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Offline RL

Online RL Offline RL

.

Big logged dat

e We only have access to logged data.

e We want to learn high-quality polices from
the logged data.



Question

e Unfortunately, the offline data is often not exploratory.

e Q. Can we still learn good policies when the offline data is
not fully exploratory? (with realizability of the model)

AN

Offline data: p(s, a) .

A




Global vs. Partial Coverage

* i) _ i = Small .

* Most of offline RL works assume global (2(P*) is the optimal
d"(s, a) o |
licy. V" is the pol

coverage. Under max L <oV, ™ lcx; aluelzf ﬂe;oo icy

s,a ,O(S, CZ)
they show the learned policy 7 can compete
with the global optimal policy [MS, 2008].

*V* — V* = Small for
* |n this work, we want to show results under any x covered by offline

partial coverage. We want to show the data.
output policy can compete with any polices

d”(s,a)
S.t.max < 00.
sa  p(S,a)




Global vs. Partial Coverage

» Global coverage is not satisfied in the following. (7’ is not
covered by offline data)

e But, under partial coverage, we can still compete with a
policy .

A

d_(s,a)
/ \/<\

Offline data: p(s, a)




What We Know So Far--

* There are many works under global coverage [MS, 2008].

* |n particular (linear) models, there exists a model-based
algorithm under partial coverage [CUSKS21]. But not for
any models!

 Several papers under partial coverage in the model-free
setting [RZMIR21, JYW21, ZCZ521,XCJMA21,ZWB21],
which assume completeness as well as realizability.



What We Show

 We propose a model-based offline RL algorithm CPPO.
We show the PAC guarantee under partial coverage
assuming the realizability of the model.

e This works for any MDPs & .

* When we have more structures, the density-ratio based
partial coverage concept is refined.

e Examples: linear mixture MDPs, KNRs, low-rank MDPs
(models with unknown features), factored MDPs.



1: Overview
2: Preliminary
3: Pessimistic Model-based Offline RL

4: Examples with Refined Concentrability Coefficients



Notation

e MDP: (&, 4,1, P,y,d,). Discount factor y € [0,1), &: State space,

<: Action space.
Transition Dynamics Reward function Initial distribution

P:SXd — AS) r: &8 xXd - [0,1] dy € A(S)

« We have an offline dataset: 2 = {5, a, S’(i)};f’= following
(s,a) ~ p,s’ ~ P*(s,a). (P* is the true unknown transition density)

o0
d”= (1 —7y) Z y'd” is a state action discounted occupancy

=0
distribution under 7z and P*.

o V5 is an expected cumulative reward of 7z under P:

E[Z }/hl”h ‘ SO ~ do, ao ~ ﬂ(So), Sl ~ P(SO, Clo), "‘].
h=0



Function Classes We Use

e \We need two function classes:

e ModelclassM( C {& X & — A(S)})to learn the
true transition P* .

e PolicyclassIl ( C {& — A(&}). Throughout this
presentation, this is the unrestricted policy class.



Model-based RL

n
Step 1: MLE. f’MLE = argmaxPeMZ log P(sV | s©, qW).
i=1

Step 2: Policy Optimization. 7 = argmax V%
MLE

d*(s,a
. Under global coverage & ( max (5, 9) < C,Vr), the output can
sa  pP(s,a)

compete with the global optimal policy 7(P*) with 1 — §:
Vi) — Vi =0 - y)7/Cln(|M|/5)/n).
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Algorithm

CPPO: Constrained Pessimistic Policy Optimization

n

Step 1: MLE. Py p = argmaxPeMZ log P(s W | sV, a),
i=1

Step 2: Solve constrained Optimization.

n = argmax g min V; where
PeM,,

l <« -~ . . . .
Mg, = {P [ PeM,— ) [|Pyp(-|59,a9) = P(- | s9,aD)|12 < 5} .
n
=1
* £ is a hyperparamter
e Search for the least favorable model in terms of V;f that Is
feasible w.r.t the constraint.

 Why? Pessimistic principle (being conservative on
uncovered regions) is employed.



Model-based Concentrability
Coefficient

[Definition] Model-based concentrability coefficient:
- E o aslIP'C- | s,a) — PC- | s, a) 4
C. = sup

1
PEME(Sa)Np[l(P(' S,CZ)— ( S,Cl) % |

. Smaller than the density ratio: C]; <maxd”"(s,a)/p(s,a).

s.d

e Adaptive to model classes. If the model class is small, C; IS
small either.



Guarantee of CPPO

[PAC Bound for CPPQ] Suppose P* € M. (by choosing & properly)
With probability 1 —

V't VE, — —0<(1—y) \/ ln(|M|/5)/n).

* The output can simultaneously compete with any comparator
polices satisfying partial coverage C;* < 00.

« Even if 7% is the optimal policy z(P™), C < o0 is still weaker

JZ'(P*)
than the global coverage (max d”(s, a)/p(s,a) < oo, Vn).

s,a

e When|.Z | is infinite, we can still use localized Rademacher
complexities.



Derivation

Define V¥ = min V5. then, 7 = argmax V",
PeM,,

e We can show P* € M, in high probability.

 We have V” < Vz

b VT € 11 (Pessimism).

Ve = VE = VE =V 4 V7 - VE < VE - VT 4 VR VE Ve -V
Definition of 7. Pessimism.

e Finally, use performance difference lemma. Done <=



Model free vs. Model-based

e The error in CPPO does not include |II]|. As a result, the

policy class I1 can be unrestricted. More strongly, we can
compete with any history dependent policies.

e [XCJMA21] shows the PAC guarantee under partial
coverage, realizability and Bellman completeness of Q-
function class for any policy in I1, i.e., "0 C Q.

* I " is the Bellman operator for a policy 7.

e Thus, 11 needs to be generally restricted .

* |t cannot compete with history dependent policies.



Comparison to Existing Pessimistic

Algorithms
e CPPO use the MLE guarantee:

EayplIPuie(- | 5,0) = P*(- | s,a)lI7] S +/In[M]/5)/n..

e For linear models, [CUSKS21, JYW21] (existing offline RL papers
using negative bonus terms) use

Distance(P( - | s,a), P*(- | s,a))* < Poly(1/n,In(1/8), -++),V(s, a) .

e Average error (over offline data) guarantees are weaker than
pointwise error guarantees @

e But average error guarantees are enough for the pessimism
and obtained for any nonlinear models &
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Next Questions

. C;* is very abstract. Can we replace it with more
interpretable quantities? (and tighter than the density ratio.)

 To see them, we analyze on four models:

e Linear mixture MDPs (including linear MDPs),

e [ow-rank MDPs (with unknown features),

e Factored MDPs.



1:Linear MDPs

P* = M*

d; X d,
IS XISI|A] IS| xd, d, X |S||A|



1:Linear MDPs

[Concentrability Coefficient for Linear MDPs]
= XTE(s,a)Ndﬂ*[¢(Sa a)qb(s, a)T]x

xEuRd xTE(S,a)Np[¢(S9 CZ)¢(S, a)T]x |

. Smaller than the density ratio, i.e., C_’ﬂ* < maxd” (s,a)lp(s, a).
s,d

o If C_’ﬂ* is small, this implies the offline data sufficiently covers the
subspace that the comparator policy 7* visits measured by ¢ (s, a).

., In tabular MDPs, C_“ﬂ* = max d” (s,a)/p(s, a).

s,a



1:Linear MDPs

[PAC Bound for CPPO] Suppose P* € M. With probability 1 — 6,
Va¥; VL = Vi, = O((1 = )/ Coud® In(1/8)/).

o Partial coverage is refined as C’n* < 0.

o Eq o) pl@(s, a)(s, a)'] can be singular. (Previous works assume
the non-singularity. )



1: Linear Mixture MDPs

e Linear MDPs belong to linear mixture MDPs.

o Define pseudo feature vectors: v (s,a) = Jw(s, a, s")V(s)d(s")

[Concentrability Coefficient for Linear Mixture MDPs]
T T
A E(S,a)rvd’f* [l//Vg*(S ) a)l//VITg*(S ) Cl) ]X

C

¥ mix

— Sup Sup - - ,
PEZpx xR A E(S,a)Np[l//Vg*(Sa a)WV;g*(Sa Cl) ]X

where Z,. = {P:E . [TV(P(- | s,a),P*(-|s,a)’] < &).

-~ mix 1S defined for varying feature vectors Wyg

e Inlinear MDPs, Cﬂ* reduces to C_'ﬂ*.

,mix




1: Linear Mixture MDPs

[PAC Bound for CPPO] Suppose P* € M. With probability 1 — &,
VYt VI — VA = O((1 — 7)” \/ e nid?In(1/8)/n).

» Partial coverage concept is refined as C . mix < 00.



2 KNRs

Definition: Kerneliazed nonlinear regulators. The true P*isa
Gaussian distribution /' (W*¢(s, a), 1) (W* € R%*%) given
a feature vector ¢ : & X & — R4 (dg is a dimension of S)

e Include LQRs.
e [nclude RKHS models (GPs) .

[Concentrability Coefficient for KNRs]

i X TE oy ogrl (s, @)p(s, @) TTx
Cﬂ* — Sup : - .
xeR4 XTE(S,a)Np[¢(Sa a)¢(sa CZ) ]X

* This is exactly the same as the one in linear MDPs.




[PAC Bound for CPPO]
Let 2, = E(S,a),\,p[gb(s, a)d(s,a)']. Suppose P* € M. With 1 — 6,

V¥, Vi, — Vi, =0 ((1 - y)_zrank(Zp)3\/ dgC s 1n(1/5)/n> .

o Partial coverage concept is refined as C_’ﬂ* < 0.
. Zp can be singular!! The error depends on rank[Zp] but not d.

e d can be infinite. Formally, extended to the infinite-dimensional
setting, P* = A (g*(s, a), ) where g*is an element of RKHS.



Definition: Low-rank MDPs [JKALS17, AKKS20]. The true
P*is //t*(S )Tgb*(s a). Both u*(-), ¢™( -) are unknown

features. (u* : & - R p* : & x o — [Rd)
- l ax IS[IAl
ISI <ISIIA]

S| Xd

e Features are unknown @. We set the function classes
uwrev,pred.

e | ow-rank MDPs include latent variable models, block
MDPs and linear MDPs.



Definition: Low-rank MDPs [JKALS17,AKKS20]. The true P*
is u*(s) > (s, a). Both u*( - ), p*( -) are unknown
features. (u* : & - R4 > : & x o — RY

[Concentrability Coefficient for Low-rank MDPs]

C . w= sup xTE(s,a)Ndﬂ*[¢*(S, a)qb*(s, a)T]x
¢ xeR? XTE(s,a)Np[¢*(S, a)p*(s,a)T]x

o Looks similar to the one in linear MDPs and KNRs & Ct

>

depends on the only true feature ¢»* but not on other features.




[PAC Bound for CPPO] Let X ;. = E(( ) [¢™ (s, a)p™ (s, a)'l.
Suppose P* € M. with 1 — 6,
Vs Vi = Vi, = O(1 = ) Cpo gorank(E, 4 )In( | M| /8) ).

o Partial coverage concept is refined as C_'ﬂ*,gb* < 0.

» Error depends on rank(X ;.) instead of d.
e Previous related work on sparse linear MDPs ([HDLSWZ20])
assumes the non-singularity of ., , for any Qe d.



4. Factored MDPs

Pa, = [2,4]
Py = (1
Pa; = [4

. Factored MDPs are governed by O(Z | @|ﬂai|) parameters.

e Non-factored MDPs are governed by O(| © \d) parameters.

« When |Pa.| < < d, the difference is huge.
e Our goal is leveraging this factored structure.



4. Factored MDPs

- d’(s;, a)
Introduce C [{3 = max ! : y(sj, a) = Z v(s,a)
° 00 sES ,a€d p(Sj, a)

S:ES ,S[Paj]=sj
. C]EQ - Is the marginal density ratio over each component.

Pa, = 241
P = (121
Pa; = [4

Cll =  max (s, 4)

7o s els[21sl41).a p(sy, a) .

Example




4. Factored MDPs

[Concentrability Coefficient for Factored MDPs]

_ J
Crooo= max C .
JEIL,--.d] ’

=[] - . . d’(s, a)
C'! is smaller than the global density ratio max
7,00 seSacd p(S,a)

foranyj € [1,---,d].

_ d*(s, a)

, Thus, C_. _ is smaller than the global density ratio max :
’ seSacd pP(S,a)



4. Factored MDPs

[PAC Bound for CPPO] Suppose P* € M. With probability 1 — 6,
YVt VE — VE = O0((1 —y)~* \/d(:,[*,oo Z 1O [P 1In(1/8)/n).

« Partial coverage concept is refined as C_‘ﬂ*,oo < 0.

* This formally demonstrates the benefit of the factored
structure in terms of the coverage condition.




Disclaimer

We claim CPPO works for any MDPs. What does it mean?

Any MDPs where the MLE has valid statistical guarantees.

CPPO does not work on (different) linear MDPs [JYWJ20]
and linear Bellman complete MDPs @.

But, by taking a model-based perspective on them and
modifying CPPO, we can still ensure the PAC guarantee
under partial coverage.



Conclusion

e CPPO has the PAC guarantee under partial coverage
assuming the realizability of the model. This works for any
MDPs.

* Partial coverage concept is tailored to each model:
e KNRs, linear mixture MDPs: relative condition numbers.

e [Low-rank MDPs: relative condition numbers defined on
the true unknown features.

 Factored MDPs: density ratios considering the factored
structures.



Future Directions

e Computationally efficient algorithm which has
PAC guarantee under partial coverage.

e | ower bound results.

e Bayesian algorithms.
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