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Empirical RL for large-scale problems

[AlphaGo, Silver et.al, 15] [OpenAI Five, 18] [OpenAI,19]

Rich (nonlinear) function approximation + RL can work well w/ enough samples
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Our solution:

Representation Learning 
Oracle:

ϕ(s, a) ∈ ℝd

using ϕ
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Low-rank MDP is general

e.g., Latent variable models where  is the discrete latent spaceZ

z z z

s s s

a a

[slide credit: Akshay Krishnumurthy]

ϕ⋆(s, a) ∈ Δ(Z)

Given :  , s, a z ∼ ϕ⋆(s, a) s′ ∼ ν⋆(z)



Provably efficient learning in low-rank mdp is plausible

Setting Sample Complexity Computation

Olive [JKALS,17] Low Bellman rank Inefficient

Witness Rank [SJKAL,19] Low Witness rank Inefficient

BLin-UCB [DKLLMSW,21] Bilinear Class Inefficient

Moffle [MCKJA,21] Low-nonnegative-rank MDP Oracle-efficient
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FLAMBE is oracle-efficient and was state-of-art on low-rank MDP  
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2. Computation oracle:

Maximum Likelihood Estimation (MLE):

( ̂μ, ̂ϕ) := arg max
μ,ϕ

n

∑
i=1

ln (μ(s′ i)ϕ(si, ai))

3. Learning Goal:

Finding near-optimal policy w/ (tight) poly(A, d,1/(1 − γ), ln( |Φ | |Γ | ))
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Plan w/ reward + bonus

πn+1 = max
π

J(π; ̂P, r + b)

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆( . |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆( . |s′ , a′ )

𝒟n = 𝒟n−1 + {s, a, s′ }
Data Aggregation: 

𝒟′ n = 𝒟′ n−1 + {s′ , a′ , s′ ′ }



PAC-Bound of Rep-UCB in low-rank MDP

Xxl
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ϵ2(1 − γ)5
⋅ ln ( |Γ | |Φ |))

Assume trajectory-reward is normalized in . W/ high 
probability, it finds an  near optimal policy, with # of samples:
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Õ ( d7A9

ϵ10(1 − γ)22
⋅ ln ( |Γ | |Φ |))

For reference, prior SOTA 
FLAMBE has the following bound:
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Applying our new techniques to Offline RL

Goal: learn to find some high quality policy solely from 𝒟

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

Offline RL: we only have a static 
dataset , where𝒟 = {s, a, s′ }
(s, a) ∼ πb, s′ ∼ P⋆( . |s, a)
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Goal is to learn robustly, i.e.,  as long as there is a high quality policy that is 
covered by , we want to compete against it!dπb

Note coverage is wrt true representation only!
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̂P := ( ̂μ, ̂ϕ) = arg max
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3. Conservative Plan  

w/ reward + penalty

̂π = max
π

J(π; ̂P, r − b)
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Assume the behavior policy ;  W/ high probability, for ALL 
comparator policy  (include history-dependent ones):

πb(a |s) ≥ w, ∀s
π*

J(π*; r) − J( ̂π; r) ≤ Õ ( d2

(1 − γ)1.5

wCπ*

n
⋅ ln( |Φ | |Γ | ))

(prior work CPPO [Uehara & Sun, 21] can achieve similar guarantee, 
but is a version-space alg)



Summary 

1. Improved online Representation Learning algorithm for low-rank MDP:  

Oracle-efficient + tight sample complexity

2. New offline RL algorithm for low-rank MDP: 

Partial coverage + Oracle-efficient

Rep-UCB / LCB: https://arxiv.org/pdf/2110.04652.pdf

https://arxiv.org/pdf/2110.04652.pdf

