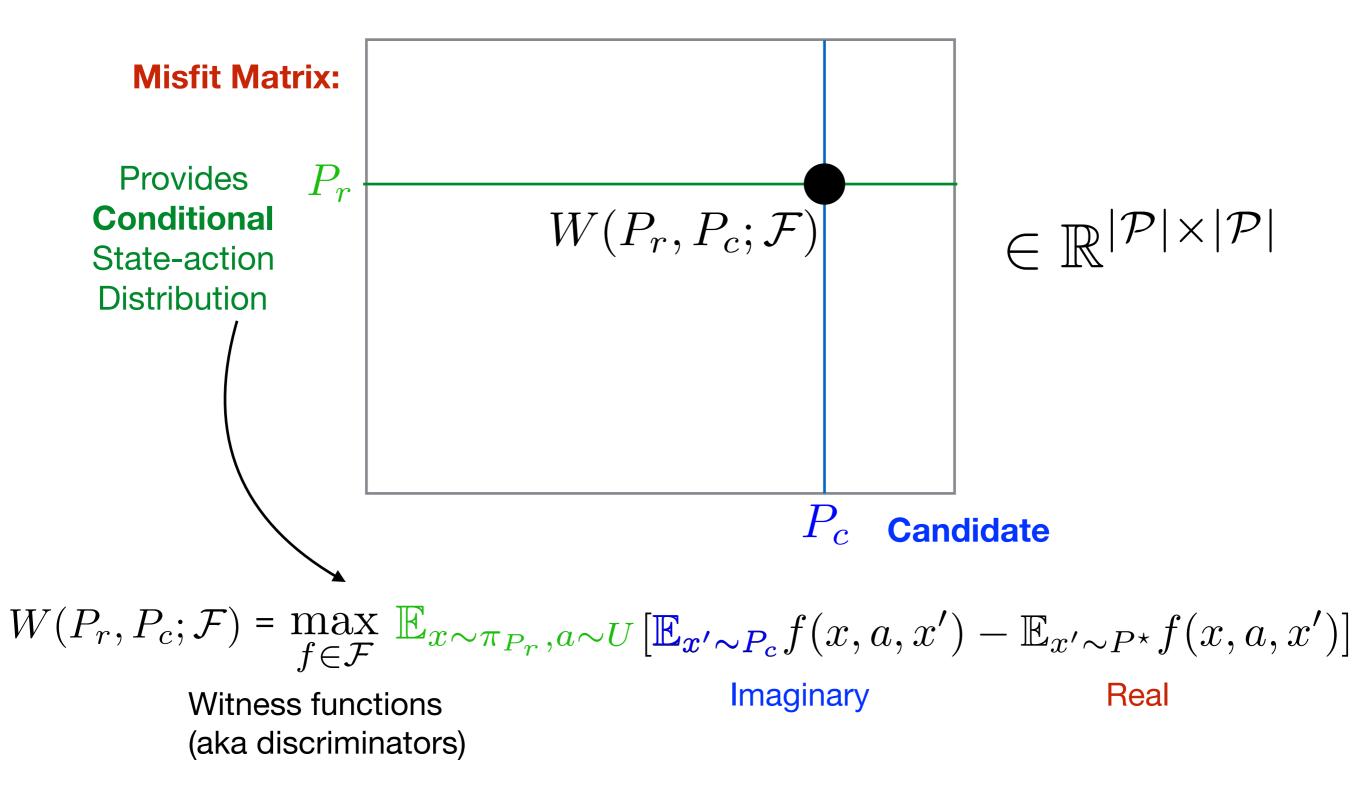
[Guestrin et.al, 03; Osband & Van Roy,13]

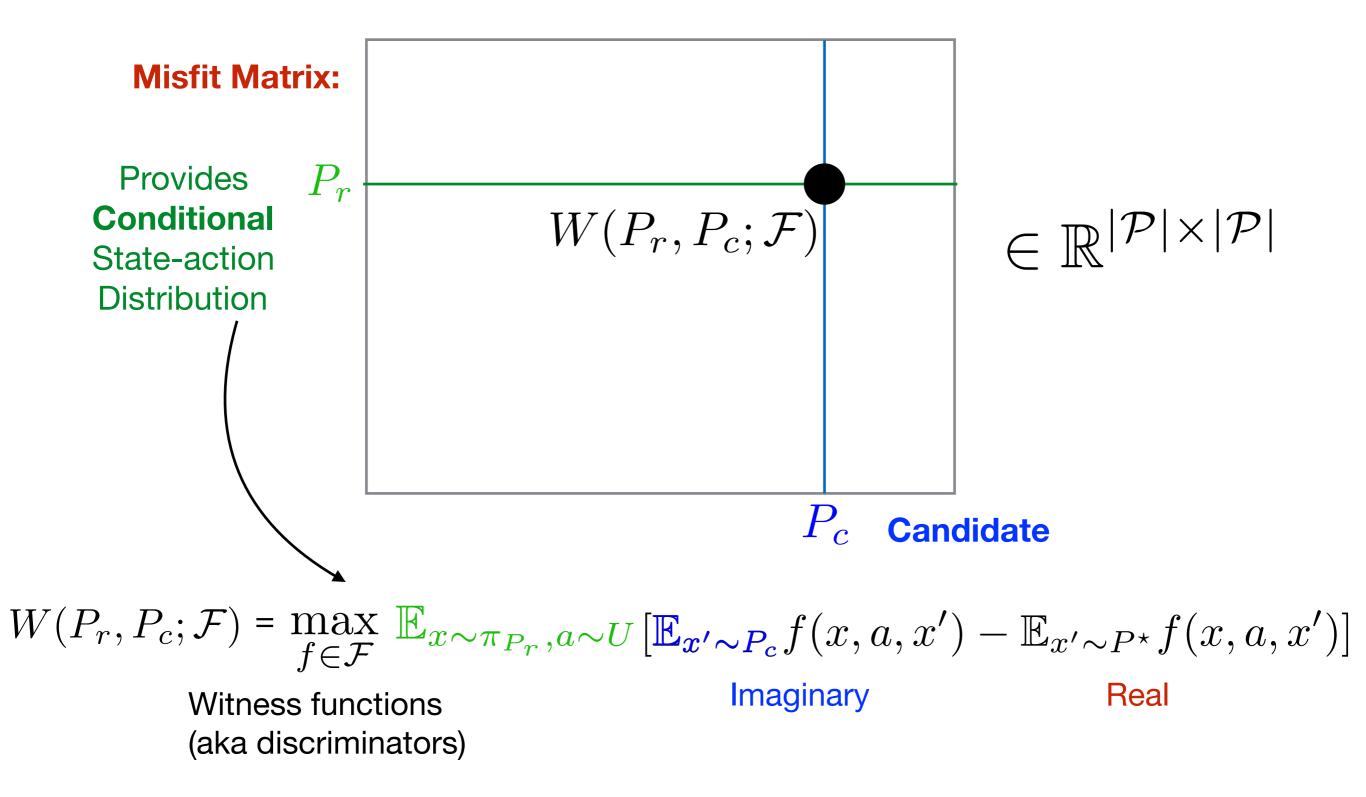






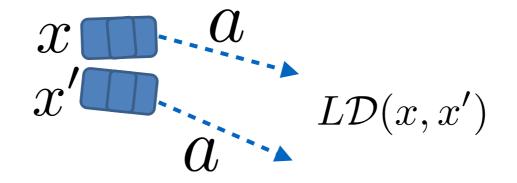


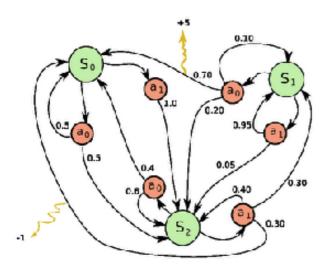




Witness Rank \triangleq rank of this misfit matrix

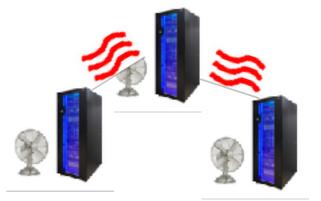
Capture Complexities of Existing RL problems



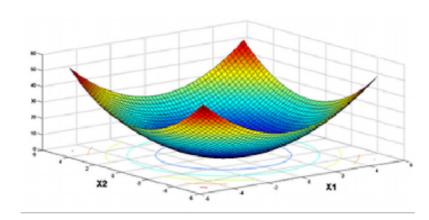


Lipschitz Continuous MDPs [Kearn, Langford, Kakade, 03]

Rank <= Covering number of state space

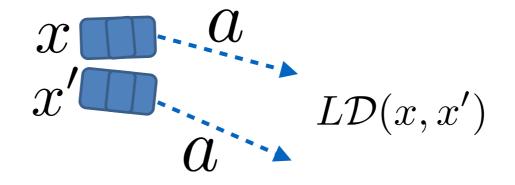


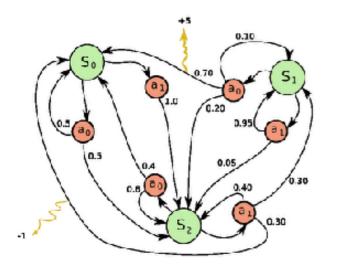
Factored MDPs [Guestrin et.al, 03; Osband & Van Roy,13] Rank <= exp(in-degree)



LQR **Rank <= O(d^2)**

Capture Complexities of Existing RL problems

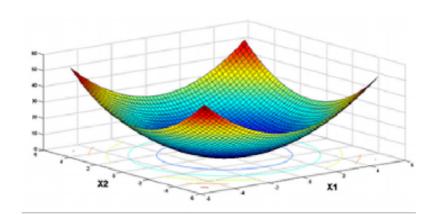




Small Discrete MDP Rank <= # of state Lipschitz Continuous MDPs [Kearn, Langford, Kakade, 03]

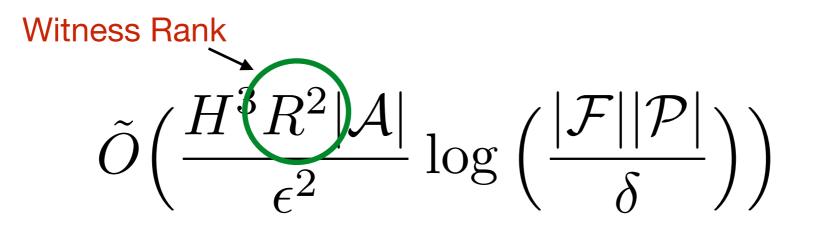
Rank <= Covering number of state space

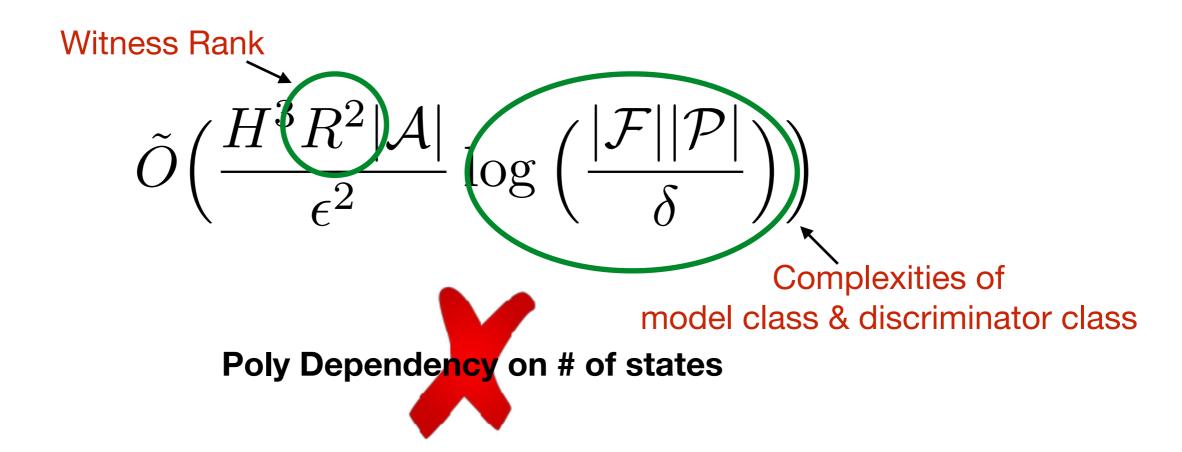
A Unified Algorithm!



Factored MDPs [Guestrin et.al, 03; Osband & Van Roy,13] Rank <= exp(in-degree)

$$\tilde{O}\left(\frac{H^3R^2|\mathcal{A}|}{\epsilon^2}\log\left(\frac{|\mathcal{F}||\mathcal{P}|}{\delta}\right)\right)$$





Take-home Messages

Take-home Messages

Model-based RL could be exponentially more sample efficient than model-free ones

Take-home Messages

Model-based RL could be exponentially more sample efficient than model-free ones

Sample efficiency is possible when Witness Rank is small