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Classic Exploration & Exploitation  
(e.g., epsilon greedy, upper confidence bound)  

Not enough! 

Explore more carefully…
Risk of failures 

Energy exhaustion 
Side effect of a treatment in clinical trial 

… 



This Work:

We attempt to model this problem in the contextual bandit setting

We introduce extra risk associated with each action

The goal is to maintain small regret for reward while ensuring the 

cumulative risk is small
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Environment Learner

st
it 2 [K]

st 2 SContext (i.e., features): 
Actions (finitely many): at 2 [K]
Cost vector: ct 2 [0, 1]K rt 2 [0, 1]Kand Risk vector: 
Pre-Defined Risk Threshold: � 2 [0, 1]

ct[it], rt[it]

No statistical assumptions on the generation of context, cost or risk….
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Option 1 seems quite natural…..
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Option 1: O0 = {x 2 X :
TX

t=1

ft(x)  0}

Claim: there exist a sequence of loss and constraints such 
that for any sequence of decisions that satisfies the 
average constraint:  

then, the regret grows linearly when competing against     :  O
0

lim supt!1

tX

i=1

fi(xi)/t  0,

lim supt!1(
tX

i=1

`i(xi)� min
x⇤2O0

tX

i=1

`i(x
⇤)) = ⌦(t)

(Construction adapts a discrete two-player game in [Mannor, et.al, 09])
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Lt(x,�) = `t(x) + �ft(x)�
�µ

2
�2, � 2 R+

Convex-Concave formulation [Mahdavi et al.,2012]

dual variable � 2 R+

� 2 [0,1)
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1

T
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Set regularizer: R(x) =
X

i
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with Risk 

constraints)



Analysis

E[
TX

t=1

ct[at]�
TX

t=1

Ei⇠w⇤,j⇠⇡i(st)ct[j]]  O(
p
TK ln(|⇧|))

E[
TX

t=1

rt[at]� �]  O(T 3/4(K ln(|⇧|))1/4)

Under the assumption that         , for any sequence of cost 
and risk vectors, EXP4.R has the following guarantees:  

P 6= ;

Where w⇤ 2 {w 2 �(⇧) : Ei⇠w,j⇠⇡i(st)rt[j]  �, 8t}
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ŷt + �ẑt � 
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ŷt + �ẑt � 
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�2
t

p



Analysis
Theorem: Under the assumption that            , for any 
sequence of cost, risk vectors and any                     , we have 
with high probability 1- v: 

TX

t=1

ct[at]�
TX

t=1

Ei⇠w⇤,j⇠⇡i(st)ct[j]  O(
q
T ✏+1/2K ln(⇧/v))

TX

t=1

(rt[at]� �)  O(T 1�✏/2
p

K ln(⇧))

P 6= ;
✏ 2 (0, 0.5)

When               :✏ ! 0 Average Regret-> O(1/
p
T ) Avg constraint violation-> O(1)

When                    :✏ ! 0.5 Average Regret-> O(1) Avg constrain violation-> O(T�1/4)
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Context is the  RBF feature with 
respect to the nine way points. 

We have 4^9 experts. Namely 
each expert suggests one action 
at each waypoint

We ran the EXP4.R with different 
risk thresholds
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Conclusion and Future Work

1. We consider sequential decision making problem with 
additional adversarial constraints.


2. In our applications these constraints are used to model 
safety related issues in decision making process.


3. Is there any algorithm that can achieve         total regret and    
total constraint violation simultaneously? 


4. Is there better heuristic we can leverage to achieve tighter 
regret and constrain violation in high probability? 


p
T

p
T
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