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Offline RL 
Online RL Offline RL 

Big logged data 

• We only have access to logged data.


• We want to learn high-quality polices from 
the logged data.  



Question
• Unfortunately, the offline data is often not exploratory. 


• Q. Can we still learn good policies when the offline data is 
not fully exploratory? (with realizability of the model) 

Offline data: �  ρ(s, a) . Distribution induced by a policy � , �π dπ(s, a)



Global vs. Partial Coverage 
• Most of offline RL works assume global 

coverage. Under �  �  , 

they show the learned policy  �  can compete 
with the global optimal policy [MS, 2008].  

max
s,a

dπ(s, a)
ρ(s, a)

< ∞ ∀π

̂π

*�  

( �  is the optimal 
policy. �  is the policy 

value of � . ) 

Vπ(P⋆) − V ̂π = Small .
π(P⋆)

Vπ

π

*�   for 
any �  covered by offline 

data. 

Vπ − V ̂π = Small
π• In this work, we want to show results under 

partial coverage. We want to show the 
output policy can compete with any polices 

� .  π s . t . max
s,a

dπ(s, a)
ρ(s, a)

< ∞



Global vs. Partial Coverage 
• Global coverage is not satisfied in the following. ( �  is not 

covered by offline data)


• But, under partial coverage, we can still compete with a 
policy � .

π′ �

π �dπ(s, a)

�dπ′�(s, a)

Offline data: �  ρ(s, a)



What We Know So Far💭

• There are many works under global coverage [MS, 2008]. 


• In particular (linear) models, there exists a model-based 
algorithm under partial coverage [CUSKS21]. But not for 
any models! 

• Several papers under partial coverage in the model-free 
setting [RZMIR21, JYW21, ZCZS21,XCJMA21,ZWB21], 
which assume completeness as well as realizability. 



What We Show 
• We propose a model-based offline RL algorithm CPPO. 

We show the PAC guarantee under partial coverage 
assuming the realizability of the model.  


• This works for any MDPs 😄. 

• When we have more structures, the density-ratio based 
partial coverage concept is refined.


• Examples: linear mixture MDPs, KNRs, low-rank MDPs 
(models with unknown features), factored MDPs. 
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Notation 
• MDP:  � . Discount factor � , � : State space, 
� : Action space. 


• We have an offline dataset: � following 
� .  (�  is the true unknown transition density) 


• �  is a state action discounted occupancy 

distribution under �  and � . 


• �   is an expected cumulative reward of �  under P:  

� . 

⟨𝒮, 𝒜, r, P, γ, d0⟩ γ ∈ [0,1) 𝒮
𝒜

𝒟 = {s(i), a(i), s′ �(i)}n
i=1

(s, a) ∼ ρ, s′� ∼ P⋆(s, a) P⋆

dπ = (1 − γ)
∞

∑
t=0

γtdπ
t

π P⋆

Vπ
P π

E[
∞

∑
h=0

γhrh ∣ s0 ∼ d0, a0 ∼ π(s0), s1 ∼ P(s0, a0), ⋯]

Transition Dynamics 
�  P : 𝒮 × 𝒜 → Δ(𝒮)

Reward function 
�  r : 𝒮 × 𝒜 → [0,1]

Initial distribution 
�  d0 ∈ Δ(𝒮)



Function Classes We Use  

• We need two function classes: 


• Model class M ( �  ) to learn the 
true transition � 


•  Policy class �  � . Throughout this 
presentation, this is the unrestricted policy class. 

⊂ {𝒮 × 𝒜 → Δ(𝒮)}
P⋆ .

Π ( ⊂ {𝒮 → Δ(𝒜})



Model-based RL

• Under global coverage 😓 ( �  ) , the output can 

compete with the global optimal policy �  with � :  
�  

max
s,a

dπ(s, a)
ρ(s, a)

≤ C, ∀π

π(P⋆) 1 − δ
Vπ(P⋆)

P⋆ − V ̂π
P⋆ = O((1 − γ)−2 C ln( |M | /δ)/n) .

Step 1:  MLE. � .̂PMLE = argmaxP∈M

n

∑
i=1

log P(s′�(i) ∣ s(i), a(i))

Step 2: Policy Optimization. � .   ̂π = argmaxπ∈ΠVπ
̂PMLE
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Algorithm

• Search for the least favorable model in terms of �  that is 
feasible w.r.t the constraint.  


• Why? Pessimistic principle (being conservative on 
uncovered regions)  is employed. 

Vπ
P

Step 1:  MLE. � .̂PMLE = argmaxP∈M

n

∑
i=1

log P(s′�(i) ∣ s(i), a(i))

Step 2:  Solve constrained Optimization. 
 �   where 

�

̂π = argmaxπ∈Π min
P∈M𝒟

Vπ
P

M𝒟 = {P ∣ P ∈ M,
1
n

n

∑
i=1

∥ ̂PMLE( ⋅ ∣ s(i), a(i)) − P( ⋅ ∣ s(i), a(i))∥2
1 ≤ ξ} .

* �  is a hyperparamterξ

CPPO: Constrained Pessimistic Policy Optimization



 Model-based Concentrability 
Coefficient 

• Smaller than the density ratio: � 


• Adaptive to model classes. If the model class is small, �  is 
small either.  

C†
π ≤ max

s,a
dπ(s, a)/ρ(s, a) .

C†
π

[Definition] Model-based concentrability coefficient: 

!  C†
π = sup

P′�∈M

E(s,a)∼dπ[∥P′ �( ⋅ ∣ s, a) − P( ⋅ ∣ s, a)∥2
1]

E(s,a)∼ρ[∥(P′�( ⋅ ∣ s, a) − P( ⋅ ∣ s, a)∥2
1]

.



Guarantee of CPPO 

• The output can simultaneously compete with any comparator 
polices satisfying partial coverage � .


• Even if �  is the optimal policy � , �  is still weaker 

than the global coverage (� ) . 


•   When�  is infinite, we can still use localized Rademacher 
complexities. 

C†
π* < ∞

π* π(P⋆) C†
π(P⋆) < ∞

max
s,a

dπ(s, a)/ρ(s, a) < ∞, ∀π

|ℳ |

[PAC Bound for CPPO] Suppose ! . (by choosing  !  properly) 
With probability  !    

!

P⋆ ∈ M ξ
1 − δ,

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = O ((1 − γ)−2 C†
π* ln( |M | /δ)/n) .



Derivation

• Finally, use performance difference lemma. Done 👍

Definition of � ̂π . Pessimism. 

• Define �  then, � . ̂Vπ = min
P∈MD

Vπ
P . ̂π = argmaxπ

̂Vπ

• We can show �   in high probability. P⋆ ∈ MD

• We have �  (Pessimism).  ̂Vπ ≤ Vπ
P⋆, ∀π ∈ Π

•  
�Vπ*

P⋆ − V ̂π
P⋆ = Vπ*

P⋆ − ̂Vπ* + ̂Vπ* − V ̂π
P⋆ ≤ Vπ*

P⋆ − ̂Vπ* + ̂V ̂π − V ̂π
P⋆ ≤ Vπ*

P⋆ − ̂Vπ* .



Model free vs. Model-based 
• The error in CPPO does not include � . As a result, the 

policy class �  can be unrestricted.  More strongly, we can 
compete with any history dependent policies. 

|Π |
Π

• [XCJMA21] shows the PAC guarantee under partial 
coverage, realizability and Bellman completeness of Q-
function class for any policy in � , i.e. , � 


• Thus, �  needs to be generally restricted .


• It cannot compete with history dependent policies. 

Π 𝒯πQ ⊂ Q .

Π
* �  is the Bellman operator for a policy � .  𝒯π π



Comparison to Existing Pessimistic 
Algorithms

• Average error (over offline data) guarantees are weaker than 
pointwise error guarantees 😩 


• But average error guarantees are enough for the pessimism 
and obtained for any nonlinear models 😆 

• CPPO use the MLE guarantee:  
� 


• For linear models, [CUSKS21, JYW21] (existing offline RL papers 
using negative bonus terms) use 
�

E(s,a)∼ρ[∥ ̂PMLE( ⋅ ∣ s, a) − P⋆( ⋅ ∣ s, a)∥2
1] ≲ ln |M | /δ)/n .

Distance( ̂P( ⋅ ∣ s, a), P⋆( ⋅ ∣ s, a))2 ≲ Poly(1/n, ln(1/δ), ⋯), ∀(s, a) .
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Next Questions

• To see them, we analyze on four models:


•  Linear mixture MDPs (including linear MDPs),


• KNRs (generalization of LQRs),


• Low-rank MDPs (with unknown features),


• Factored MDPs.  

• �  is very abstract. Can we replace it with more 
interpretable quantities? (and tighter than the density ratio.)

C†

π*



1:Linear MDPs
Definition: Linear MDPs [YW20] 

 The true !  is !  ( Unknown !  ) given 
feature vectors  ! , ! . 

P⋆ μ⊤(s′ �)M⋆ϕ(s, a) M⋆ ∈ ℝd1×d2

ϕ(s, a) : 𝒮 × 𝒜 → ℝd2 μ(s) : 𝒮 → ℝd1

!P⋆ !μ !M⋆
!ϕ= �× �×

|S| � |S||A| × |S| � �  ×d1

�  d1 × d2
�  d2 × |S | |A |



1:Linear MDPs

• Smaller than the density ratio, i.e.,  � .


• If �  is small, this implies the offline data sufficiently covers the 
subspace that the comparator policy �  visits measured by � .   


• In tabular MDPs, � .  

C̄π* ≤ max
s,a

dπ*(s, a)/ρ(s, a)

C̄π*
π* ϕ(s, a)

C̄π* = max
s,a

dπ*(s, a)/ρ(s, a)

[Concentrability Coefficient for Linear MDPs] 

!  .C̄π* = sup
x∈ℝd

x⊤E(s,a)∼dπ⋆[ϕ(s, a)ϕ(s, a)⊤]x
x⊤E(s,a)∼ρ[ϕ(s, a)ϕ(s, a)⊤]x

Definition: Linear MDPs [YW20] 
 The true !  is !  ( Unknown !  ) given 
feature vectors  ! , ! . 

P⋆ μ⊤(s′ �)M⋆ϕ(s, a) M⋆ ∈ ℝd1×d2

ϕ(s, a) : 𝒮 × 𝒜 → ℝd2 μ(s) : 𝒮 → ℝd1



1:Linear MDPs

• Partial coverage is refined as �   


• �  can be singular. (Previous works assume 
the non-singularity. ) 

C̄π* < ∞ .

E(s,a)∼ρ[ϕ(s, a)ϕ(s, a)⊤]

[PAC Bound for CPPO] Suppose ! . With probability  !   

!

P⋆ ∈ M 1 − δ,
∀π*; Vπ*

P⋆ − V ̂π
P⋆ = Õ((1 − γ)−2 C̄π*d2 ln(1/δ)/n) .



1: Linear Mixture MDPs
Definition: Linear Mixture MDPs [AJSWY20,MJTS 20] 

 The true !  is !  given a feature vector 
!

P⋆ θ⋆⊤ψ(s, a, s′ �)
ψ(s, a, s′ �) : 𝒮 × 𝒜 × 𝒮 → ℝd .

[Concentrability Coefficient for Linear Mixture MDPs] 

 !  ,  

    where  ! . 

C̄π*,mix = sup
P∈ZP⋆

sup
x∈ℝd

x⊤E(s,a)∼dπ⋆[ψVπ*
P

(s, a)ψVπ*
P

(s, a)⊤]x

x⊤E(s,a)∼ρ[ψVπ*
P

(s, a)ψVπ*
P

(s, a)⊤]x
ZP⋆ = {P : E(s,a)∼ρ[TV(P( ⋅ ∣ s, a), P⋆( ⋅ ∣ s, a)2] ≤ ξ}

• Linear MDPs belong to linear mixture MDPs.


• Define pseudo feature vectors: �  ψV(s, a) = ∫ ψ(s, a, s′�)V(s′ �)d(s′�)

• �   is defined for varying feature vectors � . 


• In linear MDPs, �  reduces to � . 

C̄π*,mix ψVπ*
P

C̄π*,mix C̄π*



1: Linear Mixture MDPs

• Partial coverage concept is refined as �C̄π*,mix < ∞ .

[PAC Bound for CPPO] Suppose ! . With probability  !   

!

P⋆ ∈ M 1 − δ,
∀π*; Vπ*

P⋆ − V ̂π
P⋆ = Õ((1 − γ)−2 C̄π*,mixd2 ln(1/δ)/n) .



2 KNRs
Definition: Kerneliazed nonlinear regulators.  The true �  is a 
Gaussian distribution �  (�  given 
a feature vector �  (�  is a dimension of S)

P⋆

𝒩(W⋆ϕ(s, a), I) W⋆ ∈ ℝdS×d)
ϕ : 𝒮 × 𝒜 → ℝd . dS

[Concentrability Coefficient for KNRs] 

!  .C̄π* = sup
x∈ℝd

x⊤E(s,a)∼dπ⋆[ϕ(s, a)ϕ(s, a)⊤]x
x⊤E(s,a)∼ρ[ϕ(s, a)ϕ(s, a)⊤]x

• This is exactly the same as the one in linear MDPs. 

• Include LQRs. 

• Include RKHS models (GPs) . 



2 KNRs

• Partial coverage concept is refined as � 


• �  can be singular!!  The error depends on �  but not d. 


• d can be infinite. Formally, extended to the infinite-dimensional 
setting, �  = �  where � is an element of RKHS. 

C̄π* < ∞ .

Σρ rank[Σρ]

P⋆ 𝒩(g⋆(s, a), I) g⋆

[PAC Bound for CPPO]                   
 Let ! . Suppose ! . With !  

!

Σρ = E(s,a)∼ρ[ϕ(s, a)ϕ(s, a)⊤] P⋆ ∈ M 1 − δ,

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = Õ ((1 − γ)−2rank(Σρ)3 dSC̄π* ln(1/δ)/n) .



3: Low-rank MDPs 

• Features are unknown 😩.  We set the function classes 
� 


• Low-rank MDPs include latent variable models, block 
MDPs and linear MDPs. 

μ⋆ ∈ Ψ, ϕ⋆ ∈ Φ .

Definition: Low-rank MDPs [JKALS17, AKKS20]. The true 
�  is � . Both � ) are unknown 
features. ( � , � ) 
P⋆ μ⋆(s′ �)⊤ϕ⋆(s, a) μ⋆( ⋅ ), ϕ⋆( ⋅

μ⋆ : 𝒮 → ℝd ϕ⋆ : 𝒮 × 𝒜 → ℝd

!P⋆

|S| � |S||A| ×

= !μ⋆

|S| � d  ×

×
!ϕ⋆

d�  |S||A|  ×



3: Low-rank MDPs 

[Concentrability Coefficient for Low-rank MDPs] 

!C̄π*,ϕ* = sup
x∈ℝd

x⊤E(s,a)∼dπ⋆[ϕ⋆(s, a)ϕ⋆(s, a)⊤]x
x⊤E(s,a)∼ρ[ϕ⋆(s, a)ϕ⋆(s, a)⊤]x

•  Looks similar to the one in linear MDPs and KNRs 🤔 �  

depends on the only true feature �  but not on other features.


C†
π*,ϕ⋆

ϕ⋆

Definition: Low-rank MDPs [JKALS17,AKKS20]. The true �  
is � . Both � ) are unknown 
features. ( � , � ) 

P⋆

μ⋆(s′ �)⊤ϕ⋆(s, a) μ⋆( ⋅ ), ϕ⋆( ⋅
μ⋆ : 𝒮 → ℝd ϕ⋆ : 𝒮 × 𝒜 → ℝd



3: Low-rank MDPs
[PAC Bound for CPPO] Let ! .  

Suppose ! . with !   
! . 

Σρ,ϕ⋆ = E(s,a)∼ρ[ϕ⋆(s, a)ϕ⋆(s, a)⊤]
P⋆ ∈ M 1 − δ,

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = Õ((1 − γ)−2 C̄π*,ϕ⋆rank(Σρ,ϕ⋆)ln( |M | /δ)/n)

• Partial coverage concept is refined as � 


• Error depends on �  instead of d.

• Previous related work on sparse linear MDPs ([HDLSW20]) 

assumes the non-singularity of �  for any �

C̄π*,ϕ⋆ < ∞ .
rank(Σρ,ϕ⋆)

Σρ,ϕ ϕ ∈ Φ .



4. Factored MDPs
Definition: Factored (tabular) MDPs.   �  

�  Denote �

𝒮 = 𝒪d

P⋆(s′� ∣ s, a) =
d

∏
i=1

P⋆(s′�[i] ∣ s[Pai], a) . 𝒮i = 𝒪|Pai| .

S’[1]

S’[2]

S[d]

S[1]

S[2]

S[d]

…..
…..

S’[3] S[3]

S[4]

�Pa1 = [2,4]

Pa2 = [1,d]

Pa3 = [4]

• Factored MDPs are governed by �  parameters.


• Non-factored MDPs are governed by �  parameters. 

• When � , the difference is huge.

• Our goal is leveraging this factored structure. 

O(∑
i

|𝒪 ||Pai| )

O( |𝒪 |d )
|Pai | < < d



4. Factored MDPs
Definition: Factored (tabular) MDPs.   �  

�   Denote �

𝒮 = 𝒪d

P⋆(s′� ∣ s, a) =
d

∏
i=1

P⋆(s′ �[i] ∣ s[Pai], a) . 𝒮i = 𝒪|Pai| .

•  Introduce  �  , � 


• �  is the marginal density ratio over each component. 

C̄[ j]
π*,∞ = max

sj∈𝒮j,a∈𝒜

dπ(sj, a)
ρ(sj, a)

ν(sj, a) = ∑
s:∈𝒮,s[Paj]=sj

ν(s, a)

C̄[ j]
π*,∞

S’[1]

S’[2]

S[d]

S[1]

S[2]

S[d]

…..
…..

S’[3] S[3]

S[4]

�Pa1 = [2,4]

Pa2 = [1,d]

Pa3 = [4]
Example  

�C̄[1]
π*,∞ = max

s1∈{s[2],s[4]},a

dπ(s1, a)
ρ(s1, a)

.



4. Factored MDPs

• Thus,  �  is smaller than the global density ratio � . C̄π*,∞ max
s∈𝒮,a∈𝒜

dπ(s, a)
ρ(s, a)

[Concentrability Coefficient for Factored MDPs] 
!  C̄π*,∞ = max

j∈[1,⋯,d]
C̄j

π*,∞

•  �  is smaller than the global density ratio �  

for any � .  

C̄[ j]
π*,∞ max

s∈𝒮,a∈𝒜

dπ(s, a)
ρ(s, a)

j ∈ [1,⋯, d]



4. Factored MDPs

• Partial coverage concept is refined as � 


• This formally demonstrates the benefit of the factored 
structure in terms of the coverage condition. 

C̄π*,∞ < ∞ .

[PAC Bound for CPPO] Suppose ! . With probability  !   

! .

P⋆ ∈ M 1 − δ,

∀π*; Vπ*
P⋆ − V ̂π

P⋆ = Õ((1 − γ)−2 dC̄π*,∞ ∑
i

|𝒪 |Pai ln(1/δ)/n)



Disclaimer 

• But, by taking a model-based perspective on them and  
modifying CPPO, we can still ensure the PAC guarantee 
under partial coverage. 

• We claim CPPO works for any MDPs.  What does it mean?

• Any MDPs where the MLE has valid statistical guarantees. 

• CPPO does not work on (different) linear MDPs [JYWJ20] 
and linear Bellman complete MDPs 😩. 



Conclusion
• CPPO has the PAC guarantee under partial coverage 

assuming the realizability of the model. This works for any 
MDPs. 


• Partial coverage concept is tailored to each model: 


• KNRs, linear mixture MDPs: relative condition numbers. 


• Low-rank MDPs: relative condition numbers defined on 
the true unknown features. 


• Factored MDPs: density ratios considering the factored 
structures. 



Future Directions

• Computationally efficient algorithm which has 
PAC guarantee under partial coverage. 


• Lower bound results. 


• Bayesian algorithms. 
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