What Structural Conditions Permit Generalization in Reinforcement Learning?

Joint work with
Simon Du, Sham Kakade, Jason Lee, Shachar Lovett,
Gaurav Mahajan, Ruosong Wang

Solving Large-scale RL problems requires generalization

[AlphaZero, Silver et.al, 17]

[OpenAI Five, 18]

[OpenAI, 19]

Markov Decision Processes:

a framework for RL

- A policy:
π : States \rightarrow Actions
- Execute π to obtain a trajectory:
 $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1} \ldots s_{H-1}, a_{H-1}, r_{H-1}$
- Cumulative H-step reward:

$$
V_{H}^{\pi}(s)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{H-1} r_{t} \mid s_{0}=s\right], Q_{H}^{\pi}(s, a)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{H-1} r_{t} \mid s_{0}=s, a_{0}=a\right]
$$

- Goal: Find a policy $\boldsymbol{\pi}$ that maximizes our value $V^{\pi}\left(s_{0}\right)$ from s_{0}. Episodic setting: We start at s_{0}; act for H steps; repeat...

Provable Generalization in Supervised Learning (SL)

Generalization is possible in the IID supervised learning setting!

To get ϵ-close to best in hypothesis class \mathscr{F}, we need \# of samples that is:

- "Occam's Razor" Bound (finite hypothesis class): need $O\left(\log |\mathscr{F}| / \epsilon^{2}\right)$

Various Improvements:

- VC dim: need only $O\left(\mathrm{VC}(\mathscr{F}) / \epsilon^{2}\right)$
- Classification: linearly separable + margin: $O($ margin $\left.) / \epsilon^{2}\right)$
- Linear Regression in d dimensions: $O\left(d / \epsilon^{2}\right)$
- Deep Learning: the algorithm also determines the complexity control

The key idea in SL: data reuse

With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!

Sample Efficient RL in the Tabular Case (no generalization here)

- Thm: In the episodic setting, poly(S, A, H,1/ ϵ) samples suffice to find an ϵ-opt policy with the E^{3} algo. [Kearns \& Singh '98] also: [Brafman\& Tennenholtz ‘02; K. '03] Key idea: optimism + dynamic programming
- Regret guarantees with model based algos:
[Auer+ '09]
- Provable Q-learning (+bonus):
[Strehl+ (2006)], [Szita \& Szepesvari ‘10],[Jin+ '18]
- (asymptotically) optimal reget: Reg(\#episodes) $=\sqrt{\text { HSA•\#episodes }}$
[Azar+ '17],[Dann+'17]

I: Provable Generalization in RL

Q1: Can we find an ϵ-opt policy with no S dependence?

- How can we reuse data to estimate the value of all policies in a policy class \mathscr{F} ? Idea: Trajectory tree algo dataset collection: uniformly at random choose actions for all H steps in an episode. estimation: uses importance sampling to evaluate every $f \in \mathscr{F}$
- Thm:[Kearns, Mansour, \& Ng ‘00]

To find an ϵ-best in class policy, the trajectory tree algo uses $O\left(A^{H} \log (|\mathscr{F}|) / \epsilon^{2}\right)$ samples - Only $\log (|\mathscr{F}|)$ dependence on hypothesis class size.

- There are VC analogues as well.
- Can we avoid the 2^{H} dependence to find an ϵ-best-in-class policy? Agnostically, NO!
Proof: Consider a binary tree with 2^{H}-policies and a sparse reward at a leaf node.

II: Provable Generalization in RL

- Q2: Can we find an ϵ-opt policy with no S, A dependence and poly($H, 1 / \epsilon$, "complexity measure") samples?
-With various stronger assumptions, yes.
- Linear Bellman Completion: [Munos, '05, Zanette+ '19]
- Linear MDPs: [Wang \& Yang'18]; [Jin+ '19] (the transition matrix is low rank)
- Linear Quadratic Regulators (LQR): standard control theory model
- FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun '20]
- Linear Mixture MDPs: [Modi+'20, Ayoub+ '20]
- Block MDPs [Du+ '19]
- Factored MDPs [Sun+ '19]
- Kernelized Nonlinear Regulator [K.+ '20]

This talk:

Structural conditions
Under which Generalization is possible

Warm up

The linear Bellman Complete model:

Def: Given feature map $\phi(s, a) \in \mathbb{R}^{d}$, Bellman operator has linear closure

$$
\begin{aligned}
& \text { Given any } w \in \mathbb{R}^{d} \text {, there exists a } \theta \in \mathbb{R}^{d} \text {, such that: } \\
& \forall s, a<\theta^{\top} \phi(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[\max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right)\right] \\
& :=T(w) \\
& \text { Examples: } \\
& \text { Linear MDPs, Linear Quadratic Regulator }
\end{aligned}
$$

Warm up

The linear Bellman Complete model:

Generalization is possible here:

\exists an algorithm, finding ϵ-near optimal policy only needs

$$
\text { poly }(H, d, 1 / \epsilon) \text { many samples }
$$

Warm up

The linear Bellman Complete model:

what's the structure here that permits generalization?
We can rewrite the average Bellman error (averaged over any roll-in π) in a bilinear form:

Given a Q^{\star} candidate $w^{\top} \phi(s, a)$, we have:

$$
\begin{array}{r}
\mathbb{E}_{s, a \sim \pi}\left[w^{\top} \phi(s, a)-r(s, a)-\mathbb{E}_{s^{\prime} \sim P(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right)\right] \\
=\mathbb{E}_{s, a \sim \pi}\left[w^{\top} \phi(s, a)-T(w)^{\top} \phi(s, a)\right]=\left\langle w-T(w), \mathbb{E}_{s, a \sim \pi} \phi(s, a)\right\rangle
\end{array}
$$

Warm up

The linear Bellman Complete model:

what's the unique structure here that permits generalization?

We can also estimate the value of the bilinear form:
Define discrepancy $\ell\left(s, a, s^{\prime}, w\right)=w^{\top} \phi(s, a)-r(s, a)-\max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right)$
We have:

$$
\mathbb{E}_{s, a \sim \pi} \ell\left(s, a, s^{\prime}, w\right)=\left\langle w-T(w), \mathbb{E}_{s, a \sim \pi} \phi(s, a)\right\rangle
$$

Note we have data reuse: given data from π, we can evaluate all w

Warm up

The linear Bellman Complete model:

In summary, it has a billinear stiructure:

For any roll-in policy π, and any w, we have: (1)

$$
\mathbb{E}_{s, a \sim \pi}\left[w^{\top} \phi(s, a)-r(s, a)-\mathbb{E}_{s^{\prime} \sim P(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right)\right]=\left\langle w-T(w), \mathbb{E}_{\pi} \phi(s, a)\right\rangle
$$

AND (2) there exists a discrepancy function ℓ, s.t.,

$$
\mathbb{E}_{s, a \sim \pi} \ell\left(s, a, s^{\prime}, w\right)=\left\langle w-T(w), \mathbb{E}_{\pi} \phi(s, a)\right\rangle
$$

Note that the analytical form of bilinear structure is unknown

BiLinear Classes: structural properties to enable generalization in RL

- Realizable Hypothesis class: $\{f \in \mathscr{F}\}$,
with associated state-action value, (greedy) value and policy: $Q_{f}(s, a), V_{f}(s), \pi_{f}$
- can be model based or model-free class.

Def: A ($\mathscr{F}, \ell)$ forms an (implicit) Bilinear class class if there are $W_{h} \in \mathscr{F} \mapsto \mathscr{H}, \& X_{h} \in \mathscr{F} \mapsto \mathscr{H}$ (\mathscr{H} being some Hilbert space):

- Bilinear regret: on-policy difference between claimed reward and true reward

$$
\left|\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-V_{f}\left(s_{h+1}\right)\right]\right| \leq\left\langle W_{h}(f)-W_{h}\left(f^{\star}\right), X_{h}(f)\right\rangle
$$

- Data reuse: there is discrepancy function $\ell_{f}\left(s, a, s^{\prime}, g\right) \&$ policy $\pi_{e s t}$ s.t.

$$
\mathbb{E}_{s_{h} \sim \pi_{f}, a_{h} \sim \pi_{e s t}}\left[l_{f}\left(s_{h}, a_{h}, s_{h+1}, g\right)\right]=\left\langle W_{h}(g)-W_{h}\left(f^{\star}\right), X_{h}(f)\right\rangle, \forall g \in \mathscr{F}
$$

Note: $W_{h} \& X_{h}$ are implicit-no need to known them

Back to Linear Bellman Complete:

(1) Bilinear regret: for any $f(s, a):=w^{\top} \phi(s, a)$, we have:
$\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f}}\left[w^{\top} \phi\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-\mathbb{E}_{s^{\prime} \sim P(s, a)} \max _{a^{\prime}} w^{\top} \phi\left(s^{\prime}, a^{\prime}\right)\right]=\langle\underbrace{(w-T(w))}_{w_{h}(f)}-\underbrace{\left(w^{\star}-T\left(w^{\star}\right)\right)}_{w_{h}\left(f^{\star}\right)}, \underbrace{\mathbb{E}_{\pi} \phi(s, a)}_{x_{h}(f)}\rangle$

AND (2) data-reuse: there exists a discrepancy function ℓ, s.t.,

$$
\mathbb{E}_{\pi_{f}} \ell\left(s, a, s^{\prime}, w^{\prime}\right)=\left\langle\left(w^{\prime}-T\left(w^{\prime}\right)\right)-\left(w^{\star}-T\left(w^{\star}\right)\right), \mathbb{E}_{s, a \sim \pi_{f}} \phi(s, a)\right\rangle
$$

Note $W_{h}(f)$ is unknown as the Bellman backup $T(w)$ is unknown

The Algorithm: BiLin-UCB

For $t=0 \rightarrow T$:

- Find the "optimistic" $f_{t} \in \mathscr{F}$:

$$
\arg \max _{f \in \mathscr{F}} V_{f}\left(s_{0}\right), \text { s.t., } \sigma_{h}^{2}(f) \leq R, \forall h
$$

- Sample m trajectories $\pi_{f_{t}}$ and create a batch dataset:

$$
D=\left\{\left(s_{h}, a_{h}, s_{h+1}\right) \in \text { trajectories }\right\}
$$

- Update the cumulative discrepancy function $\sigma_{h}(\cdot), \forall h$

$$
\sigma_{h}^{2}(\cdot) \leftarrow \sigma_{h}^{2}(\cdot)+\left(\sum_{\left(s_{h}, a_{h}, s_{h+1}\right) \in D} \ell_{f_{t}}\left(s_{h}, a_{h}, s_{h+1}, \cdot\right) /|D|\right)^{2}
$$

Note here we roughly have: $\sigma_{h}(g) \approx \sum_{i=0}^{t}\left(\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f_{i}}} \ell_{f_{i}}\left(s_{h}, a_{h}, s_{h+1}, g\right)\right)^{2}$

Theorem 2: Generalization in RL

- Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang '21]

Assume \mathscr{F} is a bilinear class and the class is realizable, i.e. $f^{\star} \in \mathscr{F}$. Using $\gamma_{T}^{3} \cdot \operatorname{poly}(H) \cdot \log (1 / \delta) / \epsilon^{2}$ trajectories, the BiLin-UCB algorithm returns an ϵ-opt policy (with prob. $\geq 1-\delta$).

- γ_{T} is the max. info. gain $\gamma_{T}:=\max _{h \cdot f_{0} \ldots f_{T-1} \in \mathscr{F}} \ln \operatorname{det}\left(I+\frac{1}{\lambda} \sum_{i=0}^{T-1} X_{h}\left(f_{t}\right) X_{h}\left(f_{t}\right)^{\top}\right)$
- $\gamma_{T} \approx d \log T$ for X_{h} in d-dimensions
- The proof is "elementary" using the elliptical potential function.
[Dani, Hayes, K. '08]

Proof Sketch

1. Optimism: $V^{\star}\left(s_{0}\right) \leq V_{f_{t}}\left(s_{0}\right)$; this can be verified by showing f^{\star} is always a feasible solution
2. Using optimism, we can upper bound per-episode regret Bilinear form ("simulation" lemma):

$$
V^{\star}\left(s_{0}\right)-V^{\pi_{f}}\left(s_{0}\right) \leq V_{f_{t}}\left(s_{0}\right)-V^{\pi_{f}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1}\left|W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right), X_{h}\left(f_{t}\right)\right|
$$

3. If $\pi_{f_{t}}$ is really sub-optimal, i.e., $V^{\star}\left(s_{0}\right)-V^{\pi_{f}}\left(s_{0}\right) \geq \epsilon$, then f_{t} has large bilinear regret:

$$
\exists h, \text { s.t., }\left|W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right), X_{h}\left(f_{t}\right)\right| \geq \epsilon / H
$$

4. Recall in the alg, we have a constraint $\sigma_{h}\left(f_{t}\right) \leq R$, i.e., $\sum_{i=0}^{t-1}\left(\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f_{i}}}\left[\ell_{f_{i}}\left(s_{h}, a_{h}, s_{h+1}, f_{t}\right)\right]\right)^{2} \leq R$

$$
\begin{aligned}
& \sum_{i=0}^{t-1}\left(W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right), X_{h}\left(f_{i}\right)\right)^{2} \leq R \\
& \Rightarrow\left(W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right)\right)^{\top} \Sigma_{t ; h}\left(W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right)\right) \leq R+\lambda \quad\left(\Sigma_{h ; t}:=\sum_{i=0}^{t-1} X_{h}\left(f_{i}\right) X_{h}\left(f_{i}\right)^{\top}+\lambda I\right)
\end{aligned}
$$

Proof Sketch

3. If $\pi_{f_{t}}$ is really sub-optimal, i.e., $V^{\star}\left(s_{0}\right)-V^{\pi_{f_{t}}}\left(s_{0}\right) \geq \epsilon$, then f_{t} has large bilinear value:

$$
\exists h, \text { s.t., }\left|W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right), X_{h}\left(f_{t}\right)\right| \geq \epsilon / H
$$

4. Recall in the alg, we have a constraint $\sigma\left(f_{t}\right) \leq R$, i.e., $\sum_{\tau=0}^{t-1}\left(\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f_{\tau}}} \ell_{f_{\tau}}\left(s_{h}, a_{h}, s_{h+1}, f_{t}\right)\right)^{2} \leq R$

$$
\left(W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right)\right)^{\top} \Sigma_{t, h}\left(W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right)\right) \leq R+\lambda \quad\left(\Sigma_{h i t}:=\sum_{i=0}^{t-1} X_{h}\left(f_{j} X_{h}\left(f_{j}{ }^{\top}+\lambda I\right)\right.\right.
$$

5. Finally, combine the two results and using Cauchy-Schwartz, we have:

$$
\begin{gathered}
\epsilon / H \leq\left\|W_{h}\left(f_{t}\right)-W_{h}\left(f^{\star}\right)\right\|_{\Sigma_{h ; t}}\left\|X_{h}\left(f_{t}\right)\right\|_{\Sigma_{\overline{-j} ;}} \leq \sqrt{R+\lambda}\left\|X_{h}\left(f_{t}\right)\right\|_{\Sigma_{\bar{k} ; t}} \\
\Rightarrow\left\|X_{h}\left(f_{t}\right)\right\|_{\Sigma_{\bar{k} ; t}} \geq \frac{\epsilon}{H \sqrt{R+\lambda}}
\end{gathered}
$$

In d-dimensional setting, such event cannot happen more than $\widetilde{O}\left(d / \epsilon^{2}\right)$ many times....

- Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang '21]

The following models are bilinear classes for some discrepancy function $\ell(\cdot)$

- Linear Bellman Completion: [Munos, '05, Zanette+ '19]
- Linear MDPs: [Wang \& Yang'18]; [Jin+ '19] (the transition matrix is low rank)
- Linear Quadratic Regulators (LQR): standard control theory model
- FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun '20]
- Linear Mixture MDPs: [Modi+'20, Ayoub+ '20]
- Block MDPs [Du+ '19]
- Factored MDPs [Sun+ '19]
- Kernelized Nonlinear Regulator [K.+ '20]
- Linear $Q^{\star} \& V^{\star}$
- Reactive PSR/POMDP, Generalized linear MDP, and more.....
- (almost) all "named" models (with provable generalization) are bilinear classes two exceptions: deterministic linear $Q^{\star} ; Q^{\star}$-state-action aggregation
- Bilinear classes generalize the: Bellman rank [Jiang+ '17]; Witness rank [Sun+ '19]

Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

Low-rank MDP: $P\left(s^{\prime} \mid s, a\right)=\mu^{\star}\left(s^{\prime}\right)^{\top} \phi^{\star}(s, a), \mu^{\star} \& \phi^{\star}$ unknown
Function approximation for feature: $\phi^{\star} \in \Psi \subset S \times A \mapsto \mathbb{R}^{d}$
Function approximation for $Q^{\star}: \mathbb{Q}:=\left\{w^{\top} \phi(s, a): w \in \operatorname{Ball}_{W}, \phi \in \Psi\right\}$

Q : can we find ϵ optimal policy $\mathrm{w} /$ samples $\operatorname{poly}(d, \ln (\Psi), H, 1 / \epsilon)$?
Yes \& it's in the Bilinear class!

Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

1. Claim: on-policy Bellman error of $f:=w^{\top} \phi$ has Bilinear form:

$$
\begin{aligned}
& \forall f \in \mathbb{Q}: \mathbb{E}_{s_{h}, a_{h} \sim \pi_{f}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r_{h}-\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime}} Q_{f}\left(s_{h+1}, a^{\prime}\right)\right] \\
&= \mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_{f}} \mathbb{E}_{s_{h} \sim P\left(\cdot \mid s_{h-1}, a_{h-1}\right), a_{h} \sim \pi_{f}\left(\cdot \mid s_{h}\right)}\left[Q_{f}\left(s_{h}, a_{h}\right)-r_{h}-\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime}} Q_{f}\left(s_{h+1}, a^{\prime}\right)\right] \\
&= \mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_{f}} \int_{s_{h}} \phi^{\star}\left(s_{h-1}, a_{h-1}\right)^{\top} \mu^{\star}\left(s_{h}\right) \mathbb{E}_{a_{h^{\prime} \sim \pi_{f}}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r_{h}-\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime}} Q_{f}\left(s_{h+1}, a^{\prime}\right)\right] \\
&=\underbrace{\mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_{f}} \phi^{\star}\left(s_{h-1}, a_{h-1}\right)}_{X_{h}(f)}, \underbrace{\left.\int_{s_{h}} \mu^{\star}\left(s_{h}\right) \mathbb{E}_{a_{h^{\prime} \sim \pi_{f}}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r_{h}-\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime}} Q_{f}\left(s_{h+1}, a^{\prime}\right)\right]\right\rangle}_{W_{h}(f)}\rangle
\end{aligned}
$$

Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

2. Claim: The bilinear regret is estimable using some ℓ

$$
\begin{gathered}
\text { Define } \ell\left(s, a, s^{\prime}, g\right)=\frac{1\left\{a=\pi_{g}(s)\right\}}{1 / A}\left(Q_{g}(s, a)-r(s, a)-\max _{a^{\prime}} Q_{g}\left(s^{\prime}, a^{\prime}\right)\right) \\
\mathbb{E}_{s_{h} \sim \pi_{f}} \mathbb{E}_{a_{h} \sim U(A)} \ell\left(s_{h}, a_{h}, s_{h+1}^{\prime}, g\right)=\left\langle W_{h}(g)-W_{h}\left(f^{\star}\right), X_{h}(f)\right\rangle
\end{gathered}
$$

Another Example: Linear $Q^{\star} \& V^{\star}$

What's the role of linear function approximation in RL?

We have linear MDP, Linear Bellman complete...
The most natural one should just be Q^{\star} being linear-realizable:

$$
Q^{\star}(s, a)=\left(w^{\star}\right)^{\top} \phi(s, a), \text { under known feature } \phi
$$

However generalization is impossible here:

- Theorem [Weisz, Amortila, Szepesvári '21]: There exists an MDP w/ linear Q^{\star}, s.t any online RL algorithm requires $\Omega\left(\min \left(2^{d}, 2^{H}\right)\right)$ samples to output a near optimal policy

Additional Example: Linear $Q^{\star} \& V^{\star}$

What's the role of linear function approximation in RL?

However, if we further assume $V^{\star}(s)=\left(\theta^{\star}\right)^{\top} \psi(s)$, then we will be ok:

- Theorem [Du, Kakade., Lee, Lovett, Mahajan, S, Wang '21]

For any MDP with both Q^{\star} and V^{\star} being realizable (under some known features, e.g., RKHS), there exists an algorithm that learns with \# of samples: d^{3} poly (H)

Additional Example: Linear $Q^{\star} \& V^{\star}$

Linear $Q^{\star} \& V^{\star}$ has Bilinear Structure

Function classes for $Q^{\star} \in \mathscr{Q}:=\left\{w^{\top} \phi(s, a): w \in \operatorname{Ball}_{w}\right\}, V^{\star} \in \mathscr{V}:=\left\{\theta^{\top} \psi(s): \theta \in \operatorname{Ball}_{B}\right\}$
Key step: pre-process function class

$$
\{Q, V\}:=\left\{(w, \theta): \forall s, \max _{a} w^{\top} \phi(s, a)=\theta^{\top} \psi(s)\right\}
$$

(1) on-policy Bellman error of any $f:=(w, \theta)$ has bilinear form:

$$
\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f}}\left[w^{\top} \phi\left(s_{h}, a_{h}\right)-r_{h}-\mathbb{E}_{s^{\prime} \sim P\left(s_{h}, a_{h}\right)} \theta^{\top} \psi\left(s^{\prime}\right)\right]=\left\langle W_{h}([w, \theta])-W_{h}\left(\left[w^{\star}, \theta^{\star}\right]\right), X_{h}([w, \theta])\right\rangle
$$

(2) there exists $\ell\left(s, a, s^{\prime},[w, \theta]\right)=w^{\top} \phi(s, a)-r(s, a)-\theta^{\top} \psi\left(s^{\prime}\right)$, s.t.,

$$
\mathbb{E}_{s_{h}, a_{h} \sim \pi_{f}}\left[\ell\left(s_{h}, a_{h}, s_{h+1}^{\prime},\left[w^{\prime}, \theta^{\prime}\right]\right)\right]=\left\langle W_{h}\left(\left[w^{\prime}, \theta^{\prime}\right]\right)-W_{h}\left(\left[w^{\star}, \theta^{\star}\right]\right), X_{h}(f)\right\rangle, \forall\left[w^{\prime}, \theta^{\prime}\right]
$$

Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:

Function class: $\mathscr{F}=\left\{P: P\left(s^{\prime} \mid s, a ; \theta\right)=\theta^{\top} \phi\left(s, a, s^{\prime}\right), \theta \in \mathrm{Ball}_{W}\right\}$

Why this model is ever interesting?

Imagine we have d simulators, $P^{i}\left(s^{\prime} \mid s, a\right), i \in[d]$, we assume the ground truth is the linear mixture of d simulators:

$$
P^{\star}\left(s^{\prime} \mid s, a\right)=\sum_{i=1}^{d} \theta^{\star}[i] P^{i}\left(s^{\prime} \mid s, a\right)
$$

Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:

$$
\text { Function class: } \mathscr{F}=\left\{P: P\left(s^{\prime} \mid s, a ; \theta\right)=\theta^{\top} \phi\left(s, a, s^{\prime}\right), \theta \in \mathrm{Ball}_{W}\right\}
$$

(Notation: $f \in \mathscr{F}$ is a potential transition, and $f^{\star}:=P^{\star}$)

Claim 1: For any $f \in \mathscr{F}$, the on-policy Bellman error of Q_{f} under π_{f} has bilinear form:

$$
\mathbb{E}_{\pi_{f}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-\mathbb{E}_{s^{\prime} \sim f^{\star}\left(s_{h}, a_{h}\right)} V_{f}\left(s^{\prime}\right)\right]=\left\langle W_{h}(f)-W_{h}\left(f^{\star}\right), X_{h}(f)\right\rangle
$$

Final Example: Linear Mixture Model

The linear Mixture Model:

Function class: $\mathscr{F}=\left\{P: P\left(s^{\prime} \mid s, a ; \theta\right)=\theta^{\top} \phi\left(s, a, s^{\prime}\right), \theta \in \mathrm{Ball}_{W}\right\}$
(Notation: $f \in \mathscr{F}$ is a potential transition, and $f^{\star}:=P^{\star}$)
Claim 2: For any $f \in \mathscr{F}$, there exists discrepancy $\ell_{f}\left(s, a, s^{\prime}, g\right)$ to measure bilinear form:

$$
\begin{gathered}
\ell_{f}\left(s, a, s^{\prime}, g\right)=\mathbb{E}_{s^{\prime} \sim g(s, a)}\left[V_{f}\left(s^{\prime}\right)\right]-V_{f}\left(s^{\prime}\right) \\
\text { s.t., } \mathbb{E}_{\pi_{f}} \ell_{f}\left(s_{h}, a_{h}, s_{h+1}^{\prime}, g\right)=\left\langle W_{h}(g)-W_{h}\left(f^{\star}\right), X_{h}(f)\right\rangle
\end{gathered}
$$

