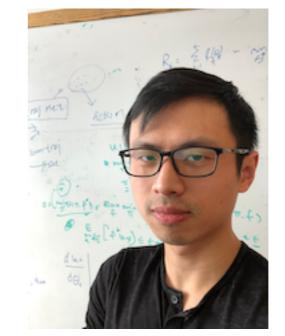
Pessimistic Model-based Offline Reinforcement Learning under Partial Coverage

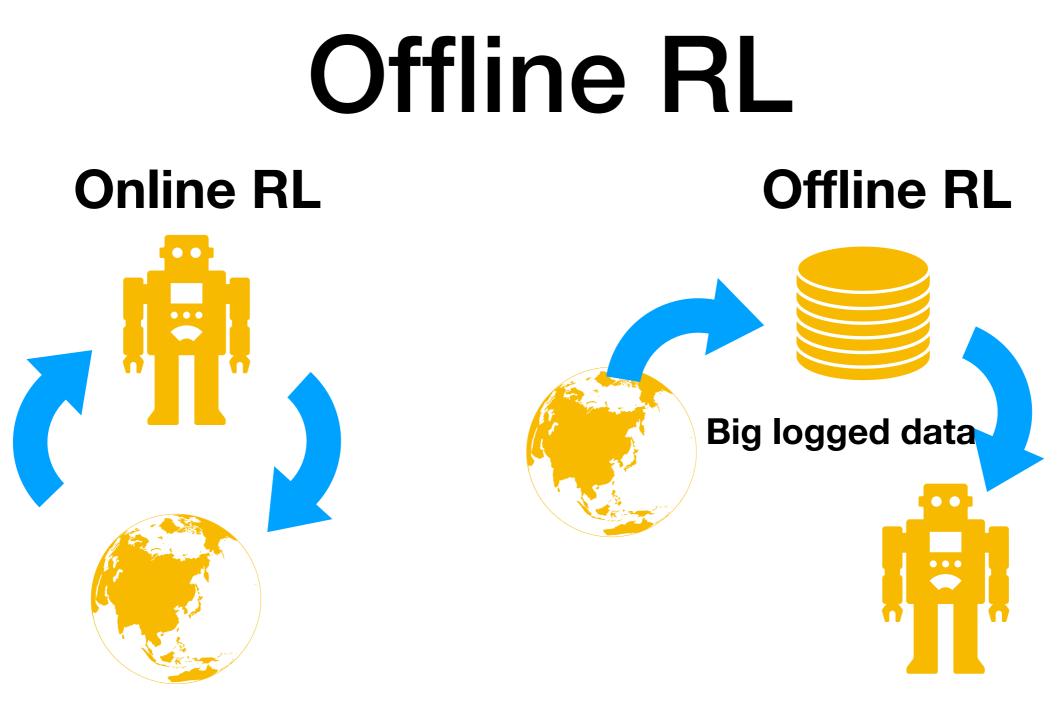
10/25, 2021 @RL Theory Seminar

Masatoshi Uehara, Wen Sun



Cornell University Department of Computer Science

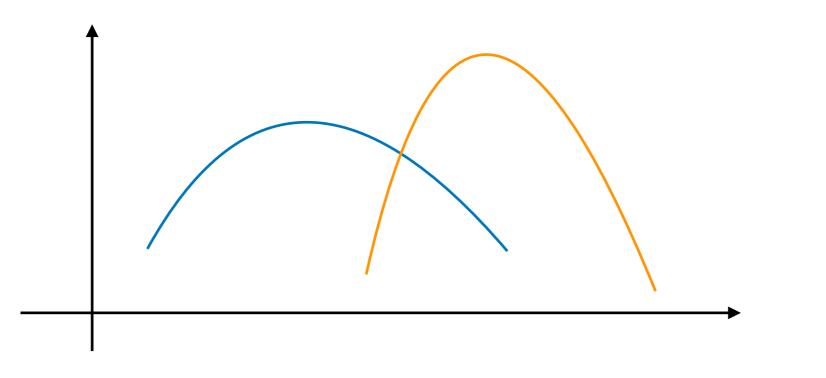
- 1: Overview
- 2: Preliminary
- 3: Pessimistic Model-based Offline RL
- 4: Examples with Refined Concentrability Coefficients



- We only have access to logged data.
- We want to learn high-quality polices from the logged data.

Question

- Unfortunately, the offline data is often not exploratory.
- Q. Can we still learn good policies when the offline data is not fully exploratory? (with realizability of the model)



Offline data: $\rho(s, a)$.

Distribution induced by a policy π , $d^{\pi}(s, a)$

Global vs. Partial Coverage

• Most of offline RL works assume global coverage. Under $\max_{s,a} \frac{d^{\pi}(s,a)}{\rho(s,a)} < \infty \ \forall \pi$,

* $V^{\pi(P^{\star})} - V^{\hat{\pi}} = Small$. ($\pi(P^{\star})$) is the optimal policy. V^{π} is the policy value of π .)

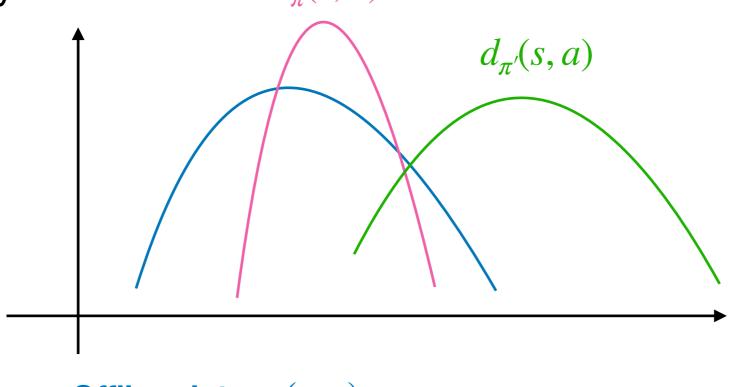
they show the learned policy $\hat{\pi}$ can compete with the global optimal policy [MS, 2008].

 ${}^{*}V^{\pi} - V^{\hat{\pi}} = Small$ for any π covered by offline data.

• In this work, we want to show results under partial coverage. We want to show the output policy can compete with any polices $\pi \text{ s.t.} \max_{s,a} \frac{d^{\pi}(s,a)}{\rho(s,a)} < \infty.$

Global vs. Partial Coverage

- Global coverage is not satisfied in the following. (π' is not covered by offline data)
- But, under partial coverage, we can still compete with a policy π . $d_{\pi}(s, a)$



Offline data: $\rho(s, a)$

What We Know So Far

- There are many works under global coverage [MS, 2008].
- In particular (linear) models, there exists a model-based algorithm under partial coverage [CUSKS21]. But not for any models!

 Several papers under partial coverage in the model-free setting [RZMIR21, JYW21, ZCZS21,XCJMA21,ZWB21], which assume completeness as well as realizability.

What We Show

- We propose a model-based offline RL algorithm CPPO.
 We show the PAC guarantee under partial coverage assuming the realizability of the model.
- This works for any MDPs 😂.

- When we have more structures, the density-ratio based partial coverage concept is refined.
 - Examples: linear mixture MDPs, KNRs, low-rank MDPs (models with unknown features), factored MDPs.

- 1: Overview
- 2: Preliminary
- 3: Pessimistic Model-based Offline RL
- 4: Examples with Refined Concentrability Coefficients

Notation

• MDP: $\langle S, \mathcal{A}, r, P, \gamma, d_0 \rangle$. Discount factor $\gamma \in [0,1)$, S: State space, \mathcal{A} : Action space.

Transition Dynamics	Reward function	Initial distribution
$P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$	$r: \mathcal{S} \times \mathcal{A} \to [0,1]$	$d_0 \in \Delta(\mathcal{S})$

• We have an offline dataset: $\mathscr{D} = \{s^{(i)}, a^{(i)}, s'^{(i)}\}_{i=1}^{n}$ following $(s, a) \sim \rho, s' \sim P^{\star}(s, a)$. (P^{\star} is the true unknown transition density)

• $d^{\pi} = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} d_{t}^{\pi}$ is a state action discounted occupancy distribution under π and P^{\star} .

• V_P^{π} is an expected cumulative reward of π under P: $E[\sum_{h=0}^{\infty} \gamma^h r_h \mid s_0 \sim d_0, a_0 \sim \pi(s_0), s_1 \sim P(s_0, a_0), \cdots].$

Function Classes We Use

- We need two function classes:
 - Model class M ($\subset \{\mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})\}$) to learn the true transition P^{\star} .
 - Policy class Π (\subset { $\mathcal{S} \to \Delta(\mathscr{A})$ }). Throughout this presentation, this is the unrestricted policy class.

Model-based RL

Step 1: MLE.
$$\hat{P}_{MLE} = \operatorname{argmax}_{P \in M} \sum_{i=1}^{n} \log P(s^{'(i)} \mid s^{(i)}, a^{(i)}).$$

Step 2: Policy Optimization. $\hat{\pi} = \operatorname{argmax}_{\pi \in \Pi} V^{\pi}_{\hat{P}_{\mathrm{MLE}}}$.

• Under global coverage \bigcirc $(\max_{s,a} \frac{d^{\pi}(s,a)}{\rho(s,a)} \le C, \forall \pi)$, the output can compete with the global optimal policy $\pi(P^{\star})$ with $1 - \delta$: $V_{P^{\star}}^{\pi(P^{\star})} - V_{P^{\star}}^{\hat{\pi}} = O((1 - \gamma)^{-2} \sqrt{C \ln(|M|/\delta)/n})$.

- 1: Overview
- 2: Preliminary
- 3: Pessimistic Model-based Offline RL
- 4: Examples with Refined Concentrability Coefficients

Algorithm

CPPO: Constrained Pessimistic Policy Optimization

Step 1: MLE.
$$\hat{P}_{\text{MLE}} = \operatorname{argmax}_{P \in M} \sum_{i=1}^{n} \log P(s^{'(i)} \mid s^{(i)}, a^{(i)}).$$

Step 2: Solve constrained Optimization.

$$\hat{\pi} = \operatorname{argmax}_{\pi \in \Pi} \min_{P \in M_{\mathscr{D}}} V_{P}^{\pi} \text{ where}$$

$$M_{\mathscr{D}} = \left\{ P \mid P \in M, \frac{1}{n} \sum_{i=1}^{n} \| \hat{P}_{\text{MLE}}(\cdot \mid s^{(i)}, a^{(i)}) - P(\cdot \mid s^{(i)}, a^{(i)}) \|_{1}^{2} \leq \xi \right\}$$

* ξ is a hyperparamter

- Search for the least favorable model in terms of V_P^{π} that is feasible w.r.t the constraint.
- Why? Pessimistic principle (being conservative on uncovered regions) is employed.

Model-based Concentrability Coefficient

[Definition] Model-based concentrability coefficient: $C_{\pi}^{\dagger} = \sup_{P' \in M} \frac{E_{(s,a) \sim d^{\pi}}[\|P'(\cdot \mid s, a) - P(\cdot \mid s, a)\|_{1}^{2}]}{E_{(s,a) \sim \rho}[\|(P'(\cdot \mid s, a) - P(\cdot \mid s, a)\|_{1}^{2}]}.$

- Smaller than the density ratio: $C_{\pi}^{\dagger} \leq \max_{s,a} d^{\pi}(s,a) / \rho(s,a)$.
- Adaptive to model classes. If the model class is small, C_π^\dagger is small either.

Guarantee of CPPO

[PAC Bound for CPPO] Suppose $P^* \in M$. (by choosing ξ properly) With probability $1 - \delta$,

$$\forall \pi^*; V_{P^*}^{\pi^*} - V_{P^*}^{\hat{\pi}} = O\left((1 - \gamma)^{-2} \sqrt{C_{\pi^*}^{\dagger} \ln(|M|/\delta)/n} \right).$$

- The output can simultaneously compete with any comparator polices satisfying partial coverage $C_{\pi^*}^{\dagger} < \infty$.
- Even if π^* is the optimal policy $\pi(P^*)$, $C^{\dagger}_{\pi(P^*)} < \infty$ is still weaker than the global coverage $(\max_{s,a} d^{\pi}(s,a)/\rho(s,a) < \infty, \forall \pi)$.
- When | *M* | is infinite, we can still use localized Rademacher complexities.

Derivation

- Define $\hat{V}^{\pi} = \min_{P \in M_D} V_P^{\pi}$. then, $\hat{\pi} = \operatorname{argmax}_{\pi} \hat{V}^{\pi}$.
- We can show $P^{\star} \in M_D$ in high probability.
- We have $\hat{V}^{\pi} \leq V_{P^{\star}}^{\pi}, \forall \pi \in \Pi$ (Pessimism).

$$\begin{split} V_{P^{\star}}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} &= V_{P^{\star}}^{\pi^{*}} - \hat{V}^{\pi^{*}} + \hat{V}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} \leq V_{P^{\star}}^{\pi^{*}} - \hat{V}^{\pi^{*}} + \hat{V}^{\hat{\pi}} - V_{P^{\star}}^{\hat{\pi}} \leq V_{P^{\star}}^{\pi^{*}} - \hat{V}^{\pi^{*}} \\ & \text{Definition of } \hat{\pi} \,. \end{split} \qquad \textbf{Pessimism.} \end{split}$$

• Finally, use performance difference lemma. Done 👍

Model free vs. Model-based

- The error in CPPO does not include |Π|. As a result, the policy class Π can be unrestricted. More strongly, we can compete with any history dependent policies.
- [XCJMA21] shows the PAC guarantee under partial coverage, realizability and Bellman completeness of Q-function class for any policy in Π , i.e., $\mathcal{T}^{\pi}Q \subset Q$.

* \mathcal{T}^{π} is the Bellman operator for a policy π .

- Thus, Π needs to be generally restricted .
- It cannot compete with history dependent policies.

Comparison to Existing Pessimistic Algorithms

• CPPO use the MLE guarantee: $E_{(s,a)\sim\rho}[\|\hat{P}_{\text{MLE}}(\cdot \mid s, a) - P^{\star}(\cdot \mid s, a)\|_{1}^{2}] \lesssim \sqrt{\ln|M|/\delta}/n .$

- For linear models, [CUSKS21, JYW21] (existing offline RL papers using negative bonus terms) use
 Distance(P̂(· | s, a), P[★](· | s, a))² ≤ Poly(1/n, ln(1/δ), ···), ∀(s, a).
- Average error (over offline data) guarantees are weaker than pointwise error guarantees
- But average error guarantees are enough for the pessimism and obtained for any nonlinear models

- 1: Overview
- 2: Preliminary
- 3: Pessimistic Model-based Offline RL
- 4: Examples with Refined Concentrability Coefficients

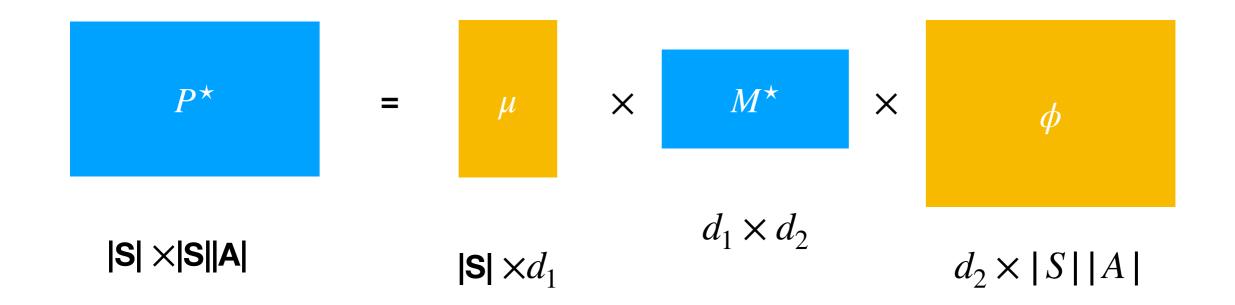
Next Questions

• $C_{\pi^*}^{\dagger}$ is very abstract. Can we replace it with more interpretable quantities? (and tighter than the density ratio.)

- To see them, we analyze on four models:
 - Linear mixture MDPs (including linear MDPs),
 - KNRs (generalization of LQRs),
 - Low-rank MDPs (with unknown features),
 - Factored MDPs.

1:Linear MDPs

Definition: Linear MDPs [YW20] The true P^* is $\mu^{\top}(s')M^*\phi(s,a)$ (Unknown $M^* \in \mathbb{R}^{d_1 \times d_2}$) given feature vectors $\phi(s,a) : S \times \mathscr{A} \to \mathbb{R}^{d_2}, \mu(s) : S \to \mathbb{R}^{d_1}$.



1:Linear MDPs

Definition: Linear MDPs [YW20] The true P^* is $\mu^{\top}(s')M^*\phi(s,a)$ (Unknown $M^* \in \mathbb{R}^{d_1 \times d_2}$) given feature vectors $\phi(s,a) : S \times \mathscr{A} \to \mathbb{R}^{d_2}, \mu(s) : S \to \mathbb{R}^{d_1}$.

 $\bar{C}_{\pi^*} = \sup_{x \in \mathbb{R}^d} \frac{x^{\mathsf{T}} \mathrm{E}_{(s,a) \sim d^{\pi^*}} [\phi(s,a)\phi(s,a)^{\mathsf{T}}] x}{x^{\mathsf{T}} \mathrm{E}_{(s,a) \sim \rho} [\phi(s,a)\phi(s,a)^{\mathsf{T}}] x}.$

• Smaller than the density ratio, i.e., $\bar{C}_{\pi^*} \leq \max_{s,a} d^{\pi^*}(s,a) / \rho(s,a)$.

• If \bar{C}_{π^*} is small, this implies the offline data sufficiently covers the subspace that the comparator policy π^* visits measured by $\phi(s, a)$.

• In tabular MDPs,
$$\bar{C}_{\pi^*} = \max_{s,a} d^{\pi^*}(s,a) / \rho(s,a)$$
.

1:Linear MDPs

[PAC Bound for CPPO] Suppose
$$P^* \in M$$
. With probability $1 - \delta$,
 $\forall \pi^*; V_{P^*}^{\pi^*} - V_{P^*}^{\hat{\pi}} = \tilde{O}((1 - \gamma)^{-2} \sqrt{\bar{C}_{\pi^*}} d^2 \ln(1/\delta)/n)$.

- Partial coverage is refined as $\bar{C}_{\pi^*} < \infty$.
- $E_{(s,a)\sim\rho}[\phi(s,a)\phi(s,a)^{T}]$ can be singular. (Previous works assume the non-singularity.)

1: Linear Mixture MDPs

Definition: Linear Mixture MDPs [AJSWY20,MJTS 20] The true P^* is $\theta^{*^{\top}}\psi(s, a, s')$ given a feature vector $\psi(s, a, s') : S \times \mathscr{A} \times S \to \mathbb{R}^d$.

- Linear MDPs belong to linear mixture MDPs.
- Define pseudo feature vectors: $\psi_V(s, a) = \int \psi(s, a, s')V(s')d(s')$ [Concentrability Coefficient for Linear Mixture MDPs] $\bar{C}_{\pi^*, \min} = \sup_{P \in \mathbb{Z}_{p^*}} \sup_{x \in \mathbb{R}^d} \frac{x^{\mathsf{T}} \mathbb{E}_{(s,a) \sim d^{\pi^*}}[\psi_{V_p^{\pi^*}}(s, a)\psi_{V_p^{\pi^*}}(s, a)^{\mathsf{T}}]x}{x^{\mathsf{T}} \mathbb{E}_{(s,a) \sim \rho}[\psi_{V_p^{\pi^*}}(s, a)\psi_{V_p^{\pi^*}}(s, a)^{\mathsf{T}}]x},$ where $Z_{P^*} = \{P : \mathbb{E}_{(s,a) \sim \rho}[TV(P(\cdot \mid s, a), P^*(\cdot \mid s, a)^2] \le \xi\}.$
 - $\bar{C}_{\pi^*,\min}$ is defined for varying feature vectors $\psi_{V_p^{\pi^*}}$.
 - In linear MDPs, $\bar{C}_{\pi^*, \mathrm{mix}}$ reduces to \bar{C}_{π^*} .

1: Linear Mixture MDPs

[PAC Bound for CPPO] Suppose $P^* \in M$. With probability $1 - \delta$, $\forall \pi^*; V_{P^*}^{\pi^*} - V_{P^*}^{\hat{\pi}} = \tilde{O}((1 - \gamma)^{-2} \sqrt{\bar{C}_{\pi^*, \text{mix}}} d^2 \ln(1/\delta)/n)$.

• Partial coverage concept is refined as $\bar{C}_{\pi^*,\text{mix}} < \infty$.

2 KNRs

Definition: Kerneliazed nonlinear regulators. The true P^* is a Gaussian distribution $\mathcal{N}(W^*\phi(s, a), I)$ ($W^* \in \mathbb{R}^{d_S \times d}$) given a feature vector $\phi : S \times \mathcal{A} \to \mathbb{R}^d$. (d_S is a dimension of S)

- Include LQRs.
- Include RKHS models (GPs) .

$$\bar{C}_{\pi^*} = \sup_{x \in \mathbb{R}^d} \frac{x^{\top} E_{(s,a) \sim d^{\pi^*}} [\phi(s,a)\phi(s,a)^{\top}] x}{x^{\top} E_{(s,a) \sim \rho} [\phi(s,a)\phi(s,a)^{\top}] x}$$

• This is exactly the same as the one in linear MDPs.

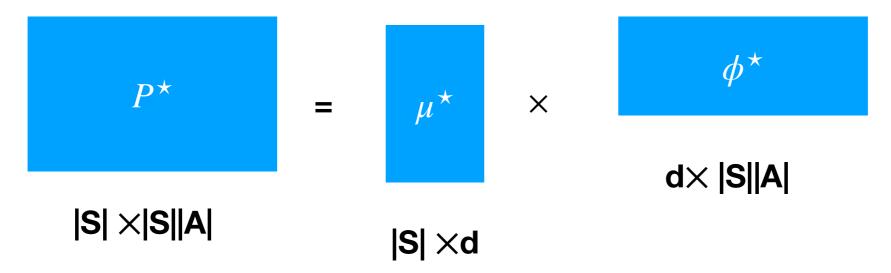
2 KNRs

[PAC Bound for CPPO]
Let
$$\Sigma_{\rho} = E_{(s,a)\sim\rho}[\phi(s,a)\phi(s,a)^{\top}]$$
. Suppose $P^{\star} \in M$. With $1 - \delta$,
 $\forall \pi^{*}; V_{P^{\star}}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} = \tilde{O}\left((1 - \gamma)^{-2} \operatorname{rank}(\Sigma_{\rho})^{3} \sqrt{d_{S}\bar{C}_{\pi^{*}}\ln(1/\delta)/n}\right)$.

- Partial coverage concept is refined as $\bar{C}_{\pi^*} < \infty$.
- Σ_{ρ} can be singular!! The error depends on rank[Σ_{ρ}] but not d.
- d can be infinite. Formally, extended to the infinite-dimensional setting, $P^* = \mathcal{N}(g^*(s, a), I)$ where g^* is an element of RKHS.

3: Low-rank MDPs

Definition: Low-rank MDPs [JKALS17, AKKS20]. The true P^* is $\mu^*(s')^{\top}\phi^*(s, a)$. Both $\mu^*(\cdot), \phi^*(\cdot)$ are unknown features. ($\mu^* : S \to \mathbb{R}^d, \phi^* : S \times \mathscr{A} \to \mathbb{R}^d$)



- Features are unknown \cong . We set the function classes $\mu^* \in \Psi, \phi^* \in \Phi$.
- Low-rank MDPs include latent variable models, block MDPs and linear MDPs.

3: Low-rank MDPs

Definition: Low-rank MDPs [JKALS17,AKKS20]. The true P^* is $\mu^*(s')^{\mathsf{T}}\phi^*(s,a)$. Both $\mu^*(\cdot), \phi^*(\cdot)$ are unknown features. ($\mu^* : S \to \mathbb{R}^d, \phi^* : S \times \mathscr{A} \to \mathbb{R}^d$)

[Concentrability Coefficient for Low-rank MDPs]

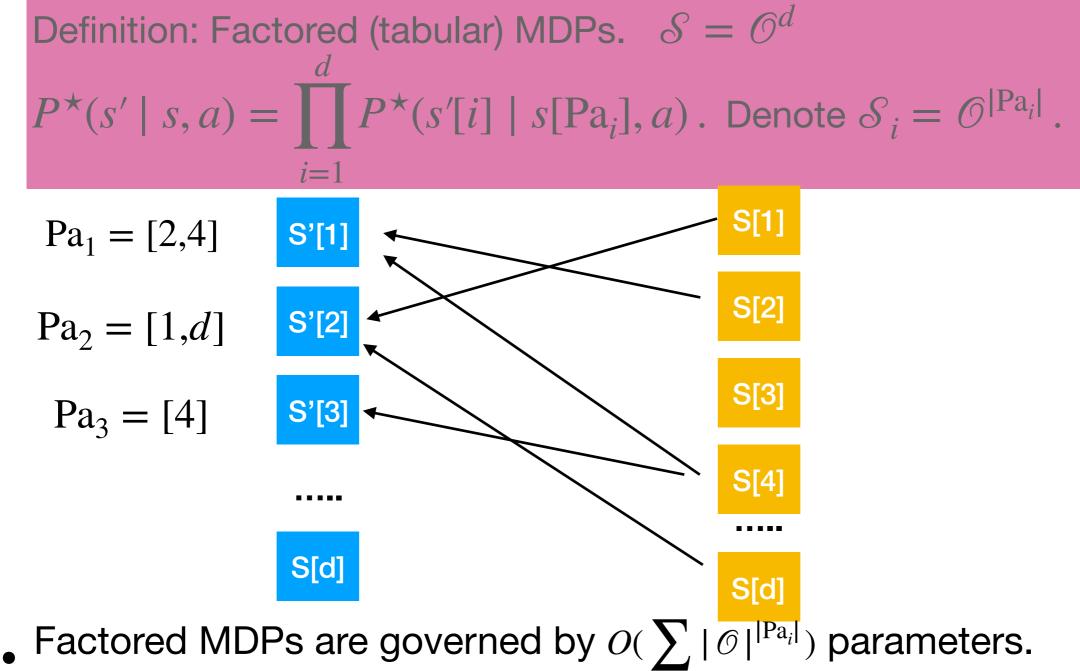
$$\bar{C}_{\pi^*,\phi^*} = \sup_{x \in \mathbb{R}^d} \frac{x^{\mathsf{T}} \mathrm{E}_{(s,a) \sim d^{\pi^*}} [\phi^*(s,a)\phi^*(s,a)^{\mathsf{T}}] x}{x^{\mathsf{T}} \mathrm{E}_{(s,a) \sim \rho} [\phi^*(s,a)\phi^*(s,a)^{\mathsf{T}}] x}$$

• Looks similar to the one in linear MDPs and KNRs $\bigcirc C^{\dagger}_{\pi^*,\phi^*}$ depends on the only true feature ϕ^* but not on other features.

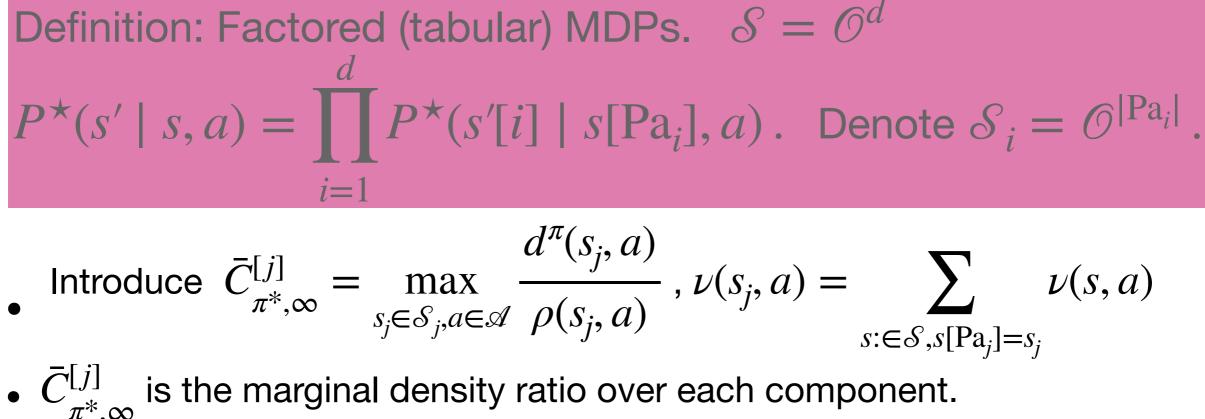
3: Low-rank MDPs

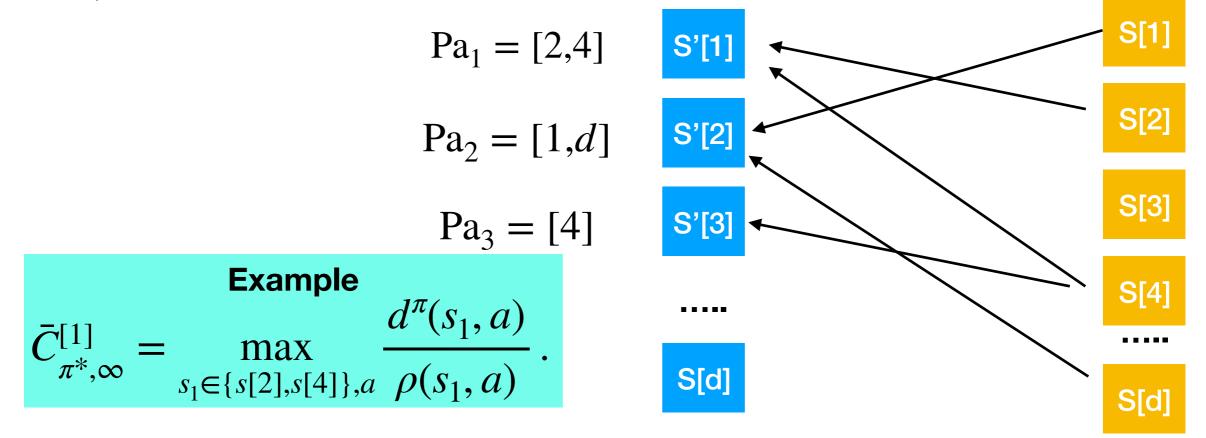
[PAC Bound for CPPO] Let $\Sigma_{\rho,\phi^*} = \mathcal{E}_{(s,a)\sim\rho}[\phi^*(s,a)\phi^*(s,a)^\top].$ Suppose $P^* \in M$. with $1 - \delta$, $\forall \pi^*; V_{P^*}^{\pi^*} - V_{P^*}^{\hat{\pi}} = \tilde{O}((1 - \gamma)^{-2}\sqrt{\bar{C}_{\pi^*,\phi^*}} \operatorname{rank}(\Sigma_{\rho,\phi^*})\ln(|M|/\delta)/n).$

- Partial coverage concept is refined as $\bar{C}_{\pi^*,\phi^*} < \infty$.
- Error depends on $rank(\Sigma_{\rho,\phi^{\star}})$ instead of d.
- Previous related work on sparse linear MDPs ([HDLSW20]) assumes the non-singularity of $\Sigma_{\rho,\phi}$ for any $\phi\in\Phi$.



- Non-factored MDPs are governed by $O(|\mathcal{O}|^d)$ parameters.
- When $|Pa_i| < < d$, the difference is huge.
- Our goal is leveraging this factored structure.





[Concentrability Coefficient for Factored MDPs] $\bar{C}_{\pi^*,\infty} = \max_{\substack{j \in [1,\cdots,d]}} \bar{C}^j_{\pi^*,\infty}$

•
$$\bar{C}_{\pi^*,\infty}^{[j]}$$
 is smaller than the global density ratio $\max_{s\in\mathcal{S},a\in\mathcal{A}} \frac{d^{\pi}(s,a)}{\rho(s,a)}$
for any $j\in[1,\cdots,d]$.

• Thus, $\bar{C}_{\pi^*,\infty}$ is smaller than the global density ratio $\max_{s\in\mathcal{S},a\in\mathcal{A}} \frac{d^{\pi}(s,a)}{\rho(s,a)}$.

[PAC Bound for CPPO] Suppose $P^{\star} \in M$. With probability $1 - \delta$, $\forall \pi^{*}; V_{P^{\star}}^{\pi^{*}} - V_{P^{\star}}^{\hat{\pi}} = \tilde{O}((1 - \gamma)^{-2} \sqrt{d\bar{C}_{\pi^{*},\infty} \sum_{i} |\mathcal{O}|^{\operatorname{Pa}_{i}} \ln(1/\delta)/n}).$

- Partial coverage concept is refined as $\bar{C}_{\pi^*,\infty} < \infty$.
- This formally demonstrates the benefit of the factored structure in terms of the coverage condition.

Disclaimer

- We claim CPPO works for any MDPs. What does it mean?
- Any MDPs where the MLE has valid statistical guarantees.
- CPPO does not work on (different) linear MDPs [JYWJ20] and linear Bellman complete MDPs

 But, by taking a model-based perspective on them and modifying CPPO, we can still ensure the PAC guarantee under partial coverage.

Conclusion

- CPPO has the PAC guarantee under partial coverage assuming the realizability of the model. This works for any MDPs.
- Partial coverage concept is tailored to each model:
 - KNRs, linear mixture MDPs: relative condition numbers.
 - Low-rank MDPs: relative condition numbers defined on the true unknown features.
 - Factored MDPs: density ratios considering the factored structures.

Future Directions

- Computationally efficient algorithm which has PAC guarantee under partial coverage.
- Lower bound results.
- Bayesian algorithms.

References

- [CUSKS21] Mitigating covariate shift in imitation learning via offline data without great coverage. 202
- [MS 08] Finite-time bounds for fitted value iteration. ´Journal of Machine Learning Research, 9(May):815–857, 2008.
- [XCJMA21] Bellman-consistent pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926, 2021.
- [ZWB 21] Provable benefits of actor-critic methods for offline reinforcement learning. arXiv preprint arXiv: 2108.08812, 2021.
- [RZMJR21] Bridging offline reinforcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021, 2021.
- [JYW21] Is pessimism provably efficient for offline rl? arXiv preprint arXiv:2012.15085, 2021.
- [ZCZ\$21] Corruption-robust offline reinforcement learning. arXiv preprint arXiv:2106.06630, 2021.
- [YW20] Reinforcement learning in feature space: Matrix bandit, kernels, and regret bound. In Proceedings of the 37th International Conference on Machine Learning, pages 10746–10756, 2020.
- [AJSWY20] Model-based reinforcement learning with value-targeted regression. In International Conference on Machine Learning, pages 463–474. PMLR, 2020.
- [AKK\$20] Flambe: Structural complexity and representation learning of low rank mdps. In Advances in Neural Information Processing Systems, volume 33, pages 20095–20107, 2020.
- [HDLSW20] Sparse feature selection makes batch reinforcement learning more sample efficient. In International Conference on Machine Learning, pages4063–4073. PMLR, 2021.