
4. Proposed Work:  
Temporal Difference Learning & 

Apprenticeship Learning
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RL

1. Policy Evaluation 
(Online Bellman Residual)

[Sun & Bagnell, 15, UAI (Best Student Paper)]
Function Approximation

2. RL via Imitation 
(Imitation Learning)
[Sun et.al 17, ICML; 18, ICLR]

Function Approximation & 
Imitation

3. RL via Indirect 
Imitation  

(Dual Policy Iteration)
[Sun et.al, 18, submitted to ICML]

Function Approximation  
 Optimal Control



Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

    Policy

Maps states 
to actions

Expert Feedback
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Extra Assumptions:
expert policy      at training; 

cost (reward) signal
⇡e

Planner & Controller  
(robotics) (e.g., Optimal Planner, MPC ) 

[Choudhury, et.al, ICRA, RSS, 17, Pan et.al,17]

Efficient RL via Imitation

Ground Truth 
Labels + Utility 

(NLP)

Search Algorithm  
(e.g. A*) as expert

Human 
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Why bother imitating when 

you have cost/reward signals? 
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Formalizing Advantages


ADVANTAGE #2  

More Sample Efficient (i.e., Learns faster)

ADVANTAGE #1 
Less sensitive to local optimality

DAgger (Data Aggregation) [Ross et.al, 11, AISTATS]

AggreVaTe (Aggregate with Values) [Ross&Bagnell14, arxiv]

24

There exist problems, s.t. with access to optimal expert, i.e., 

IL learns exponentially faster than RL

⇡e = ⇡⇤

[Sun et.al, 17,ICML]




s0

s1 s2

s3 s4 s5 s6

Consider a simple, tree like MDP

Go-Left Go-Right

< < <
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Optimal Path

let us assume                , and we can query               ⇡e = ⇡⇤ Q⇤(s, a)

: the total cost of taking action      at     then following policy Q⇡(s, a) ⇡a s

c3 c4 c5 c6



s0

s1 s2

s3 s4 s5 s6

And an expert who tells us which action is better

< < <

Halving: Eliminate half of the nodes at every iteration

26

c3 c4 c5 c6

let us assume                , and we can query               ⇡e = ⇡⇤ Q⇤(s, a)



s0

s1 s2

s3 s4 s5 s6

< < <
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[Sun et.al, 17,ICML]

In time logarithmic in #states, 


we know an optimal policy

c3 c4 c5 c6

NX

i=1

(J(⇡i)� J(⇡⇤))  O(log(S))



s0

s1 s2

s3 s4 s5 s6

< < <

Now if we can only query unbiased but noisy 

Poly-Log wrt S

In time logarithmic in #states, 

we know an optimal policy
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NX

i=1

(J(⇡i)� J(⇡⇤))  O
�
ln(S)(

p
ln(S)N +

p
ln(2/�)N)

�

[Sun et.al, 17,ICML]


c3 c4 c5 c6



s0

s1 s2

s3 s4 s5 s6

But For Pure RL

< < <

ANY RL ALGORITHM:

Proof uses a reduction from Multi-Armed Bandit
29

NX

i=1

(J(⇡i)� J(⇡⇤)) � ⌦(
p
SN)

[Sun et.al, 17,ICML]


c3 c4 c5 c6



Ex: AggreVaTe
[Ross & Bagnell, 14, arXiv]

Roll in Learned Policy,

Stop at a randomly picked 
time step

s
a1

Roll out Expert’s Policy

a2

Q⇤(s, a1) = 100

Q⇤(s, a2) = 0

a3
Q⇤(s, a2) = 3

Cost-Sensitive classification dataset

n
s,

2

4
Q⇤(s, a1)
Q⇤(s, a2)
Q⇤(s, a3)

3

5
o

N
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n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

⇡n

⇡n+1

Ex: AggreVaTe

Simple incremental update? 

Cost-Sensitive Classifier

⇡n+1 = argmin
⇡

X

s2D

X

a

⇡(a|s)Q⇤(s, a)

s

⇡⇤

D +
n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

Aggregate 
Dataset
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[Ross & Bagnell, 14, arXiv]



Towards Differentiable AggreVaTe

(AggreVaTeD)

Stochastic parameterized policy: 
⇡✓ = ⇡(·|s; ✓)

s ⇡(·|s) 2 �(A)

Non-Linear Layer

Softmax Layer
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[Sun et.al, 17, ICML]



n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

⇡✓n+1

Differentiable AggreVaTe (AggreVaTeD)

`n(✓) =
X

s

X

a

⇡(a|s; ✓)Q⇤(s, a)r✓`n(✓)|✓n

⇡✓n

AggreVaTeD-GD (Gradient Descent):
✓n+1 = ✓n � µr✓`n(✓)|✓=✓n

AggreVaTeD-NG (Natural Gradient):
✓n+1 = ✓n � ⌘nI(✓n)

�1r✓n`n(✓n)

s ⇡⇤
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[Sun et.al, 17, ICML]

Cost-Sensitive loss on 
the new batch (no 

aggregation)



Discrete MDP, Tabular Policy:

AggreVaTeD-GD
AggreVaTe with  

Online Gradient Descent 
[Zinkevich, 03]

AggreVaTeD-NG
AggreVaTe with  

Weighted Majority 
[Littlestone & Warmuth, 03]

• Practical Algorithms 
• AggreVaTe’s theory as Guidance 
• GD ensures Convergence

Strong Theoretical Guarantee 

 J(⇡̂)  J(⇡e)
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[Sun et.al, 17, ICML]

Differentiable AggreVaTe (AggreVaTeD)



Dependency Parsing on Handwritten Algebra Data

Dependency Parsing
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Dependency Parsing <=> Sequential Decision Making
[Chang et.al 15, Duyck & Gordon 15]

Partial constructed parse tree + Action (Arc) => New partial parse tree 
st at st+1+ =>

…… h

o1

a1

o2

a2
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Dependency Parsing
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Performance of AggreVaTeD, RL, and DAgger
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RL: Natural Policy Gradient [Kakade02, Bagnell 04] 
DAgger result from Duyck & Gordon, 15



“Surprisingly”

It Can Outperform Expert

CartPole and Acrobot

Experts
R (y-axis): total reward
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