
Efficient Reinforcement Learning via
Representation Learning

Joint work with Masatoshi Uehara (Cornell) & Xuezhou Zhang (Princeton)

Wen Sun

Empirical RL for large-scale problems

[AlphaGo, Silver et.al, 15] [OpenAI Five, 18] [OpenAI,19]

Rich (nonlinear) function approximation + RL can work well w/ enough samples

Can we design provably efficient algorithms for
Rich Function Approx + RL ?

Can we design provably efficient algorithms for
Rich Function Approx + RL ?

Environment w/
complex high-

dim data

RL

Dataset 𝒟

Can we design provably efficient algorithms for
Rich Function Approx + RL ?

Environment w/
complex high-

dim data

RL

Dataset 𝒟

Our solution:

Representation Learning
Oracle:

ϕ(s, a) ∈ ℝd

using ϕ

Episodic Infinite Horizon Discounted MDPs

Policy: state to action

π(s) → a

Reward & Next State
r(s, a), s′ ∼ P(⋅ |s, a)

Episodic Infinite Horizon Discounted MDPs

Policy: state to action

π(s) → a

Reward & Next State
r(s, a), s′ ∼ P(⋅ |s, a)

Objective:
max

π
J(π; P, r), where J(π; P, r) := 𝔼 [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … |a ∼ π, P]

Episodic Infinite Horizon Discounted MDPs

Policy: state to action

π(s) → a

Reward & Next State
r(s, a), s′ ∼ P(⋅ |s, a)

Objective:
max

π
J(π; P, r), where J(π; P, r) := 𝔼 [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … |a ∼ π, P]

Assume fixed initial state s0

Low-rank MDP

=
P⋆(s′ |s, a) ϕ⋆(s, a)

(s, a)(s, a)

s′ s′

μ⋆(s′)

Transition matrix
 has

rank
P ∈ ℝSA×S

d

Low-rank MDP

=
P⋆(s′ |s, a) ϕ⋆(s, a)

(s, a)(s, a)

s′ s′

μ⋆(s′)

∃μ⋆, ϕ⋆ : ∀s, a, s′ , P⋆(s′ |s, a) = μ⋆(s′)⊤ϕ⋆(s, a)

Transition matrix
 has

rank
P ∈ ℝSA×S

d

Low-rank MDP

=
P⋆(s′ |s, a) ϕ⋆(s, a)

(s, a)(s, a)

s′ s′

μ⋆(s′)

∃μ⋆, ϕ⋆ : ∀s, a, s′ , P⋆(s′ |s, a) = μ⋆(s′)⊤ϕ⋆(s, a)

Low-rank MDP Linear MDPs (Jin et al, Yang & Wang)≠
Linear MDP = low-rank + known ϕ⋆

Transition matrix
 has

rank
P ∈ ℝSA×S

d

Low-rank MDP

=
P⋆(s′ |s, a) ϕ⋆(s, a)

(s, a)(s, a)

s′ s′

μ⋆(s′)

∃μ⋆, ϕ⋆ : ∀s, a, s′ , P⋆(s′ |s, a) = μ⋆(s′)⊤ϕ⋆(s, a)

Low-rank MDP Linear MDPs (Jin et al, Yang & Wang)≠
Linear MDP = low-rank + known ϕ⋆

Transition matrix
 has

rank
P ∈ ℝSA×S

d

Representation Learning

Low-rank MDP is general

e.g., Latent variable models where is the discrete latent spaceZ

z z z

s s s

a a

[slide credit: Akshay Krishnumurthy]

ϕ⋆(s, a) ∈ Δ(Z)

Low-rank MDP is general

e.g., Latent variable models where is the discrete latent spaceZ

z z z

s s s

a a

[slide credit: Akshay Krishnumurthy]

ϕ⋆(s, a) ∈ Δ(Z)

Given : , s, a z ∼ ϕ⋆(s, a) s′ ∼ ν⋆(z)

Provably efficient learning in low-rank mdp is plausible

Setting Sample Complexity Computation

Olive [JKALS,17] Low Bellman rank Inefficient

Witness Rank [SJKAL,19] Low Witness rank Inefficient

BLin-UCB [DKLLMSW,21] Bilinear Class Inefficient

Moffle [MCKJA,21] Low-nonnegative-rank MDP Oracle-efficient

FLAMBE [AKKS,20] Low-rank MDP Oracle-efficient

d2A
ϵ2(1 − γ)4

d2A
ϵ2(1 − γ)4

d2A
ϵ2(1 − γ)7

d6A13

ϵ2η5(1 − γ)5

d7A9

ϵ10(1 − γ)22

Provably efficient learning in low-rank mdp is plausible

Setting Sample Complexity Computation

Olive [JKALS,17] Low Bellman rank Inefficient

Witness Rank [SJKAL,19] Low Witness rank Inefficient

BLin-UCB [DKLLMSW,21] Bilinear Class Inefficient

Moffle [MCKJA,21] Low-nonnegative-rank MDP Oracle-efficient

FLAMBE [AKKS,20] Low-rank MDP Oracle-efficient

d2A
ϵ2(1 − γ)4

d2A
ϵ2(1 − γ)4

d2A
ϵ2(1 − γ)7

d6A13

ϵ2η5(1 − γ)5

d7A9

ϵ10(1 − γ)22

FLAMBE is oracle-efficient and was state-of-art on low-rank MDP

Our learning setting

1. Realizable hypothesis classes Γ, Φ

μ⋆ ∈ Γ, ϕ⋆ ∈ Φ

Our learning setting

1. Realizable hypothesis classes Γ, Φ

μ⋆ ∈ Γ, ϕ⋆ ∈ Φ

2. Computation oracle:

Maximum Likelihood Estimation (MLE):

(̂μ, ̂ϕ) := arg max
μ,ϕ

n

∑
i=1

ln (μ(s′ i)ϕ(si, ai))

Our learning setting

1. Realizable hypothesis classes Γ, Φ

μ⋆ ∈ Γ, ϕ⋆ ∈ Φ

2. Computation oracle:

Maximum Likelihood Estimation (MLE):

(̂μ, ̂ϕ) := arg max
μ,ϕ

n

∑
i=1

ln (μ(s′ i)ϕ(si, ai))

3. Learning Goal:

Finding near-optimal policy w/ (tight) poly(A, d,1/(1 − γ), ln(|Φ | |Γ |))

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆(. |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆(. |s′ , a′)

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆(. |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆(. |s′ , a′)

𝒟n = 𝒟n−1 + {s, a, s′ }
Data Aggregation:

𝒟′ n = 𝒟′ n−1 + {s′ , a′ , s′ ′ }

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Representation / model
Learning (MLE)

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟n+𝒟′ n
ln(μ(s′)⊤ϕ(s, a))

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆(. |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆(. |s′ , a′)

𝒟n = 𝒟n−1 + {s, a, s′ }
Data Aggregation:

𝒟′ n = 𝒟′ n−1 + {s′ , a′ , s′ ′ }

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Representation / model
Learning (MLE)

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟n+𝒟′ n
ln(μ(s′)⊤ϕ(s, a))

(Linear bandit style) bonus under :̂ϕ

b(s, a) = c ̂ϕ(s, a)Σ−1 ̂ϕ(s, a)

Σ = ∑
s,a∈𝒟n

̂ϕ(s, a) ̂ϕ(s, a)⊤

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆(. |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆(. |s′ , a′)

𝒟n = 𝒟n−1 + {s, a, s′ }
Data Aggregation:

𝒟′ n = 𝒟′ n−1 + {s′ , a′ , s′ ′ }

Our algorithm: Rep-UCB
(UCB-driven Representation Learning for online RL)

At iteration n:

Representation / model
Learning (MLE)

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟n+𝒟′ n
ln(μ(s′)⊤ϕ(s, a))

(Linear bandit style) bonus under :̂ϕ

b(s, a) = c ̂ϕ(s, a)Σ−1 ̂ϕ(s, a)

Σ = ∑
s,a∈𝒟n

̂ϕ(s, a) ̂ϕ(s, a)⊤

Plan w/ reward + bonus

πn+1 = max
π

J(π; ̂P, r + b)

Data generation from : πn

s ∼ dπn, a ∼ Uniform(𝒜), s′ ∼ P⋆(. |s, a)
a′ ∼ Uniform(𝒜), s′ ′ ∼ P⋆(. |s′ , a′)

𝒟n = 𝒟n−1 + {s, a, s′ }
Data Aggregation:

𝒟′ n = 𝒟′ n−1 + {s′ , a′ , s′ ′ }

PAC-Bound of Rep-UCB in low-rank MDP

Xxl

Õ (d4A2

ϵ2(1 − γ)5
⋅ ln (|Γ | |Φ |))

Assume trajectory-reward is normalized in . W/ high
probability, it finds an near optimal policy, with # of samples:

[0,1]
ϵ

PAC-Bound of Rep-UCB in low-rank MDP

Xxl

Õ (d4A2

ϵ2(1 − γ)5
⋅ ln (|Γ | |Φ |))

Assume trajectory-reward is normalized in . W/ high
probability, it finds an near optimal policy, with # of samples:

[0,1]
ϵ

Õ (d7A9

ϵ10(1 − γ)22
⋅ ln (|Γ | |Φ |))

For reference, prior SOTA
FLAMBE has the following bound:

Applying our new techniques to Offline RL

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

Offline RL: we only have a static
dataset , where𝒟 = {s, a, s′ }
(s, a) ∼ πb, s′ ∼ P⋆(. |s, a)

Applying our new techniques to Offline RL

Goal: learn to find some high quality policy solely from 𝒟

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

Offline RL: we only have a static
dataset , where𝒟 = {s, a, s′ }
(s, a) ∼ πb, s′ ∼ P⋆(. |s, a)

Coverage condition of the offline data

A comparator policy is covered by offline data if the relative condition number is bounded:π

Cπ* := max
x

x⊤ (𝔼s,a∼dπϕ⋆(s, a)ϕ⋆(s, a)⊤) x

x⊤ (𝔼s,a∼dπbϕ⋆(s, a)ϕ⋆(s, a)⊤) x
< ∞

Note coverage is wrt true representation only!

Coverage condition of the offline data

A comparator policy is covered by offline data if the relative condition number is bounded:π

Cπ* := max
x

x⊤ (𝔼s,a∼dπϕ⋆(s, a)ϕ⋆(s, a)⊤) x

x⊤ (𝔼s,a∼dπbϕ⋆(s, a)ϕ⋆(s, a)⊤) x
< ∞

Goal is to learn robustly, i.e., as long as there is a high quality policy that is
covered by , we want to compete against it!dπb

Note coverage is wrt true representation only!

The Rep-LCB Algorithm
(Low confidence bound driven offline RL)

1. Representation / model
Learning (MLE) under 𝒟

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟 ln(μ(s′)⊤ϕ(s, a))

The Rep-LCB Algorithm
(Low confidence bound driven offline RL)

1. Representation / model
Learning (MLE) under 𝒟

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟 ln(μ(s′)⊤ϕ(s, a))

2. Penalty w/ ̂ϕ

b(s, a) = c ̂ϕ(s, a)Σ−1 ̂ϕ(s, a)

Σ = ∑
s,a∈𝒟n

̂ϕ(s, a) ̂ϕ(s, a)⊤

The Rep-LCB Algorithm
(Low confidence bound driven offline RL)

1. Representation / model
Learning (MLE) under 𝒟

̂P := (̂μ, ̂ϕ) = arg max
μ,ϕ

𝔼𝒟 ln(μ(s′)⊤ϕ(s, a))

2. Penalty w/ ̂ϕ

b(s, a) = c ̂ϕ(s, a)Σ−1 ̂ϕ(s, a)

Σ = ∑
s,a∈𝒟n

̂ϕ(s, a) ̂ϕ(s, a)⊤

3. Conservative Plan

w/ reward + penalty

̂π = max
π

J(π; ̂P, r − b)

The guarantee of Rep-LCB

Assume the behavior policy ; W/ high probability, for ALL
comparator policy (include history-dependent ones):

πb(a |s) ≥ w, ∀s
π*

J(π*; r) − J(̂π; r) ≤ Õ (d2

(1 − γ)1.5

wCπ*

n
⋅ ln(|Φ | |Γ |))

The guarantee of Rep-LCB

Assume the behavior policy ; W/ high probability, for ALL
comparator policy (include history-dependent ones):

πb(a |s) ≥ w, ∀s
π*

J(π*; r) − J(̂π; r) ≤ Õ (d2

(1 − γ)1.5

wCπ*

n
⋅ ln(|Φ | |Γ |))

The guarantee of Rep-LCB

Assume the behavior policy ; W/ high probability, for ALL
comparator policy (include history-dependent ones):

πb(a |s) ≥ w, ∀s
π*

J(π*; r) − J(̂π; r) ≤ Õ (d2

(1 − γ)1.5

wCπ*

n
⋅ ln(|Φ | |Γ |))

(prior work CPPO [Uehara & Sun, 21] can achieve similar guarantee,
but is a version-space alg)

Summary

1. Improved online Representation Learning algorithm for low-rank MDP:

Oracle-efficient + tight sample complexity

2. New offline RL algorithm for low-rank MDP:

Partial coverage + Oracle-efficient

Rep-UCB / LCB: https://arxiv.org/pdf/2110.04652.pdf

https://arxiv.org/pdf/2110.04652.pdf

