Safety-Aware Algorithms for Adversarial Contextual Bandits

Wen Sun

Carnegie Mellon University, USA
Debadeepta Dey, and Ashish Kapoor
Microsoft Research, Redmond, USA

The Robotics Institute Carnegie Mellon University

Microsoft ${ }^{\text {² }}$
Research

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

Control \& Sequential Decision Making

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

[Coates et.al,08,ICML]

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

[Coates et.al,08,ICML]

Safety

Control \& Sequential Decision Making

[Georgia Tech Autorally Project, autorally.github.io]

[Coates et.al,08,ICML]

Safety

Control \& Sequential Decision Making

Control \& Sequential Decision Making

Control \& Sequential Decision Making

Classic Exploration \& Exploitation
(e.g., epsilon greedy, upper confidence bound) Not enough!

Control \& Sequential Decision Making

Classic Exploration \& Exploitation (e.g., epsilon greedy, upper confidence bound) Not enough!

Control \& Sequential Decision Making

Classic Exploration \& Exploitation (e.g., epsilon greedy, upper confidence bound) Not enough!

Explore more carefully...

Risk of failures
Energy exhaustion
Side effect of a treatment in clinical trial

This Work:

We attempt to model this problem in the contextual bandit setting

We introduce extra risk associated with each action

The goal is to maintain small regret for reward while ensuring the cumulative risk is small

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$

Environment
Learner

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$

Environment
Learner

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$

Environment
Learner

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$
Pre-Defined Risk Threshold: $\beta \in[0,1]$

Environment
Learner

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$
Pre-Defined Risk Threshold: $\beta \in[0,1]$

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$
Pre-Defined Risk Threshold: $\beta \in[0,1]$

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$
Pre-Defined Risk Threshold: $\beta \in[0,1]$

Setting:

Context (i.e., features): $s_{t} \in \mathcal{S}$
Actions (finitely many): $a_{t} \in[K]$
Cost vector: $c_{t} \in[0,1]^{K}$ and Risk vector: $r_{t} \in[0,1]^{K}$
Pre-Defined Risk Threshold: $\beta \in[0,1]$

No statistical assumptions on the generation of context, cost or risk....

Goal:

Ideally:

$$
\min _{i_{1}, \ldots, i_{T}} \sum_{t=1}^{T} c_{t}\left[i_{t}\right]-\min _{\pi^{*}} \sum_{t=1}^{T} c_{t}\left[\pi^{*}\left(s_{t}\right)\right], \text { s.t., } r_{t}\left[i_{t}\right] \leq \beta, \forall t
$$

Goal:

Ideally:

$$
\min _{i_{1}, \ldots, i_{T}} \sum_{t=1}^{T} c_{t}\left[i_{t}\right]-\min _{\pi^{*}} \sum_{t=1}^{T} c_{t}\left[\pi^{*}\left(s_{t}\right)\right] \text {, s.t., } r_{t}\left[i_{t}\right] \leq \beta, \forall t
$$

More realistically:

$$
\min _{i_{1}, \ldots, i_{T}} \sum_{t=1}^{T} c_{t}\left[i_{t}\right]-\min _{\pi^{*}} \sum_{t=1}^{T} c_{t}\left[\pi^{*}\left(s_{t}\right)\right] \text {, s.t., } \sum_{t=1}^{T}\left(r_{t}\left[i_{t}\right]-\beta\right) \leq o(T)
$$

Goal:

Ideally:

$$
\min _{i_{1}, \ldots, i_{T}} \sum_{t=1}^{T} c_{t}\left[i_{t}\right]-\min _{\pi^{*}} \sum_{t=1}^{T} c_{t}\left[\pi^{*}\left(s_{t}\right)\right], \text { s.t., } r_{t}\left[i_{t}\right] \leq \beta, \forall t
$$

More realistically:

$$
\min _{i_{1}, \ldots, i_{T}} \sum_{t=1}^{T} c_{t}\left[i_{t}\right]-\min _{\pi^{*}} \sum_{t=1}^{T} c_{t}\left[\pi^{*}\left(s_{t}\right)\right], \quad s . t ., \sum_{t=1}^{T}\left(r_{t}\left[i_{t}\right]-\beta\right) \leq o(T)
$$

No constraint violation in a long-term perspective!

Full Information OCP Setting

Decision: $x \in \mathcal{X}$
Convex Loss: $\ell_{t}(x)$
Convex Constraint: $f_{t}(x) \leq 0$

Full Information OCP Setting

Decision: $x \in \mathcal{X}$
Convex Loss: $\ell_{t}(x)$
Convex Constraint: $f_{t}(x) \leq 0$

Full Information OCP Setting

Decision: $x \in \mathcal{X}$
Convex Loss: $\ell_{t}(x)$
Convex Constraint: $f_{t}(x) \leq 0$

Full Information OCP Setting

Decision: $x \in \mathcal{X}$
Convex Loss: $\ell_{t}(x)$
Convex Constraint: $f_{t}(x) \leq 0$

Full Information OCP Setting

Decision: $x \in \mathcal{X}$
Convex Loss: $\ell_{t}(x)$
Convex Constraint: $f_{t}(x) \leq 0$

No constraint violation in a long-term perspective!

Competing Against...

$$
\begin{gathered}
\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
\text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{gathered}
$$

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Option 1: $\mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}$

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Option 1: $\mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}$ Decisions satisfy average constraint

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Option 1: $\mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}$ Decisions satisfy average constraint
Option 2: $\mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\}$

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \quad \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Option 1: $\mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}$ Decisions satisfy average constraint Option 2: $\mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\} \quad$ Decisions satisfy every constraint

Competing Against...

$$
\begin{aligned}
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T)
\end{aligned}
$$

Option 1: $\mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}$ Decisions satisfy average constraint
Option 2: $\mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\} \quad$ Decisions satisfy every constraint

Option 1 seems quite natural.....

Competing Against...

Competing Against...

$$
\text { Option 1: } \mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}
$$

Competing Against...

$$
\text { Option 1: } \mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}
$$

Claim: there exist a sequence of loss and constraints such that for any sequence of decisions that satisfies the average constraint:

$$
\lim \sup _{t \rightarrow \infty} \sum_{i=1}^{t} f_{i}\left(x_{i}\right) / t \leq 0
$$

then, the regret grows linearly when competing against \mathcal{O}^{\prime} :

$$
\lim \sup _{t \rightarrow \infty}\left(\sum_{i=1}^{t} \ell_{i}\left(x_{i}\right)-\min _{x^{*} \in \mathcal{O}^{\prime}} \sum_{i=1}^{t} \ell_{i}\left(x^{*}\right)\right)=\Omega(t)
$$

Competing Against...

$$
\text { Option 1: } \mathcal{O}^{\prime}=\left\{x \in \mathcal{X}: \sum_{t=1}^{T} f_{t}(x) \leq 0\right\}
$$

Claim: there exist a sequence of loss and constraints such that for any sequence of decisions that satisfies the average constraint:

$$
\limsup _{t \rightarrow \infty} \sum_{i=1}^{t} f_{i}\left(x_{i}\right) / t \leq 0
$$

then, the regret grows linearly when competing against \mathcal{O}^{\prime} :

$$
\limsup _{t \rightarrow \infty}\left(\sum_{i=1}^{t} \ell_{i}\left(x_{i}\right)-\min _{x^{*} \in \mathcal{O}^{\prime}} \sum_{i=1}^{t} \ell_{i}\left(x^{*}\right)\right)=\Omega(t)
$$

(Construction adapts a discrete two-player game in [Mannor, et.al, 09])

Algorithm

$$
\begin{aligned}
& \qquad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*} \in \mathcal{O}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T) \\
& \text { where } \mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\}
\end{aligned}
$$

Algorithm

$$
\begin{aligned}
& \qquad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*} \in \mathcal{O}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T) \\
& \text { where } \mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\}
\end{aligned}
$$

Convex-Concave formulation [Mahdavi et al.,2012]

$$
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \quad \delta \in \mathbb{R}^{+}
$$

Algorithm

$$
\begin{aligned}
& \qquad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*} \in \mathcal{O}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right) \leq o(T) \\
& \text { s.t., } \sum_{t=1}^{T} f_{t}\left(x_{t}\right) \leq o(T) \\
& \text { where } \mathcal{O}=\left\{x \in \mathcal{X}: f_{t}(x) \leq 0, \forall t\right\}
\end{aligned}
$$

Convex-Concave formulation [Mahdavi et al.,2012]

$$
\begin{aligned}
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+ & \lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
& \lambda \in \mathbb{R}^{+} \text {dual variable } \\
& \lambda \in[0, \infty)
\end{aligned}
$$

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

At iteration $\mathbf{t}, x_{t}, \lambda_{t}$

Algorithm

> Strongly convex regularizer $\quad R(x)$
> Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{gathered}
\text { At iteration } \mathbf{t}, x_{t}, \lambda_{t} \\
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \quad \delta \in \mathbb{R}^{+}
\end{gathered}
$$

Algorithm

Strongly convex regularizer $R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{aligned}
& \text { At iteration } \mathbf{t}, x_{t}, \lambda_{t} \\
& \mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
& \mathcal{L}_{t}\left(x, \lambda_{t}\right.
\end{aligned}
$$

Algorithm

Strongly convex regularizer $R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{gathered}
\text { At iteration } \mathbf{t}, x_{t}, \lambda_{t} \\
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
\mathcal{L}_{t}\left(x, \lambda_{t}\right. \\
\text { OMD }
\end{gathered}
$$

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

> At iteration $\mathbf{t}, x_{t}, \lambda_{t}$
> $\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+}$ $\mathcal{L}_{t}\left(x, \lambda_{t}\right)$

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{gathered}
\text { At iteration } \mathrm{t}, x_{t}, \lambda_{t} \\
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
\mathcal{L}_{t}\left(x, \lambda_{t}\right. \\
\text { OMA }
\end{gathered}
$$

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{gathered}
\text { At iteration } \mathrm{t}, x_{t}, \lambda_{t} \\
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
\mathcal{L}_{t}\left(x, \lambda_{t}\right. \\
\text { OMD }
\end{gathered}
$$

$$
\begin{gathered}
\nabla R\left(\tilde{x}_{t+1}\right)=\nabla R\left(x_{t}\right)-\left.\mu \nabla \mathcal{L}_{t}\left(x, \lambda_{t}\right)\right|_{x=x_{t}} \\
x_{t+1}=\arg \min _{x \in \mathcal{X}} D_{R}\left(x, \tilde{x}_{t+1}\right)
\end{gathered}
$$

Algorithm

Strongly convex regularizer $\quad R(x)$
Reduction to Online Mirror Descent + Online Gradient Ascent

$$
\begin{gathered}
\text { At iteration } \mathrm{t}, x_{t}, \lambda_{t} \\
\mathcal{L}_{t}(x, \lambda)=\ell_{t}(x)+\lambda f_{t}(x)-\frac{\delta \mu}{2} \lambda^{2}, \delta \in \mathbb{R}^{+} \\
\mathcal{L}_{t}\left(x, \lambda_{t}\right. \\
\left.\mathcal{L}_{t} \sqrt{x_{t}}, \lambda\right)
\end{gathered}
$$

$$
\begin{aligned}
& \nabla R\left(\tilde{x}_{t+1}\right)=\nabla R\left(x_{t}\right)-\left.\mu \nabla \mathcal{L}_{t}\left(x, \lambda_{t}\right)\right|_{x=x_{t}} \quad \lambda_{t+1}=\max \left\{0, \lambda_{t}+\left.\mu \nabla \mathcal{L}_{t}\left(x_{t}, \lambda\right)\right|_{\lambda=\lambda_{t}}\right\} \\
& x_{t+1}=\arg \min _{x \in \mathcal{X}} D_{R}\left(x, \tilde{x}_{t+1}\right)
\end{aligned}
$$

Analysis

Analysis

$$
\begin{aligned}
\text { Apply classic OMD analysis on } \quad\left\{\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right\} \\
\sum_{t=1}^{T}\left(\mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right) \leq \frac{D_{R}\left(x, x_{1}\right)}{\mu}+\frac{\mu}{2 \alpha} \sum_{t=1}^{T}\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|^{2}
\end{aligned}
$$

Analysis

$$
\begin{gathered}
\text { Apply classic OMD analysis on }\left\{\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right\} \\
\sum_{t=1}^{T}\left(\mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right) \leq \frac{D_{R}\left(x, x_{1}\right)}{\mu}+\frac{\mu}{2 \alpha} \sum_{t=1}^{T}\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|^{2}
\end{gathered}
$$

Apply classic OGD analysis on $\left\{\mathcal{L}_{t}\left(x_{t}, \lambda\right)\right\}$

$$
\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right) \leq \frac{\lambda^{2}}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\frac{\partial \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)}{\partial \lambda_{t}}\right)^{2}
$$

Analysis

$$
\begin{gathered}
\text { Apply classic OMD analysis on }\left\{\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right\} \\
\sum_{t=1}^{T}\left(\mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right) \leq \frac{D_{R}\left(x, x_{1}\right)}{\mu}+\frac{\mu}{2 \alpha} \sum_{t=1}^{T}\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|^{2}
\end{gathered}
$$

Apply classic OGD analysis on $\left\{\mathcal{L}_{t}\left(x_{t}, \lambda\right)\right\}$

$$
\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right) \leq \frac{\lambda^{2}}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\frac{\partial \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)}{\partial \lambda_{t}}\right)^{2}
$$

Combine them:

Analysis

> Apply classic OMD analysis on $\left\{\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right\}$
> $\sum_{t=1}^{T}\left(\mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right) \leq \frac{D_{R}\left(x, x_{1}\right)}{\mu}+\frac{\mu}{2 \alpha} \sum_{t=1}^{T}\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|^{2}$

Apply classic OGD analysis on $\left\{\mathcal{L}_{t}\left(x_{t}, \lambda\right)\right\}$

$$
\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right) \leq \frac{\lambda^{2}}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\frac{\partial \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)}{\partial \lambda_{t}}\right)^{2}
$$

Combine them:

$$
\begin{gathered}
\frac{1}{T}\left[\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x^{*} \in \mathcal{O}} \sum_{t=1}^{T} \ell_{t}\left(x^{*}\right)\right] \leq O(1 / \sqrt{T}) \\
\frac{1}{T}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right] \leq O\left(T^{-1 / 4}\right)
\end{gathered}
$$

Special Case

Special Case

Special Case

$$
\begin{gathered}
\text { Set regularizer: } \quad R(x)=\sum_{i} x[i] \ln x[i] \\
x_{t+1}[i]=\frac{x_{t}[i] \exp \left(-\mu \nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)[i]\right)}{\sum_{j=1}^{d} x_{t}[j] \exp \left(-\mu \nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)[j]\right)} \\
\lambda_{t+1}=\max \left\{0, \lambda_{t}+\left.\mu \nabla \mathcal{L}_{t}\left(x_{t}, \lambda\right)\right|_{\lambda=\lambda_{t}}\right\}
\end{gathered}
$$

Contextual Bandit Setting

Contextual Bandit Setting

Expert Setting:

Contextual Bandit Setting

Expert Setting:

Finite Expert Set: $\Pi: \pi(s): \mathcal{S} \rightarrow \Delta(K)$

Contextual Bandit Setting

Expert Setting:

Finite Expert Set: $\Pi: \pi(s): \mathcal{S} \rightarrow \Delta(K)$
Decision Set: $\Delta(\Pi)$ (all distributions over expert set)

Contextual Bandit Setting

Expert Setting:

Finite Expert Set: $\Pi: \pi(s): \mathcal{S} \rightarrow \Delta(K)$
Decision Set: $\Delta(\Pi)$ (all distributions over expert set)
Competing Against: $P=\left\{w \in \Delta(\Pi): \mathbb{E}_{i \sim w, j \sim \pi_{i}\left(s_{t}\right)} r_{t}[j] \leq \beta, \forall t\right\}$

Contextual Bandit Setting

Expert Setting:

Finite Expert Set: $\Pi: \pi(s): \mathcal{S} \rightarrow \Delta(K)$
Decision Set: $\Delta(\Pi)$ (all distributions over expert set)
Competing Against: $P=\left\{w \in \Delta(\Pi): \mathbb{E}_{i \sim w, j \sim \pi_{i}\left(s_{t}\right)} r_{t}[j] \leq \beta, \forall t\right\}$

Algorithm

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02,], EXP4.P [Beygelzimer et al., 11])

Algorithm

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02,], EXP4.P [Beygelzimer et al., 11])

Expert 1

Expert 2

Expert 3
Player

Algorithm

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02,], EXP4.P [Beygelzimer et al., 11])
s_{t}

Expert 1

Expert 2

Expert 3
Player

Algorithm

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02,], EXP4.P [Beygelzimer et al., 11])

s_{t}
 Expert $1 p_{1}=\pi_{1}\left(s_{t}\right)$

Expert 2

Expert 3

Algorithm

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02,], EXP4.P [Beygelzimer et al., 11])

```
st
Expert 1 }\mp@subsup{p}{1}{}=\mp@subsup{\pi}{1}{}(\mp@subsup{s}{t}{}
Expert 2
Expert 3

\section*{Algorithm}

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02, ], EXP4.P [Beygelzimer et al., 11] )


\section*{Algorithm}

Reduction to Full Information Setting
(i.e., EXP4 [Auer et al., 02, ], EXP4.P [Beygelzimer et al., 11] )


\section*{Algorithm}

\section*{Reduction to Full Information Setting}
(i.e., EXP4 [Auer et al., 02, ], EXP4.P [Beygelzimer et al., 11] )


\section*{Algorithm}

\section*{Reduction to Full Information Setting}
(i.e., EXP4 [Auer et al., 02, ], EXP4.P [Beygelzimer et al., 11] )


\section*{Algorithm}
\[
\begin{gathered}
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right]
\end{gathered}
\]

Black-Box Learner of OCP with Constraints (R(w) set to negative entropy)

\section*{Algorithm}
\[
\begin{gathered}
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right]
\end{gathered}
\]
\[
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \quad \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right]
\]

\section*{Black-Box Learner of OCP \\ with Constraints}
( \(\mathrm{R}(\mathrm{w}\) ) set to negative entropy)

\section*{Algorithm}
\[
\begin{gathered}
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right]
\end{gathered}
\]
\[
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \quad \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right]
\]
\[
\hat{y}_{t}[j]=p_{j} \cdot \hat{c}_{t}, \hat{z}_{t}[j]=p_{j} \cdot \hat{r}_{t} \text { for expert } \mathrm{j}
\]

\section*{Black-Box Learner of OCP with Constraints}
( \(\mathrm{R}(\mathrm{w}\) ) set to negative entropy)

\section*{Algorithm}
\[
\begin{gathered}
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right]
\end{gathered}
\]
\[
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \quad \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right]
\]
\[
\hat{y}_{t}[j]=p_{j} \cdot \hat{c}_{t}, \hat{z}_{t}[j]=p_{j} \cdot \hat{r}_{t} \text { for expert } \mathrm{j}
\]
\[
\hat{\ell}_{t}(w)=w \cdot \hat{y}_{t}, \hat{f}_{t}(w)=w \cdot \hat{z}_{t}
\]

\section*{Black-Box Learner of OCP}
with Constraints
( \(\mathrm{R}(\mathrm{w}\) ) set to negative entropy)

\section*{Algorithm}
\[
\begin{gathered}
\text { Player } \\
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right] \\
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right] \\
\hat{y}_{t}[j]=p_{j} \cdot \hat{c}_{t}, \hat{z}_{t}[j]=p_{j} \cdot \hat{r}_{t} \text { for expert } \mathrm{j} \\
\hat{\ell}_{t}(w)=w \cdot \hat{y}_{t}, \hat{f}_{t}(w)=w \cdot \hat{z}_{t} \\
\downarrow \beta \\
\text { Black-Box Learner of OCP } \\
\text { with Constraints } \\
\text { (R(w) set to negative entropy) }
\end{gathered}
\]

\section*{Algorithm}
\[
\begin{gathered}
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right]
\end{gathered}
\]
\[
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \quad \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right]
\]
\[
\hat{y}_{t}[j]=p_{j} \cdot \hat{c}_{t}, \hat{z}_{t}[j]=p_{j} \cdot \hat{r}_{t} \text { for expert } \mathrm{j}
\]
\[
\hat{\ell}_{t}(w)=w \cdot \hat{y}_{t}, \hat{f}_{t}(w)=w \cdot \hat{z}_{t}
\]


Black-Box Learner of OCP with Constraints
( \(\mathrm{R}(\mathrm{w}\) ) set to negative entropy)

Update to \(w_{t+1}\)

\section*{Algorithm}
\[
\begin{gathered}
\text { Player } \\
p_{t}=\sum_{i=1}^{N} w_{t}[i] p_{i} \rightarrow a_{t} \in[K] \\
c_{t}\left[a_{t}\right], r_{t}\left[a_{t}\right] \\
\hat{c}_{t}=\left[0,0, \ldots, c_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0 \ldots\right], \hat{r}_{t}=\left[0,0, \ldots, r_{t}\left[a_{t}\right] / p_{t}\left[a_{t}\right], 0, \ldots\right] \\
\hat{y}_{t}[j]=p_{j} \cdot \hat{c}_{t}, \hat{z}_{t}[j]=p_{j} \cdot \hat{r}_{t} \text { for expert j } \\
\hat{\ell}_{t}(w)=w \cdot \hat{y}_{t}, \hat{f}_{t}(w)=w \cdot \hat{z}_{t} \\
\downarrow \beta
\end{gathered}
\]

Black-Box Learner of OCP with Constraints
( \(\mathrm{R}(\mathrm{w}\) ) set to negative entropy)

EXP4.R (EXP4 with Risk constraints)

Update to \(w_{t+1}\)

\section*{Analysis}

Under the assumption that \(P \neq \emptyset\), for any sequence of cost and risk vectors, EXP4.R has the following guarantees:
\[
\begin{gathered}
\mathbb{E}\left[\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j]\right] \leq O(\sqrt{T K \ln (|\Pi|)}) \\
\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\left[a_{t}\right]-\beta\right] \leq O\left(T^{3 / 4}(K \ln (|\Pi|))^{1 / 4}\right)
\end{gathered}
\]

Where \(w^{*} \in\left\{w \in \Delta(\Pi): \mathbb{E}_{i \sim w, j \sim \pi_{i}\left(s_{t}\right)} r_{t}[j] \leq \beta, \forall t\right\}\)

\section*{Algorithm}

We also want high probability statement.
Use the trick in EXP3.P (and EXP4.P)

\section*{Algorithm}

We also want high probability statement. Use the trick in EXP3.P (and EXP4.P)
\[
\hat{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}\right)-\delta \mu \lambda^{2} / 2
\]

\section*{Algorithm}

We also want high probability statement. Use the trick in EXP3.P (and EXP4.P)
\[
\hat{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}\right)-\delta \mu \lambda^{2} / 2
\]
\[
\mathbb{E}_{t}\left[\hat{y}_{t}+\lambda \hat{z}_{t}\right]=y_{t}+\lambda z_{t}
\]

\section*{Algorithm}

We also want high probability statement. Use the trick in EXP3.P (and EXP4.P)
\[
\hat{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}\right)-\delta \mu \lambda^{2} / 2
\]
\[
\begin{aligned}
& \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda \hat{z}_{t}\right]=y_{t}+\lambda z_{t} \\
& \hat{y}_{t}+\lambda \hat{z}_{t}-\kappa \sum_{k=1}^{K} \frac{\pi_{j}\left(s_{t}\right)[k]}{p_{t}[k]}
\end{aligned}
\]

\section*{Algorithm}

We also want high probability statement. Use the trick in EXP3.P (and EXP4.P)
\[
\begin{gathered}
\hat{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}\right)-\delta \mu \lambda^{2} / 2 \\
\mathbb{E}_{t}\left[\hat{y}_{t}+\lambda \hat{z}_{t}\right]=y_{t}+\lambda z_{t} \\
\tilde{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}-\kappa \sum_{k=1}^{K} \frac{\pi_{j}\left(s_{t}\right)[k]}{p_{t}[k]}\right)-\delta \mu \lambda^{2} / 2
\end{gathered}
\]

\section*{Algorithm}

We also want high probability statement. Use the trick in EXP3.P (and EXP4.P)
\[
\begin{gathered}
\hat{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}\right)-\delta \mu \lambda^{2} / 2 \\
\mathbb{E}_{t}\left[\hat{y}_{t}+\lambda \hat{z}_{t}\right]=y_{t}+\lambda z_{t} \\
\tilde{\mathcal{L}}_{t}(w, \lambda)=w \cdot\left(\hat{y}_{t}+\lambda \hat{z}_{t}-\kappa \sum_{k=1}^{K} \frac{\pi_{j}\left(s_{t}\right)[k]}{p_{t}[k]}\right)-\delta \mu \lambda^{2} / 2
\end{gathered}
\]

EXP4.P.R (EXP4.P with Risk Constraints)

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability 1- \(v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability \(1-v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\)

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability 1- \(v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability \(1-v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

Challenge: \(\quad \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda_{t} \hat{z}_{t}\right]=y_{t}+\lambda_{t} z_{t}\)

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability \(1-v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

Challenge: \(\quad \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda_{t} \hat{z}_{t}\right]=y_{t}+\lambda_{t} z_{t}\)
\[
\operatorname{Var}\left(\lambda_{t} \hat{z}_{t}\right)=\frac{\lambda_{t}^{2}}{p}
\]

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability 1- \(v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

Challenge: \(\quad \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda_{t} \hat{z}_{t}\right]=y_{t}+\lambda_{t} z_{t}\)
\[
\operatorname{Var}\left(\lambda_{t} \hat{z}_{t}\right)=\frac{\lambda_{t}^{2}}{p} \quad \lambda_{t}=O\left(\frac{\beta}{\delta \mu}\right)
\]

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability 1- \(v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

Challenge: \(\quad \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda_{t} \hat{z}_{t}\right]=y_{t}+\lambda_{t} z_{t}\)
\[
\operatorname{Var}\left(\lambda_{t} \hat{z}_{t}\right)=\frac{\lambda_{t}^{2}}{p} \quad \lambda_{t}=O\left(\frac{\beta}{\delta \mu}\right) \sqrt{T}
\]

\section*{Analysis}

Theorem: Under the assumption that \(P \neq \emptyset\), for any sequence of cost, risk vectors and any \(\epsilon \in(0,0.5)\), we have with high probability 1- \(v\) :
\[
\begin{aligned}
\sum_{t=1}^{T} c_{t}\left[a_{t}\right]- & \sum_{t=1}^{T} \mathbb{E}_{i \sim w^{*}, j \sim \pi_{i}\left(s_{t}\right)} c_{t}[j] \leq O\left(\sqrt{T^{\epsilon+1 / 2} K \ln (\Pi / v)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (\Pi)}\right)
\end{aligned}
\]

When \(\epsilon \rightarrow 0\) : Average Regret-> \(O(1 / \sqrt{T})\) Avg constraint violation-> \(O(1)\) When \(\epsilon \rightarrow 0.5: \quad\) Average Regret-> \(O(1)\) Avg constrain violation-> \(O\left(T^{-1 / 4}\right)\)

Challenge: \(\quad \mathbb{E}_{t}\left[\hat{y}_{t}+\lambda_{t} \hat{z}_{t}\right]=y_{t}+\lambda_{t} z_{t}\)
\[
\operatorname{Var}\left(\lambda_{t} \hat{z}_{t}\right)=\frac{\lambda_{t}^{2}}{p} \quad \lambda_{t}=O\left(\frac{\beta}{\delta \mu}\right) \rightarrow \operatorname{Var}\left(\lambda_{t} \hat{z}_{t}\right)=\frac{T}{p}
\]

\section*{Simulation}

High risk region


Safe region

\section*{Simulation}

High risk region


Safe region

\section*{Simulation}


Context is the RBF feature with respect to the nine way points.

We have \(4 \wedge 9\) experts. Namely each expert suggests one action at each waypoint

We ran the EXP4.R with different risk thresholds

\section*{Simulation}



\section*{Simulation}


\section*{Simulation}

\section*{Threshold 0.45}


\section*{Conclusion and Future Work}
1. We consider sequential decision making problem with additional adversarial constraints.
2. In our applications these constraints are used to model safety related issues in decision making process.
3. Is there any algorithm that can achieve \(\sqrt{T}\) total regret and \(\sqrt{T}\) total constraint violation simultaneously?
4. Is there better heuristic we can leverage to achieve tighter regret and constrain violation in high probability?

\title{
Thanks
}

\author{
Wen Sun \\ [wensun@cs.cmu.edu]
}

The Robotics Institute Carnegie Mellon University

Microsoft
Beserich```

