Efficient Reinforcement Learning via **Representation Learning**

Joint work with Masatoshi Uehara (Cornell) & Xuezhou Zhang (Princeton)

Cornell University Department of Computer Science

Wen Sun

Empirical RL for large-scale problems

[AlphaGo, Silver et.al, 15]

[OpenAl Five, 18]

Rich (nonlinear) function approximation + RL can work well w/ enough samples

[OpenAI, 19]

Can we design provably efficient algorithms for *Rich Function Approx* + *RL* ?

Can we design provably efficient algorithms for *Rich Function Approx* + *RL* ?

RL

Environment w/ complex highdim data

Can we design provably efficient algorithms for *Rich Function Approx* + *RL* ?

Environment w/ complex highdim data

Episodic Infinite Horizon Discounted MDPs

agent

Policy: state to action

Reward & Next State $r(s, a), s' \sim P(\cdot \mid s, a)$

Episodic Infinite Horizon Discounted MDPs

Objective: $\max J(\pi; P, r), \text{ where } J(\pi; P, r) := \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \mid a \sim \pi, P\right]$ ${\cal \pi}$

- Reward & Next State $r(s, a), s' \sim P(\cdot \mid s, a)$

Episodic Infinite Horizon Discounted MDPs

 ${\cal \pi}$

- Reward & Next State $r(s, a), s' \sim P(\cdot \mid s, a)$
 - Objective:
- max $J(\pi; P, r)$, where $J(\pi; P, r) := \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots | a \sim \pi, P \right]$
 - Assume fixed initial state s_0

Low-rank MDP

Low-rank MDP

$\exists \mu^{\star}, \phi^{\star} : \quad \forall s, a, s', P^{\star}(s' \mid s, a) = \mu^{\star}(s')^{\top} \phi^{\star}(s, a)$

$\exists \mu^{\star}, \phi^{\star} : \quad \forall s, a, s', P^{\star}(s' \mid s, a) = \mu^{\star}(s')^{\mathsf{T}} \phi^{\star}(s, a)$

Linear MDP = low-rank + known ϕ^{\star}

Low-rank MDP

Low-rank MDP \neq **Linear MDPs** (Jin et al, Yang & Wang)

$\exists \mu^{\star}, \phi^{\star} : \quad \forall s, a, s', P^{\star}(s' \mid s, a) = \mu^{\star}(s')^{\mathsf{T}} \phi^{\star}(s, a)$

Linear MDP = low-rank + known ϕ^{\star}

Low-rank MDP

Low-rank MDP \neq Linear MDPs (Jin et al, Yang & Wang)

e.g., Latent variable models where Z is the discrete latent space

Low-rank MDP is general

[slide credit: Akshay Krishnumurthy]

e.g., Latent variable models where Z is the discrete latent space

Low-rank MDP is general

Given s, a: $z \sim \phi^{\star}(s, a), s' \sim \nu^{\star}(z)$

[slide credit: Akshay Krishnumurthy]

Provably efficient learning in low-rank mdp is plausible

	Setting	Sample Complexity	Computation
Olive [JKALS,17]	Low Bellman rank	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^4}$	Inefficient
Witness Rank [<mark>S</mark> JKAL,19]	Low Witness rank	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^4}$	Inefficient
BLin-UCB [DKLLMSW,21]	Bilinear Class	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^7}$	Inefficient
Moffle [MCKJA,21]	Low-nonnegative-rank MDP	$\frac{d^6 A^{13}}{\epsilon^2 \eta^5 (1-\gamma)^5}$	Oracle-efficient
FLAMBE [AKK <mark>S</mark> ,20]	Low-rank MDP	$\frac{d^7 A^9}{\epsilon^{10} (1-\gamma)^{22}}$	Oracle-efficient

Provably efficient learning in low-rank mdp is plausible

	Setting	Sample Complexity	Computation
Olive [JKALS,17]	Low Bellman rank	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^4}$	Inefficient
Witness Rank [SJKAL,19]	Low Witness rank	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^4}$	Inefficient
BLin-UCB [DKLLMSW,21]	Bilinear Class	$\frac{d^2 A}{\epsilon^2 (1-\gamma)^7}$	Inefficient
Moffle [MCKJA,21]	Low-nonnegative-rank MDP	$\frac{d^6 A^{13}}{\epsilon^2 \eta^5 (1-\gamma)^5}$	Oracle-efficient
FLAMBE [AKKS,20]	Low-rank MDP	$\frac{d^7 A^9}{\epsilon^{10}(1-\gamma)^{22}}$	Oracle-efficient

FLAMBE is oracle-efficient and was state-of-art on low-rank MDP

Our learning setting

- 1. Realizable hypothesis classes Γ, Φ
 - $\mu^{\star} \in \Gamma, \phi^{\star} \in \Phi$

Our learning setting

- 1. Realizable hypothesis classes Γ, Φ
 - $\mu^{\star} \in \Gamma, \phi^{\star} \in \Phi$
 - 2. Computation oracle:
- Maximum Likelihood Estimation (MLE):
 - $(\hat{\mu}, \hat{\phi}) := \arg \max_{\mu, \phi} \sum_{i=1}^{n} \ln \left(\mu(s_i') \phi(s_i, a_i) \right)$

Our learning setting

- 1. Realizable hypothesis classes Γ, Φ
 - $\mu^{\star} \in \Gamma, \phi^{\star} \in \Phi$
 - 2. Computation oracle:
- Maximum Likelihood Estimation (MLE): $(\hat{\mu}, \hat{\phi}) := \arg \max_{\mu, \phi} \sum_{i=1}^{n} \ln \left(\mu(s_i) \phi(s_i, a_i) \right)$
 - - 3. Learning Goal:
- Finding near-optimal policy w/ (tight) poly($A, d, 1/(1 \gamma), \ln(|\Phi||\Gamma|)$)

(UCB-driven Representation Learning for online RL)

- At iteration n:

Our algorithm: Rep-UCB (UCB-driven Representation Learning for online RL)

Data generation from π^n : $s \sim d^{\pi^n}, a \sim \text{Uniform}(\mathscr{A}), s' \sim P^{\star}(. | s, a)$ $a' \sim \text{Uniform}(\mathscr{A}), s'' \sim P^{\star}(. | s', a')$

- At iteration n:

(UCB-driven Representation Learning for online RL)

- At iteration n:
- Data Aggregation:

$$= \mathscr{D}_{n-1} + \{s, a, s'\} \\ = \mathscr{D}'_{n-1} + \{s', a', s''\}$$

(UCB-driven Representation Learning for online RL)

- At iteration n:
- Data Aggregation:

$$= \mathcal{D}_{n-1} + \{s, a, s'\} \\ = \mathcal{D}'_{n-1} + \{s', a', s''\}$$

Representation / model Learning (MLE)

 $\hat{P} := (\hat{\mu}, \hat{\phi}) = \arg\max_{\mu, \phi} \mathbb{E}_{\mathcal{D}_n + \mathcal{D}'_n} \ln(\mu(s')^{\mathsf{T}} \phi(s, a))$

(UCB-driven Representation Learning for online RL)

Data generation from π^n : $s \sim d^{\pi^n}, a \sim \text{Uniform}(\mathscr{A}), s' \sim P^{\star}(. | s, a)$ \mathcal{D}_n $a' \sim \text{Uniform}(\mathscr{A}), s'' \sim P^{\star}(. | s', a')$ \mathcal{D}'_n

(Linear bandit style) bonus under $\hat{\phi}$:

$$b(s,a) = c\sqrt{\hat{\phi}(s,a)}$$

$$\Sigma = \sum_{s,a \in \mathcal{D}_n} \hat{\phi}(s,a)$$

- At iteration n:
- Data Aggregation:

$$= \mathscr{D}_{n-1} + \{s, a, s'\} \\ = \mathscr{D}'_{n-1} + \{s', a', s''\}$$

Representation / model Learning (MLE)

$$f(x) = \hat{\phi}(s, a)$$

$$\hat{p} := (\hat{\mu}, \hat{\phi}) = \arg \max_{\mu, \phi} \mathbb{E}_{\mathcal{D}_n + \mathcal{D}'_n} \ln(\mu(s')^{\top} \phi)$$

$$\hat{p} := (\hat{\mu}, \hat{\phi}) = \arg \max_{\mu, \phi} \mathbb{E}_{\mathcal{D}_n + \mathcal{D}'_n} \ln(\mu(s')^{\top} \phi)$$

(UCB-driven Representation Learning for online RL)

- At iteration n:
- Data Aggregation:

$$= \mathscr{D}_{n-1} + \{s, a, s'\} \\ = \mathscr{D}'_{n-1} + \{s', a', s''\}$$

Representation / model Learning (MLE)

$$\hat{P} := (\hat{\mu}, \hat{\phi}) = \arg\max_{\mu, \phi} \mathbb{E}_{\mathcal{D}_n + \mathcal{D}'_n} \ln(\mu(s')^{\mathsf{T}} \phi)$$

PAC-Bound of Rep-UCB in low-rank MDP

- Assume trajectory-reward is normalized in [0,1]. W/ high probability, it finds an ϵ near optimal policy, with # of samples:
 - $\widetilde{O}\left(\frac{d^4A^2}{\epsilon^2(1-\gamma)^5}\cdot\ln\left(|\Gamma||\Phi|\right)\right)$

PAC-Bound of Rep-UCB in low-rank MDP

For reference, prior SOTA FLAMBE has the following bound:

$$\widetilde{O}\left(\frac{d^7 A^9}{\epsilon^{10}(1-\gamma)^{22}}\cdot\ln\left(|\Gamma||\Phi|\right)\right)$$

Assume trajectory-reward is normalized in [0,1]. W/ high probability, it finds an ϵ near optimal policy, with # of samples:

 $\widetilde{O}\left(\frac{d^4A^2}{\epsilon^2(1-\gamma)^5}\cdot\ln\left(|\Gamma||\Phi|\right)\right)$

Applying our new techniques to Offline RL

Offline RL: we only have a static dataset $\mathcal{D} = \{s, a, s'\}$, where $(s,a) \sim \pi_b, s' \sim P^{\star}(.|s,a)$

offline reinforcement learning

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

Applying our new techniques to Offline RL

Offline RL: we only have a static dataset $\mathcal{D} = \{s, a, s'\}$, where $(s,a) \sim \pi_b, s' \sim P^{\star}(. \mid s,a)$

Goal: learn to find some high quality policy solely from \mathcal{D}

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

offline reinforcement learning

Coverage condition of the offline data

A comparator policy π is covered by offline data if the relative condition number is bounded:

$$\frac{a \sim d^{\pi} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\top} x}{a \sim d^{\pi} b} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\top} x} < \infty$$

Note coverage is wrt true representation only!

Coverage condition of the offline data

A comparator policy π is covered by offline data if the relative condition number is bounded:

$$C_{\pi^*} := \max_{x} \frac{x^{\top} \left(\mathbb{E}_{s, a \sim d^{\pi}} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\top} \right) x}{x^{\top} \left(\mathbb{E}_{s, a \sim d^{\pi_b}} \phi^{\star}(s, a) \phi^{\star}(s, a)^{\top} \right) x} < \infty$$

Goal is to learn robustly, i.e., as long as there is a high quality policy that is covered by d^{π_b} , we want to compete against it!

Note coverage is wrt true representation only!

The Rep-LCB Algorithm

(Low confidence bound driven offline RL)

1. Representation / model Learning (MLE) under \mathscr{D} $\hat{P} := (\hat{\mu}, \hat{\phi}) = \arg\max_{\mu, \phi} \mathbb{E}_{\mathcal{D}} \ln(\mu(s')^{\mathsf{T}} \phi(s, a))$

The Rep-LCB Algorithm (Low confidence bound driven offline RL)

2. Penalty w/ $\hat{\phi}$

$$b(s, a) = c \sqrt{\hat{\phi}(s, a)}$$
$$\Sigma = \sum \hat{\phi}(s, a)$$

 $s,a\in \mathcal{D}_n$

The Rep-LCB Algorithm (Low confidence bound driven offline RL)

The guarantee of Rep-LCB

Assume the behavior policy $\pi_b(a \mid s) \ge w, \forall s; W/$ high probability, for ALL comparator policy π^* (include history-dependent ones):

$$J(\pi^*; r) - J(\hat{\pi}; r) \le \widetilde{O}\left(\frac{d^2}{(1 - \gamma)^{1.5}}\sqrt{\frac{wC_{\pi^*}}{n}} \cdot \ln(|\Phi||\Gamma|)\right)$$

The guarantee of Rep-LCB

Assume the behavior policy $\pi_b(a \mid s) \ge w, \forall s; W/$ high probability, for ALL comparator policy π^* (include history-dependent ones):

$$J(\pi^*;r) - J(\hat{\pi};r) \le \widetilde{O}\left(\frac{d^2}{(1-\gamma)^{1.5}}\sqrt{\frac{wC_{\pi^*}}{n}} \cdot \ln(|\Phi||\Gamma|)\right)$$

The guarantee of Rep-LCB

Assume the behavior policy $\pi_b(a \mid s) \ge w, \forall s; W/$ high probability, for ALL comparator policy π^* (include history-dependent ones):

$$J(\pi^*; r) - J(\hat{\pi}; r) \le \widetilde{O}\left(\frac{d^2}{(1-\gamma)^{1.5}}\sqrt{\frac{wC_{\pi^*}}{n}} \cdot \ln(|\Phi||\Gamma|)\right)$$

(prior work CPPO [Uehara & Sun, 21] can achieve similar guarantee, but is a version-space alg)

1. Improved online Representation Learning algorithm for low-rank MDP: Oracle-efficient + tight sample complexity

2. New offline RL algorithm for low-rank MDP: Partial coverage + Oracle-efficient

Summary

Rep-UCB / LCB: https://arxiv.org/pdf/2110.04652.pdf