Approximate Policy Iteration

Recap: Policy Iteration

Recall Policy Iteration (PI) for the setting where P and r are known:

We compute $Q^{\pi}(s, a)$ exactly for all s, a, PI updates policy as:

 $\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$

i.e., be greedy with respect to π at every state s,

Monotonic improvement of PI: $Q^{\pi'}(s, a) \ge Q^{\pi}(s, a), \forall s, a$

Recap: Policy Iteration

Recall Policy Iteration (PI) for the setting where P and r are known:

We compute $Q^{\pi}(s, a)$ exactly for all s, a, PI updates policy as:

 $\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$

i.e., be greedy with respect to π at every state s,

What if P & r are unknown, and MDP is large (e.g., infinitely many states)?

Monotonic improvement of PI: $Q^{\pi'}(s, a) \ge Q^{\pi}(s, a), \forall s, a$

$$\widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_0}^{\pi}}$$

$$\leq \frac{\gamma}{(1-\gamma)^2} \mathbb{E}_{s,a\gamma}$$

Simulation Lemma:

 $\int_{0}^{\pi} \left[\mathbb{E}_{s' \sim \widehat{P}(s,a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s,a)} \widehat{V}^{\pi}(s') \right]$

 $\sum_{x \sim d_{s_0}} \left\| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \right\|_{1}$

An Algorithm under Generative Model Setting for (small) discrete MDP:

An Algorithm under Generative Model Setting for (small) discrete MDP:

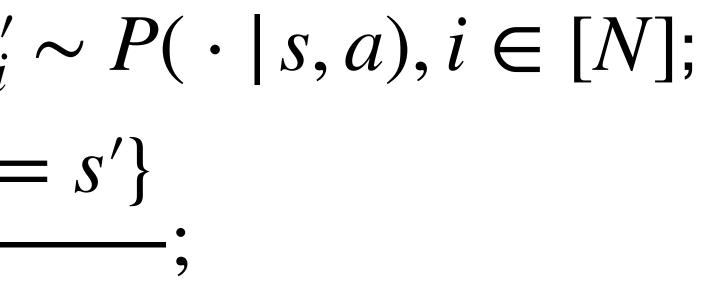
1. Model fitting: $\forall s, a: \text{ collect } N \text{ next states, } s'_i$ set $\widehat{P}(s'|s, a) = \frac{\sum_{i=1}^{N} \mathbf{1}\{s'_i = N\}}{N}$

$$\stackrel{\prime}{}_{i} \sim P(\cdot | s, a), i \in [N];$$
$$= s^{\prime}$$

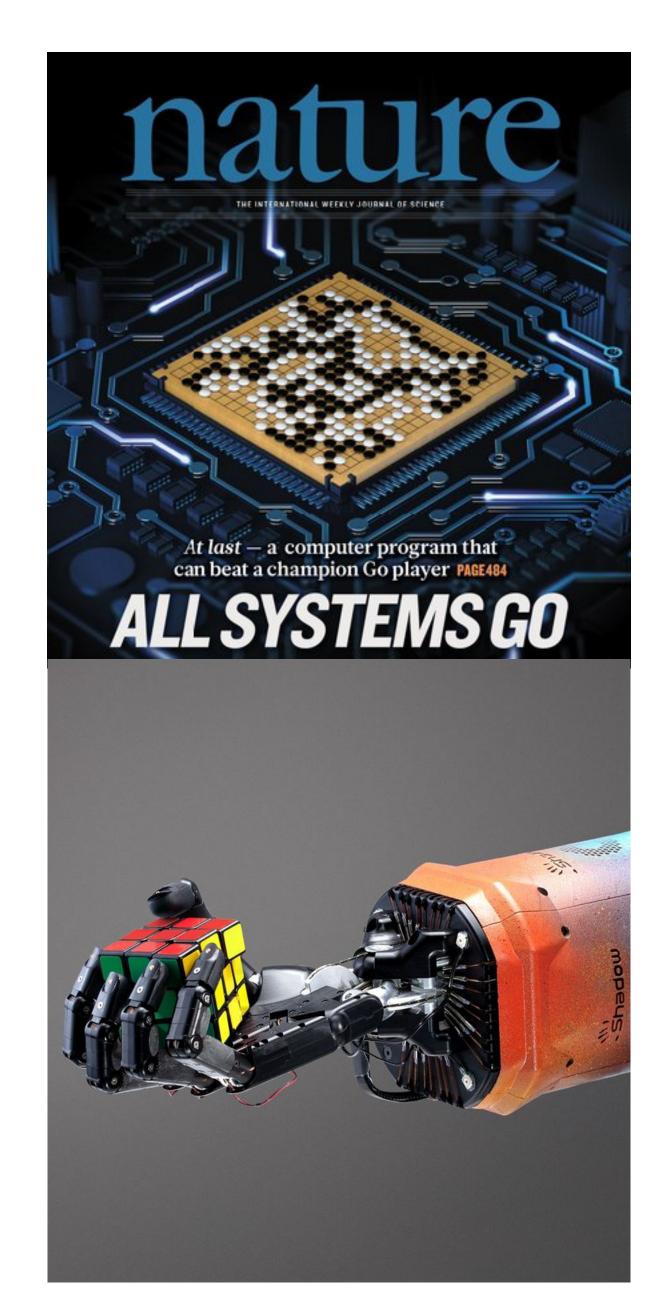
An Algorithm under Generative Model Setting for (small) discrete MDP:

1. Model fitting: $\forall s, a$: collect N next states, $s'_i \sim P(\cdot | s, a), i \in [N];$ set $\widehat{P}(s'|s,a) = \frac{\sum_{i=1}^{N} \mathbf{1}\{s'_i = s'\}}{N};$

2. Planning w/ the learned model: $\widehat{\pi}^{\star} = \mathbf{PI}\left(\widehat{P}, r\right)$



We are moving on to large scale MDPs

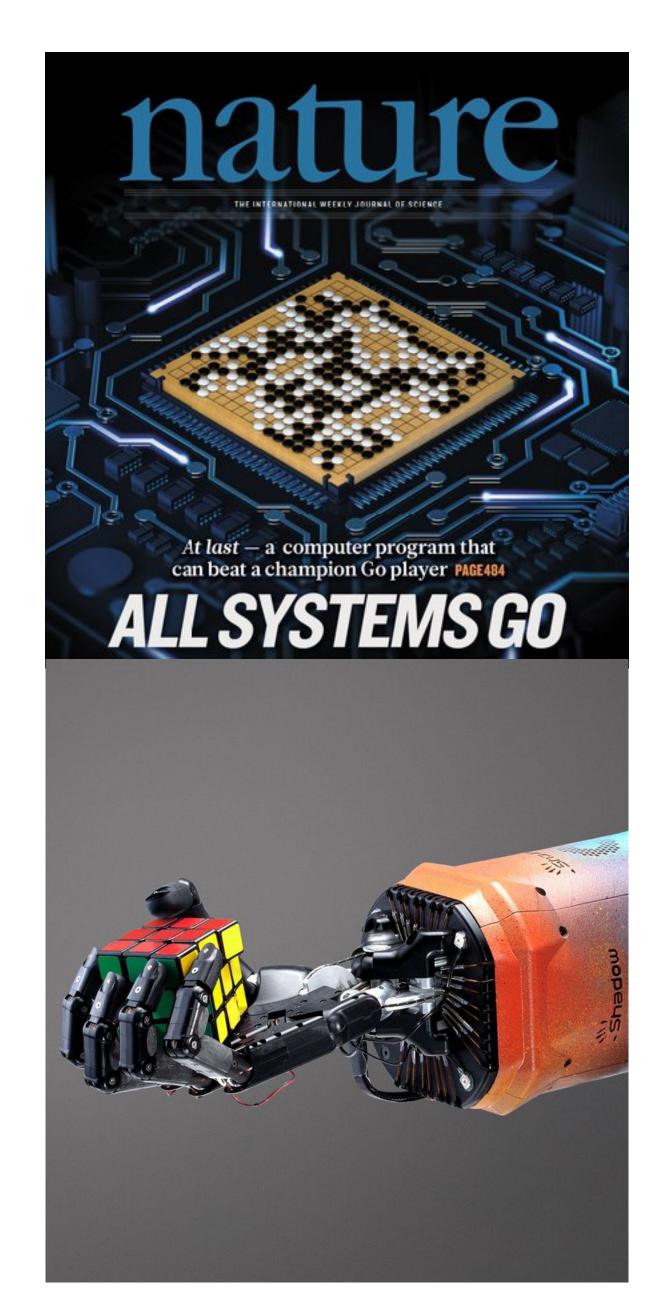


When we face extremely large state space or continuous state space:

Enumerate over all state-action pairs is not possible in both computation, space, and statistics;

What should we do?

We are moving on to large scale MDPs



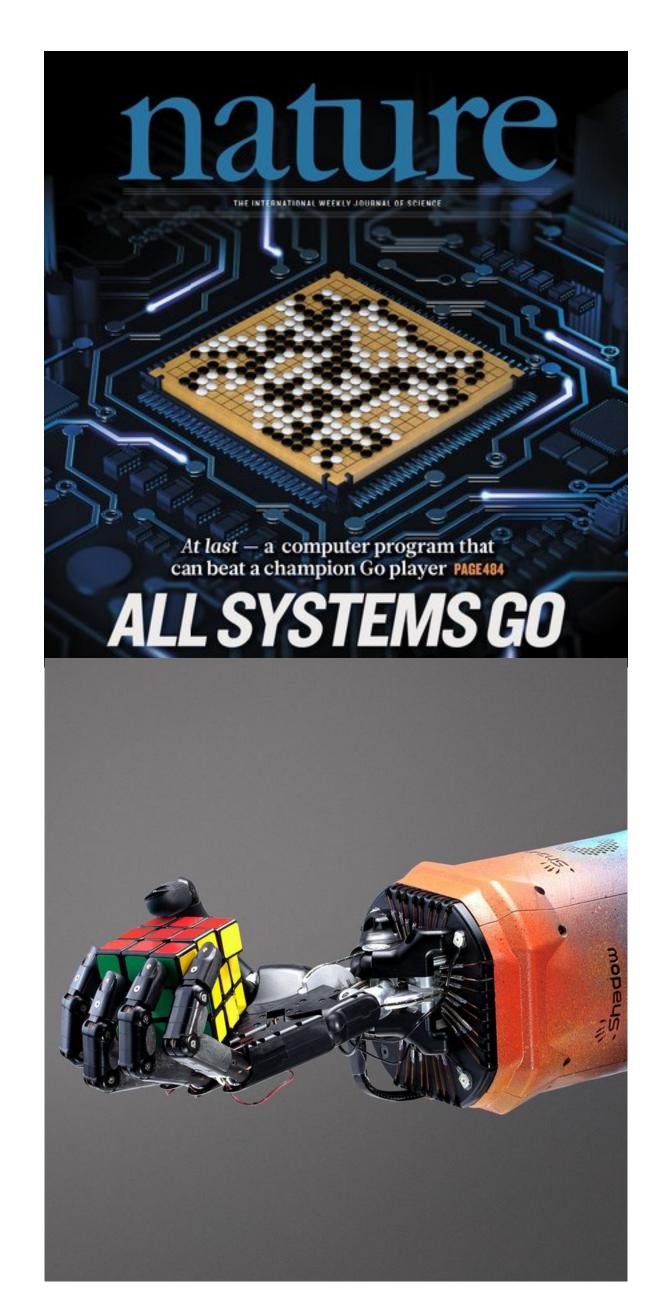
Answer: generalization via function approximation (e.g., linear, decision tree, SVM, GP, neural nets)

When we face extremely large state space or continuous state space:

Enumerate over all state-action pairs is not possible in both computation, space, and statistics;

What should we do?

We are moving on to large scale MDPs



Answer: generalization via function approximation (e.g., linear, decision tree, SVM, GP, neural nets)

Indeed, in LQR, we are using quadratic function to represent Q & V

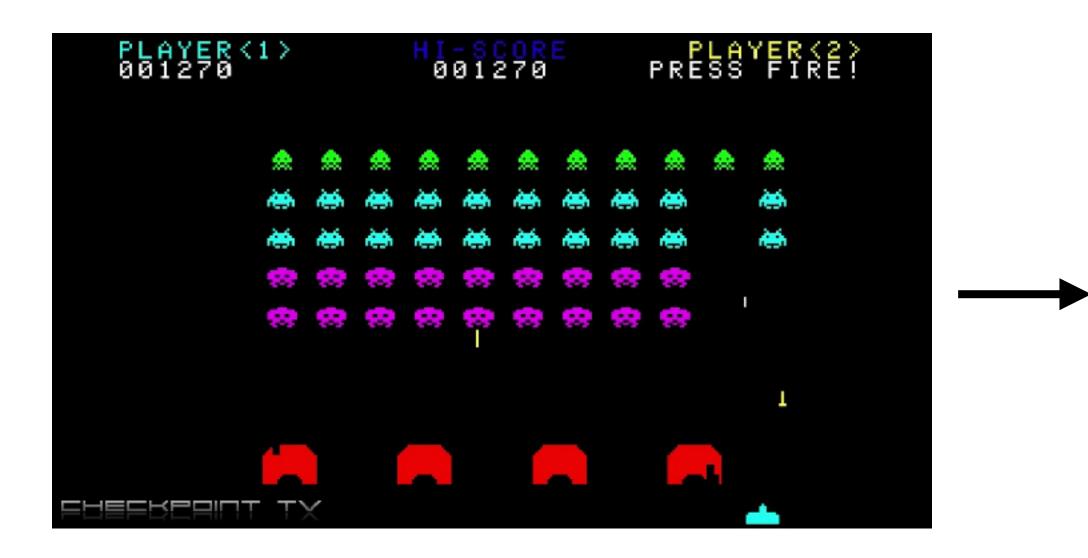
When we face extremely large state space or continuous state space:

Enumerate over all state-action pairs is not possible in both computation, space, and statistics;

What should we do?

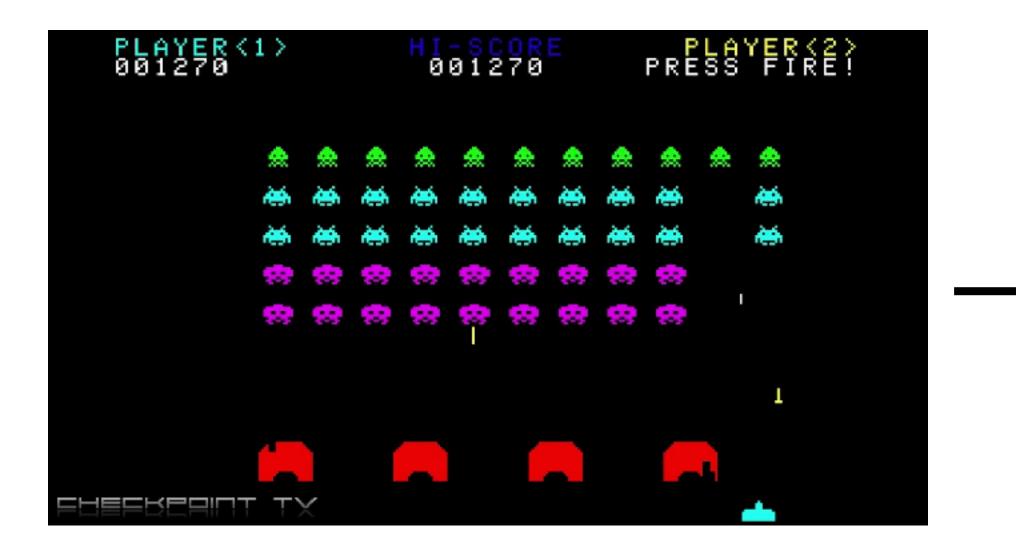
Another example: Video games

State s: RGB image



Another example: Video games

State s: RGB image

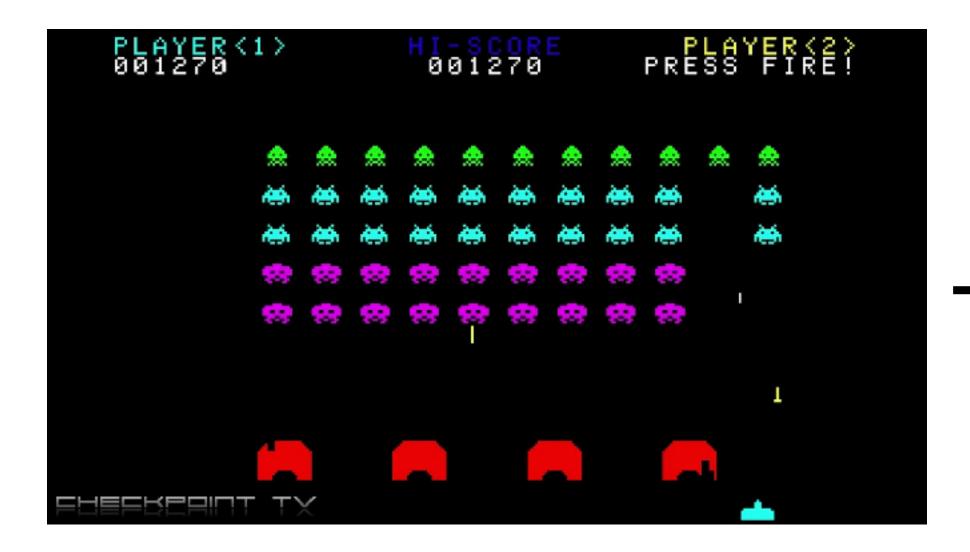


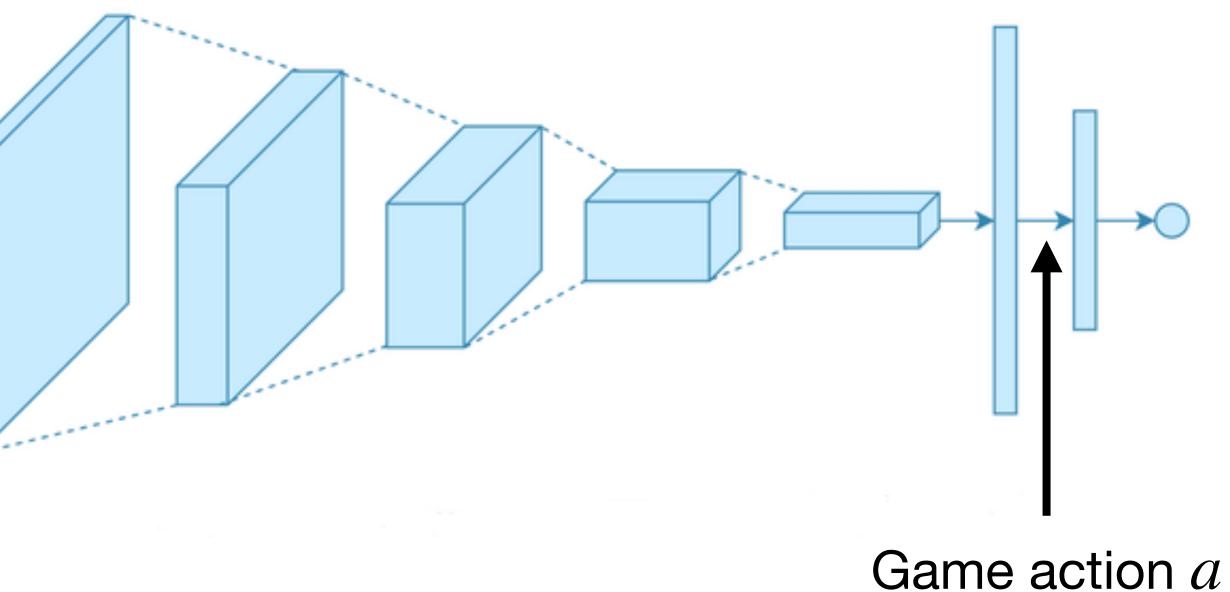
We can try to capture $Q^{\star}(s, a)$ via deep nets:

Another example: Video games

We can try to capture $Q^{\star}(s, a)$ via deep nets:

State s: RGB image





Question for Today (and the next a few lectures):

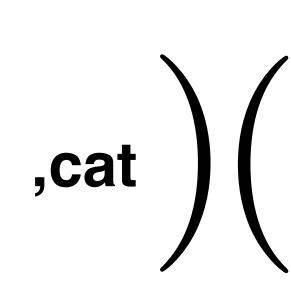
How to (approximately) learn π^* using function approximation for large scale MDPs? (i.e., numeration over state-action is not feasible)

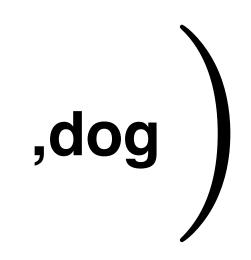
Outline:

1. Quick recap on supervised learning's performance guarantee (classification & regression)

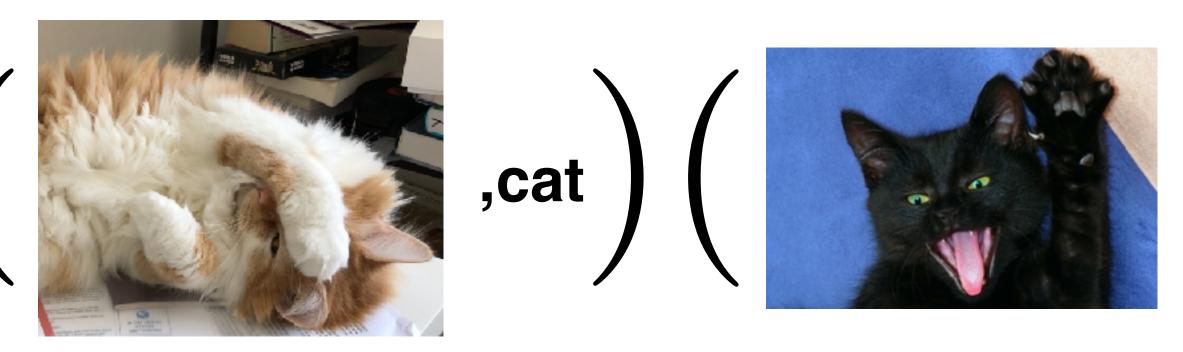
2. Approximate Policy Iteration (relies regression oracle)

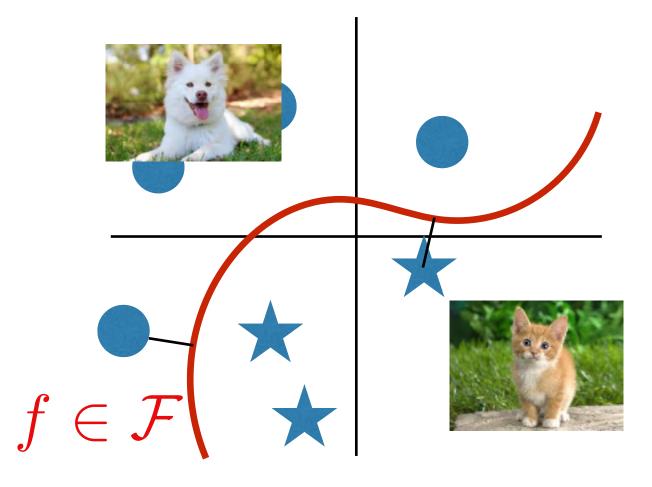
Given i.i.d examples at training:

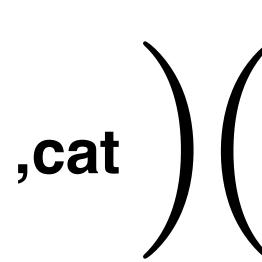


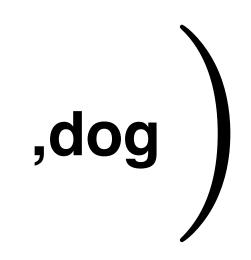


Given i.i.d examples at training:

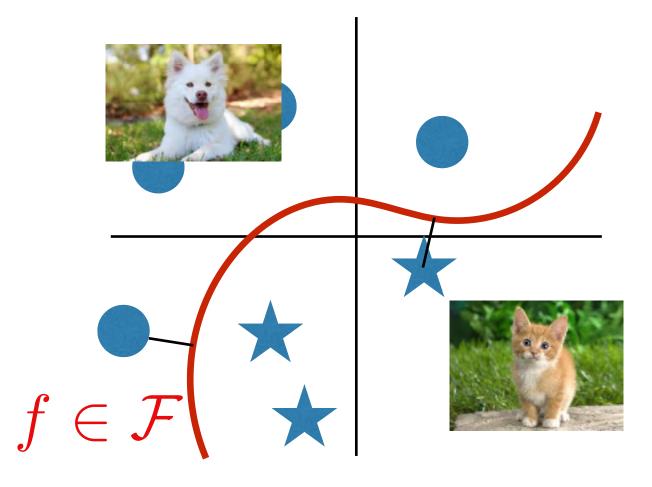




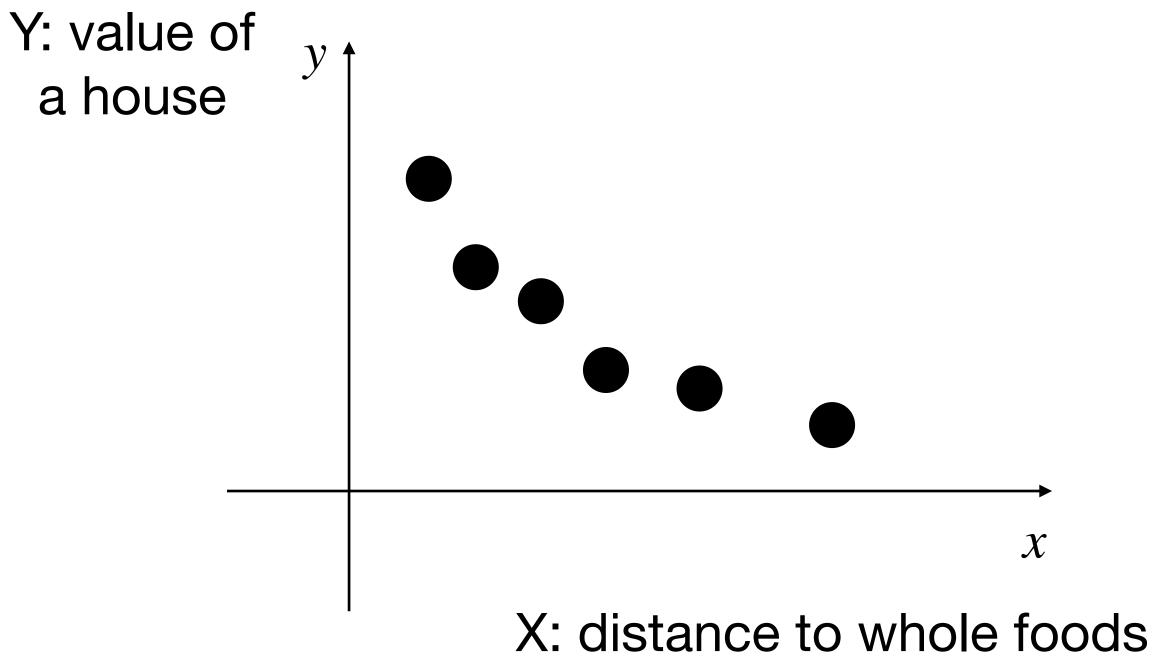


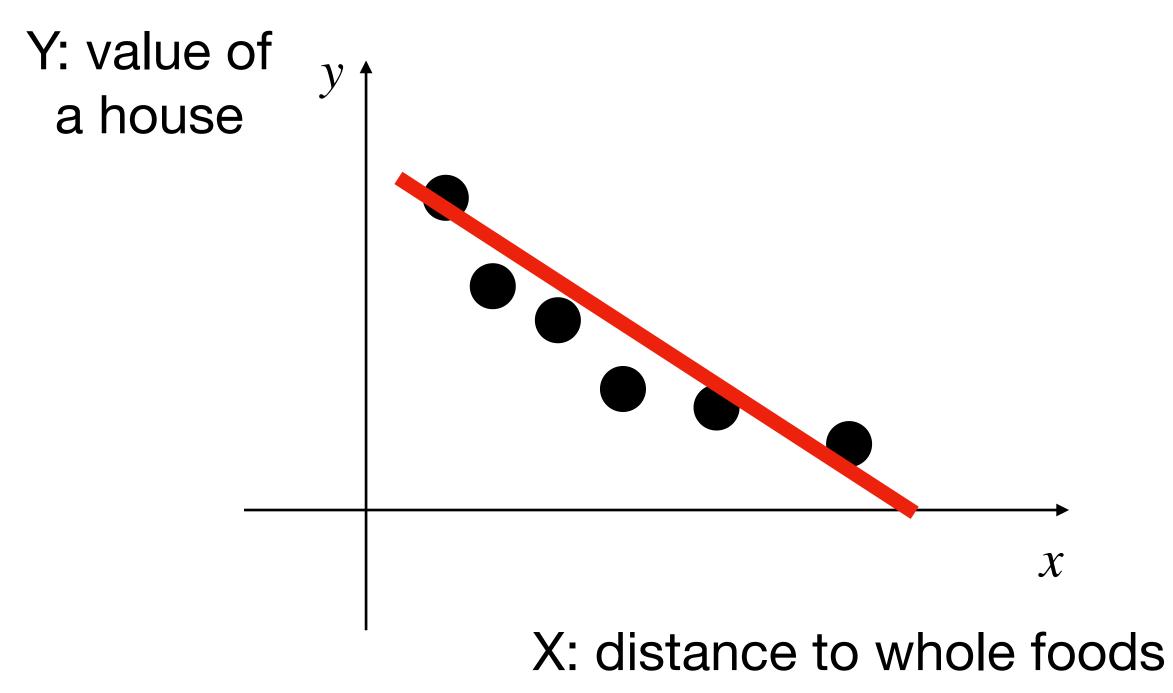


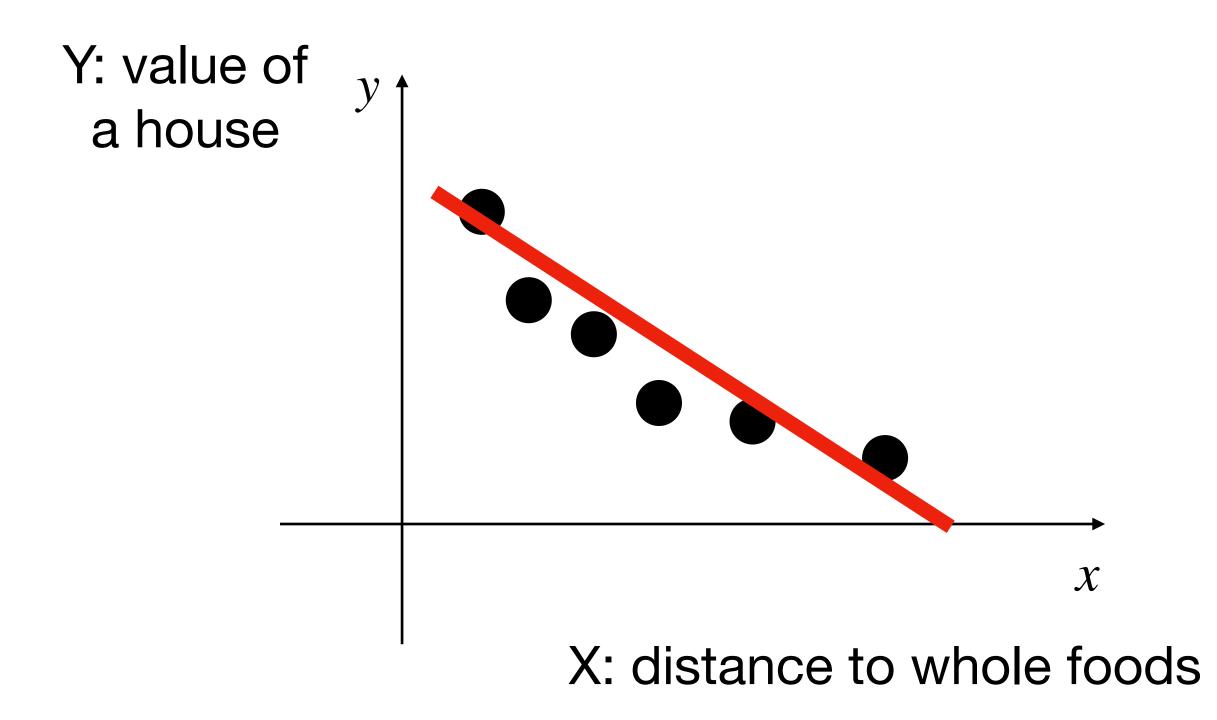
Given i.i.d examples at training:



Using function approximator, we are able to predict on cats/dogs that we **never see before** (i.e., we **generalize**)







Using function approximator, we are able to predict on the value of some house not from the training data

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

We want to approximate f^{\star} using finite training samples;

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

We want to approximate f^{\star} using finite training samples;

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

Let us introduce an abstract function class $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, and do least square:

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

We want to approximate f^{\star} using finite training samples;

$$\hat{f} = \arg\min_{f \in \mathcal{G}}$$

Let us introduce an abstract function class $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, and do least square: $\inf_{i \in \mathcal{F}} \sum_{i=1}^{N} \left(f(x_i) - y_i \right)^2$

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

We want to approximate f^{\star} using finite training samples;

Let us introduce an abstract function class $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, and do least square: Empirical Risk Minimizer (ERM) $\hat{f} = \arg \min_{f \in \mathscr{F}} \sum_{i=1}^{N} (f(x_i) - y_i)^2$

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

We want to approximate f^* using finite training samples;

Let us introduce an abstract function class $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, and do least square: Empirical Risk Minimizer (ERM) $\hat{f} = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^{N} (f(x_i) - y_i)^2$

Q: quality of ERM \hat{f} ?

 $\hat{f} = \arg\min_{f \in \mathscr{F}}$

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

$$n_{\mathcal{F}} \sum_{i=1}^{N} \left(f(x_i) - y_i \right)^2$$

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

 $\hat{f} = \arg\min_{f \in \mathscr{F}}$

Supervised learning theory (e.g., VC theory) says that we can indeed **generalize**, i.e., we can predict well **under the same distribution**:

$$\sum_{k=1}^{N} \left(f(x_i) - y_i \right)^2$$

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

 $\hat{f} = \arg\min_{f \in \mathscr{F}} \hat{f}$

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, i.e., we can predict well **under the same distribution**:

$$n_{\mathcal{F}} \sum_{i=1}^{N} \left(f(x_i) - y_i \right)^2$$

Assume $f^* \in \mathcal{F}$ (this is called realizability), we can expect:

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

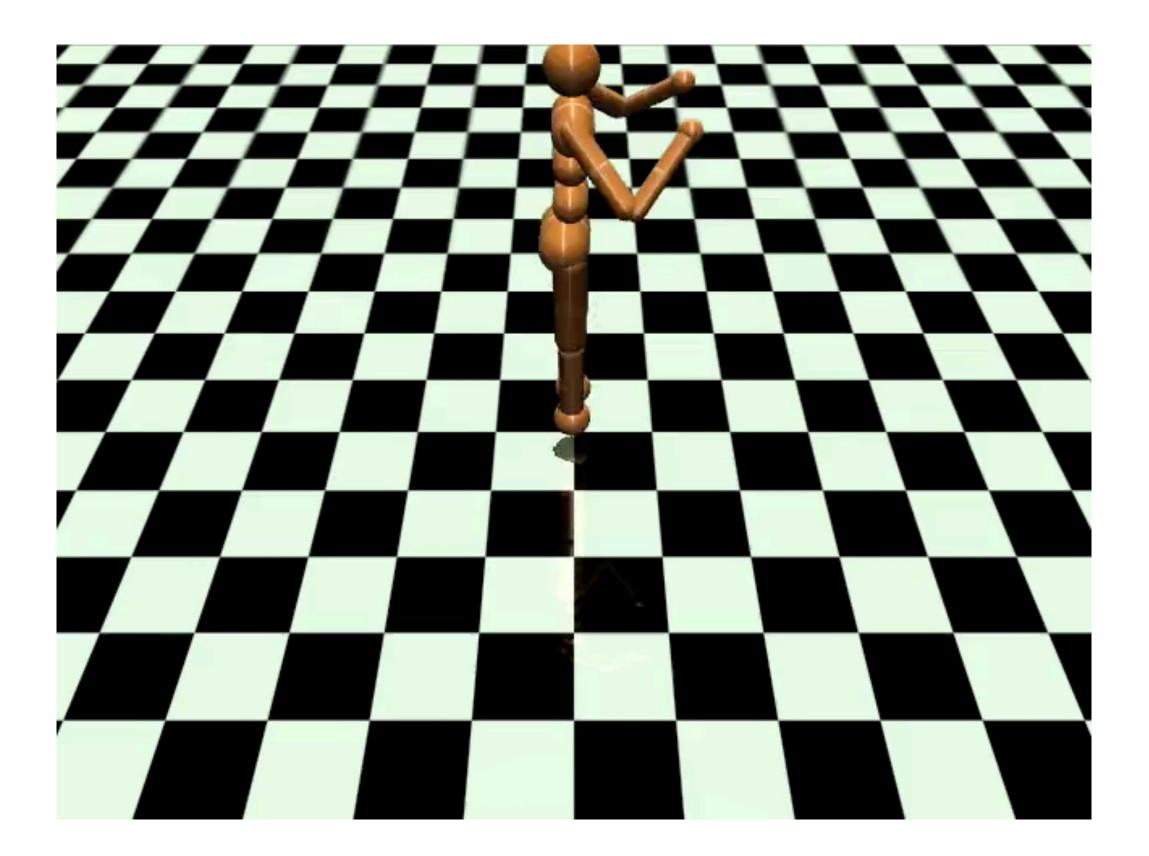
 $\hat{f} = \arg\min_{f \in \mathscr{F}} \hat{f}$

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, i.e., we can predict well **under the same distribution**:

$$\mathbb{E}_{x \sim \mathcal{D}}\left(\hat{f}(x) - f^{\star}(x)\right)^2 \leq \delta$$

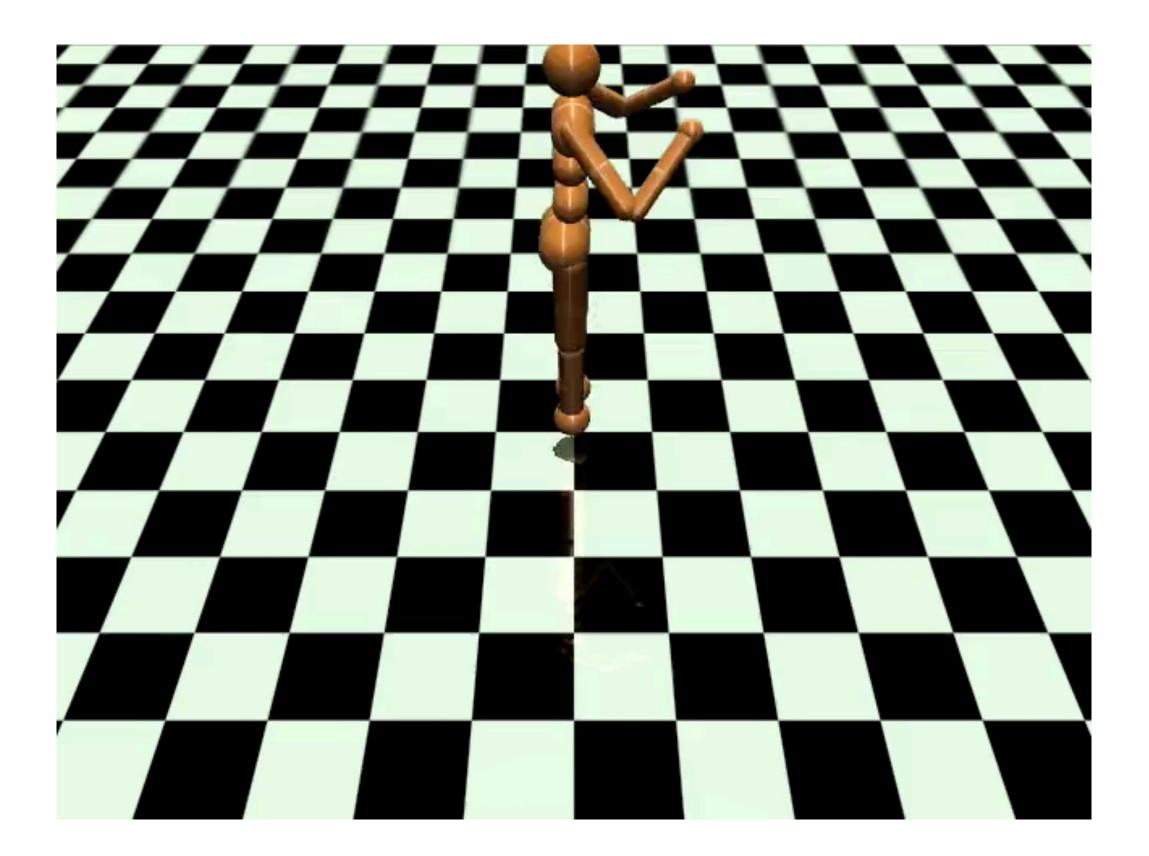
$$\sum_{k=1}^{N} \left(f(x_i) - y_i \right)^2$$

Assume $f^* \in \mathcal{F}$ (this is called realizability), we can expect:



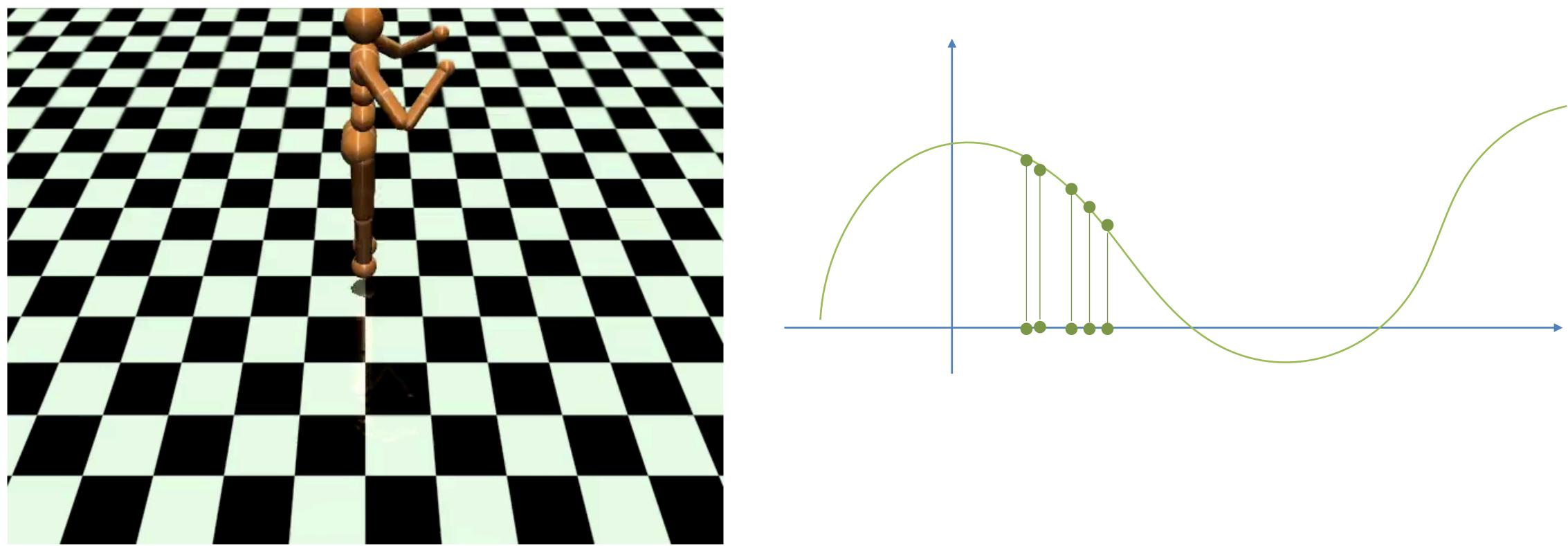
[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^{\star}(x))^2$ might be arbitrarily large



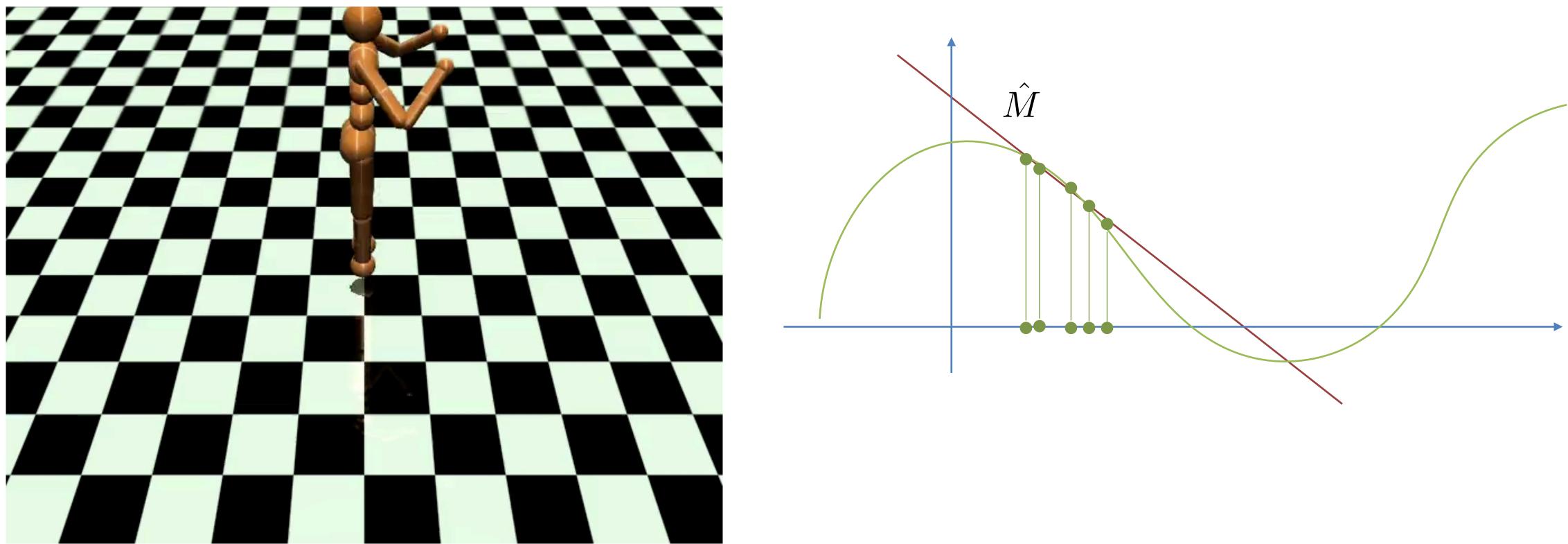
[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^{\star}(x))^2$ might be arbitrarily large



[openAl Gym]

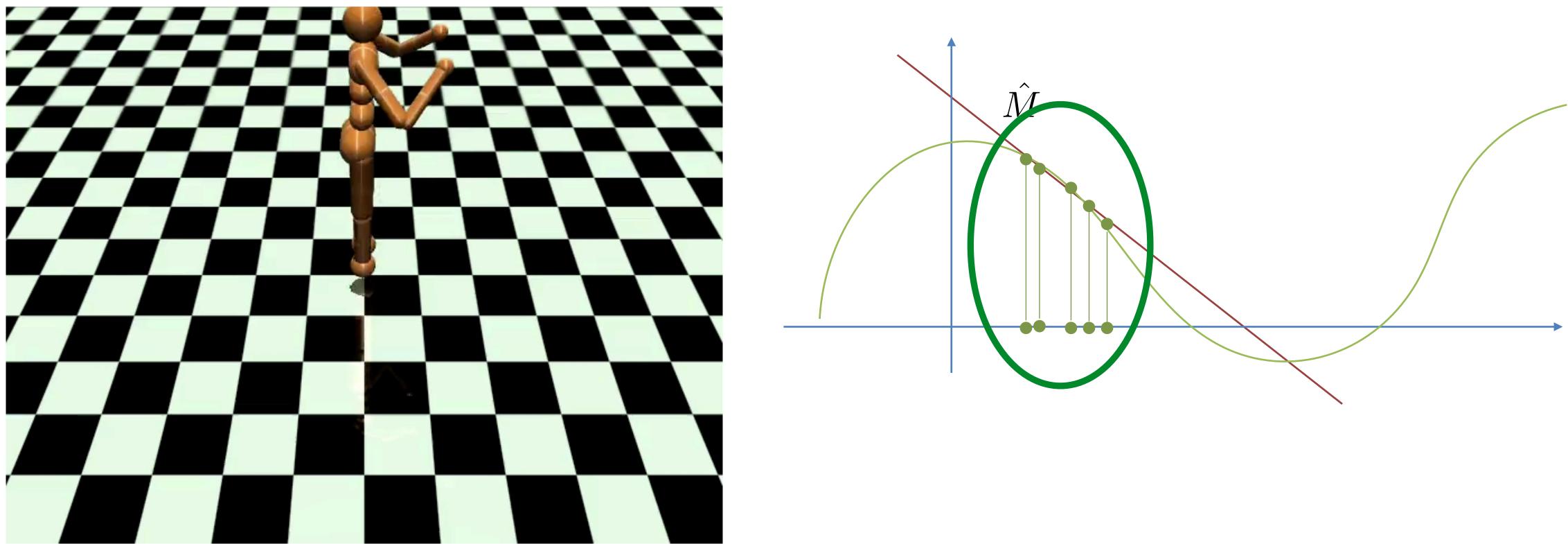
However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large



[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large

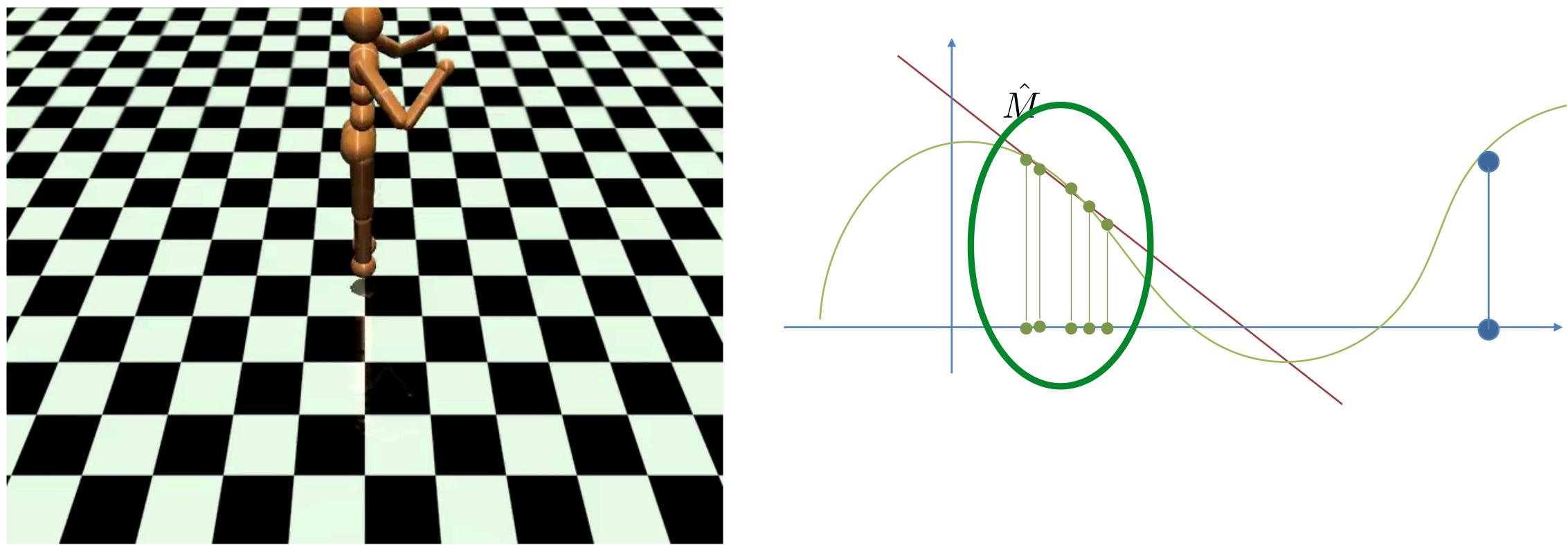
Supervise Learning can fail if there is train-test distribution mismatch



[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large

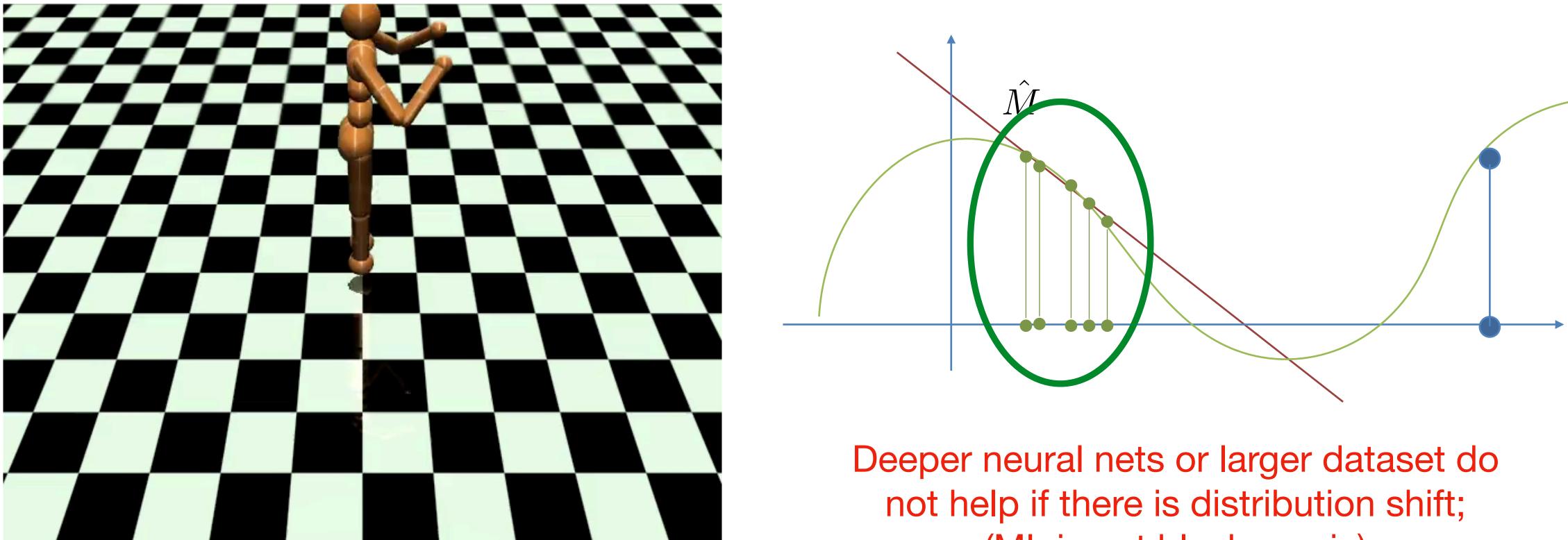
Supervise Learning can fail if there is train-test distribution mismatch



[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large

Supervise Learning can fail if there is train-test distribution mismatch



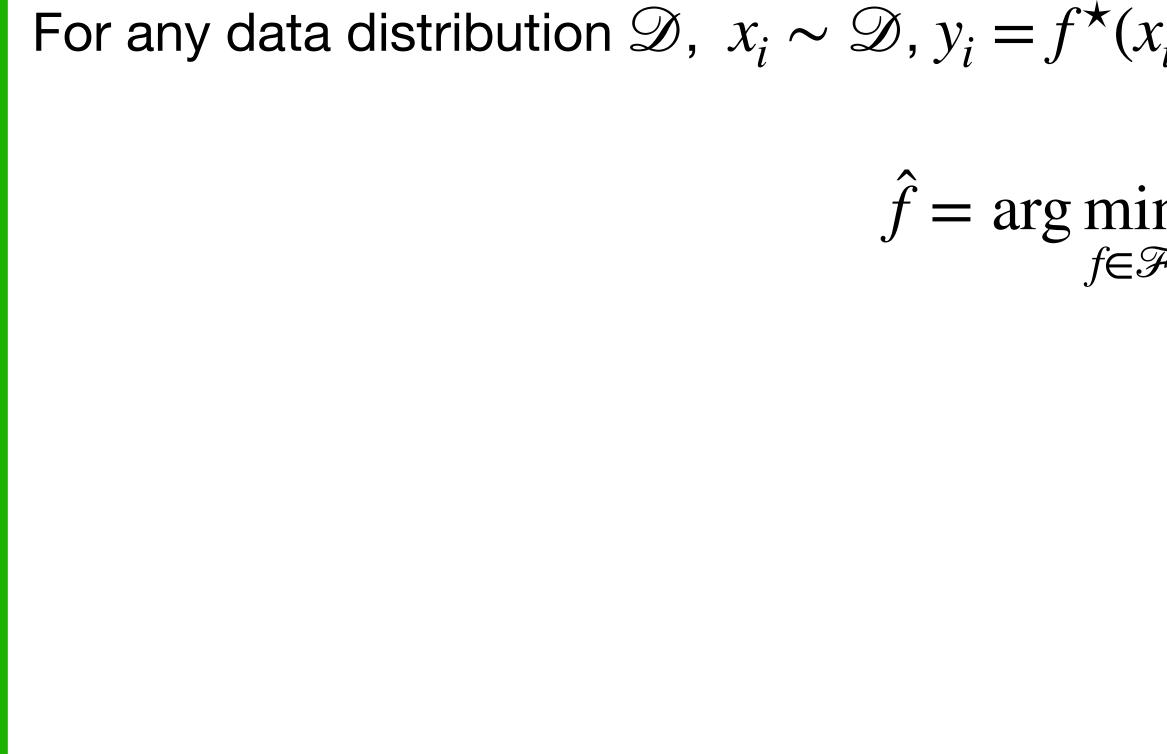
[openAl Gym]

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large

(ML is not black magic)

Throughout the semester, we will often just assume supervised learning succeed:

Throughout the semester, we will often just assume supervised learning succeed:



For any data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \le c$, define **ERM**: $\hat{f} = \arg \min_{f \in \mathscr{F}} \sum_{i=1}^N (f(x_i) - y_i)^2$

Throughout the semester, we will often just assume supervised learning succeed:

For any data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i)$ $\hat{f} = \arg\min_{f \in \mathscr{F}}$

$$E_i(x_i) + \epsilon_i$$
, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \le c$, define **EF**
 $\sum_{k=1}^{N} \left(f(x_i) - y_i \right)^2$

Assume $f^* \in \mathcal{F}$ (this is called realizability), we can expect small test error under \mathcal{D} :

Throughout the semester, we will often just assume supervised learning succeed:

For any data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i)$ $\hat{f} = \arg\min_{f \in \mathscr{F}}$ $\mathbb{E}_{x \sim \mathscr{D}}\left(\widehat{f}(x)\right)$

$$E_i(x_i) + \epsilon_i$$
, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \le c$, define **EF**
 $\sum_{k=1}^{N} \left(f(x_i) - y_i \right)^2$

Assume $f^* \in \mathscr{F}$ (this is called realizability), we can expect small test error under \mathscr{D} :

$$f^{\star}(x)\Big)^2 \le \delta$$

(where $\delta \approx \sqrt{1/N}$ (sometime it could be 1/N)

1. Quick recap on supervised learning's performance guarantee (classification & regression)

2. Approximate Policy Iteration (relies regression oracle)

Outline:

Discounted infinite horizon MDP:

 $\mathcal{M} = \{S, A, \gamma, r, P, \mu_0\}$

Discounted infinite horizon MDP:

 $\mathscr{M} = \{S, A, \gamma, r, P, \mu_0\}$ State visitation: $d^{\pi}_{\mu_0}(s) = (1 - \gamma) \sum_{h=1}^{\infty} \gamma^h \mathbb{P}^{\pi}_h(s; \mu_0)$ h=0

Discounted infinite horizon MDP:

- $\mathcal{M} = \{S$
- State visitation: $d^{\pi}_{\mu_0}(s)$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Q:

$$\mathcal{Q} = \{Q : S \times$$

$$S, A, \gamma, r, P, \mu_0 \}$$

$$F(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; \mu_0)$$

 $A \mapsto [0, 1/(1 - \gamma)]\}$

Discounted infinite horizon MDP:

- $\mathcal{M} = \{S$
- State visitation: $d^{\pi}_{\mu_0}(s)$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Q:

$$\mathcal{Q} = \{Q: S \times A \mapsto [0, 1/(1 - \gamma)]\}$$

(e.g., all 2 layer neural networks, all 10 layer regression tree, all possible linear functions)

$$S, A, \gamma, r, P, \mu_0 \}$$

$$F(r) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; \mu_0)$$

Discounted infinite horizon MDP:

- $\mathcal{M} = \{S\}$
- State visitation: $d^{\pi}_{\mu_0}(s)$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Q:

$$\mathcal{Q} = \{Q: S \times A \mapsto [0, 1/(1 - \gamma)]\}$$

(e.g., all 2 layer neural networks, all 10 layer regression tree, all possible linear functions)

$$S, A, \gamma, r, P, \mu_0 \}$$

$$F(r) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; \mu_0)$$

We can only reset according to $s_0 \sim \mu_0$

Like Policy Iteration, we iterate between two steps:

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation $\widehat{Q}^t \approx Q^{\pi^t}$

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation $\widehat{Q}^t \approx Q^{\pi^t}$

2. Policy Improvement $\pi^{t+1}(s) = \arg \max \widehat{Q}^t(s, a)$

 \boldsymbol{a}

Like Policy Iteration, we iterate between two steps:

2. Policy Improvement $\pi^{t+1}(s) = \arg \max \widehat{Q}^t(s, a)$

We use supervised learning (regression) to estimate Q^{π^t}

 \boldsymbol{a}

Like Policy Iteration, we iterate between two steps:

2. Policy Improvement $\pi^{t+1}(s) =$

We use supervised learning (regression) to estimate Q^{π^t}

a. How to get training data?

b. Quality of the learned \widehat{Q}^{t} ?

$$= \arg\max_{a} \ \widehat{Q}^{t}(s,a)$$

Q1: how do we sample a state-action pair $(s, a) \sim d_{\mu_0}^{\pi}$?

1. Sample time step *h* with probability $\gamma^h(1 - \gamma)$

Q1: how do we sample a state-action pair $(s, a) \sim d_{\mu_0}^{\pi}$?

Q1: how do we sample a state-action pair $(s, a) \sim d_{\mu_0}^{\pi}$?

- 1. Sample time step h with probability $\gamma^h(1-\gamma)$
 - 2. Roll-in π to time step h, and return (s_h, a_h) (i.e., we sample $(s, a) \sim \mathbb{P}_{h}^{\pi}(\cdot, \cdot; \mu_{0})$)

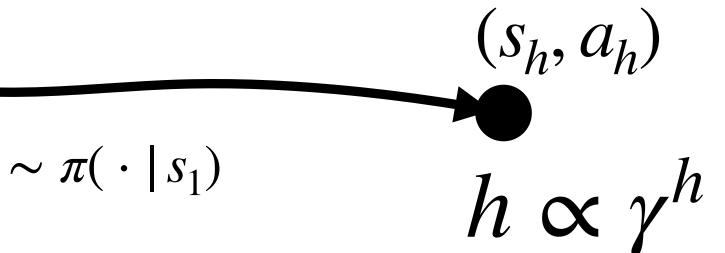
h = 0 $s_0 \sim \mu_0, a_0 \sim \pi(\cdot | s_0)$

 $s_1 \sim P(\cdot | s_0, a_0), a_1 \sim \pi(\cdot | s_1)$

Q1: how do we sample a state-action pair $(s, a) \sim d_{\mu_0}^{\pi}$?

1. Sample time step h with probability $\gamma^h(1-\gamma)$

2. Roll-in π to time step h, and return (s_h, a_h) (i.e., we sample $(s, a) \sim \mathbb{P}_{h}^{\pi}(\cdot, \cdot; \mu_{0})$)



Q2: Given that we are at (s, a), how do we get an unbiased estimate of $Q^{\pi}(s, a)$?

Denote $(s_0, a_0) = (s, a)$ For h = 0, ...,

Q2: Given that we are at (s, a), how do we get an unbiased estimate of $Q^{\pi}(s, a)$?

Denote
$$(s_0, a_0) = (s, a)$$

For $h = 0, ...,$

Receive $r_h = r(s_h, a_h)$

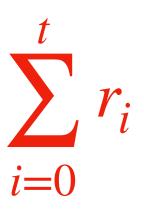
Q2: Given that we are at (s, a), how do we get an unbiased estimate of $Q^{\pi}(s, a)$?

Denote
$$(s_0, a_0) = (s, a)$$

For $h = 0, ...,$

Receive
$$r_h = r(s_h, a_h)$$

With probability $1 - \gamma$: **Break** and **Return** $\sum_{i}^{r} r_{i}$



Denote
$$(s_0, a_0) = (s, a)$$

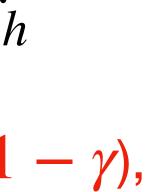
For $h = 0, ...,$
Receive $r_h = r(s_h, a_h)$
With probability $1 - \gamma$: Break and Return $\sum_{i=0}^{t} r_i$
Transition: $s_{h+1} \sim P(s_h, a_h), a_{h+1} \sim \pi(\cdot | s_{h+1})$

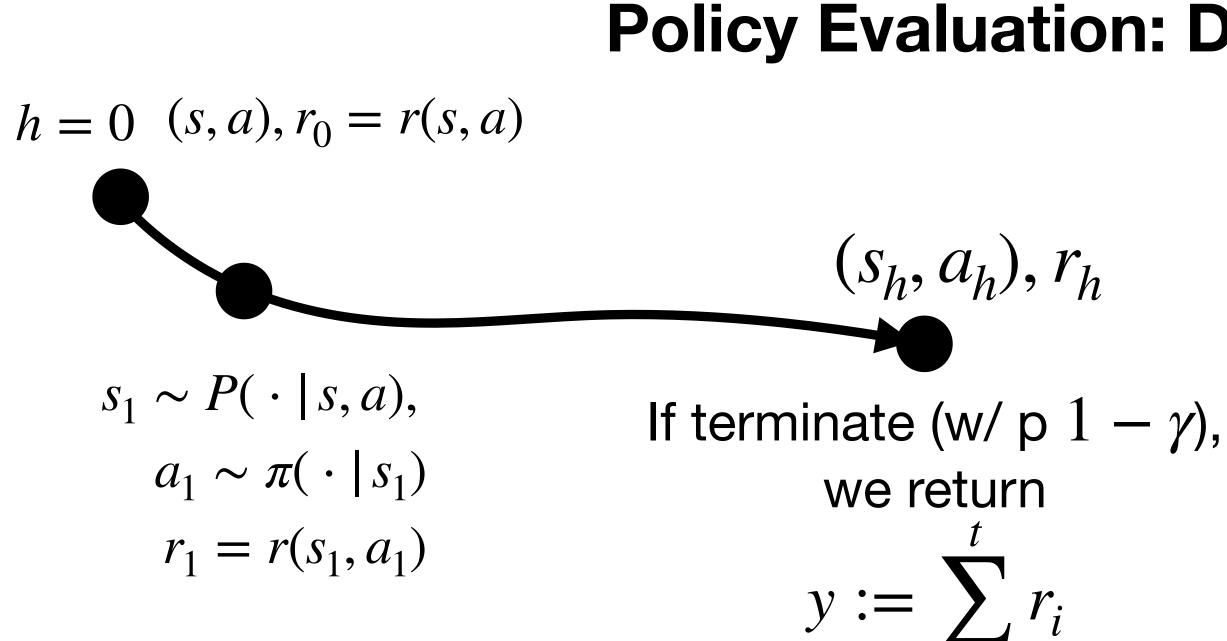
Denote
$$(s_0, a_0) = (s, a)$$

For $h = 0, ...,$
Receive $r_h = r(s_h, a_h)$
With probability $1 - \gamma$: Break and Return $\sum_{i=0}^{t} r_i$
Transition: $s_{h+1} \sim P(s_h, a_h), a_{h+1} \sim \pi(\cdot | s_{h+1})$
A Roll-out process

Denote
$$(s_0, a_0) = (s, a)$$

For $h = 0, ...,$
Receive $r_h = r(s_h, a_h)$
With probability $1 - \gamma$: Break and Return $\sum_{i=0}^{t} r_i$
Transition: $s_{h+1} \sim P(s_h, a_h), a_{h+1} \sim \pi(\cdot | s_{h+1})$
 $h = 0 \quad (s, a), r_0 = r(s, a)$
 $s_1 \sim P(\cdot | s, a),$
 $a_1 \sim \pi(\cdot | s_1)$
 $r_1 = r(s_1, a_1)$
A Roll-out process

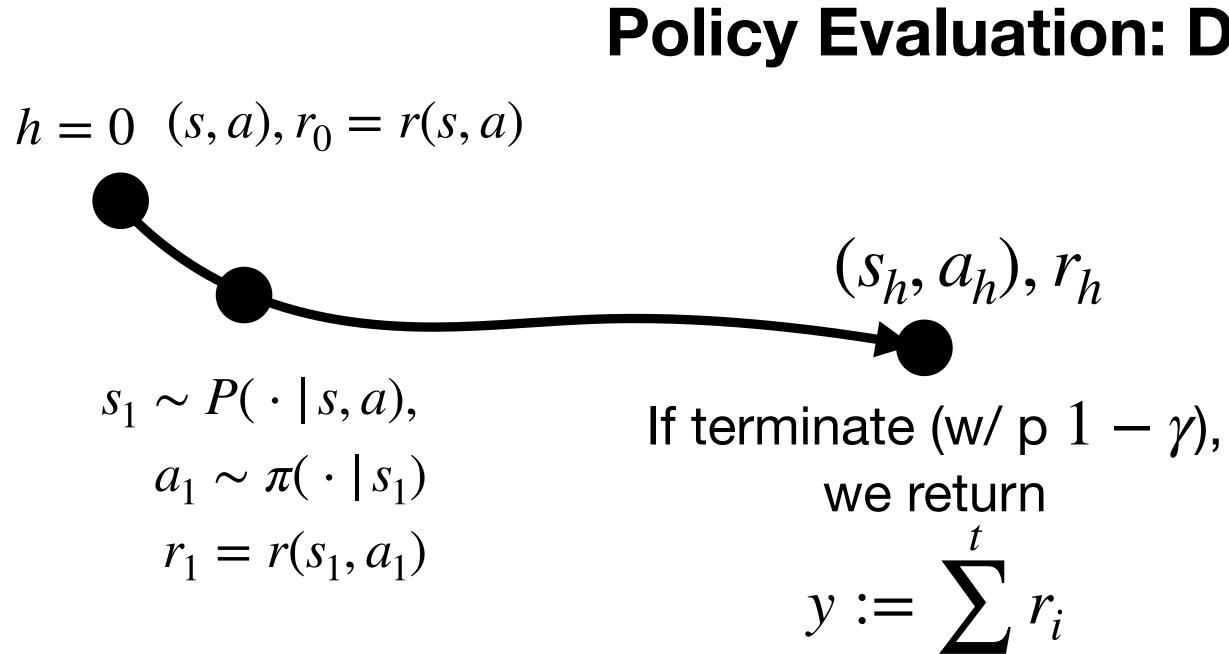




i=0

Policy Evaluation: Dataset Generation

Claim: A roll-out from (s, a) gives an unbiased estimate of $Q^{\pi}(s, a)$ $\mathbb{E}[y] = Q^{\pi}(s, a)$

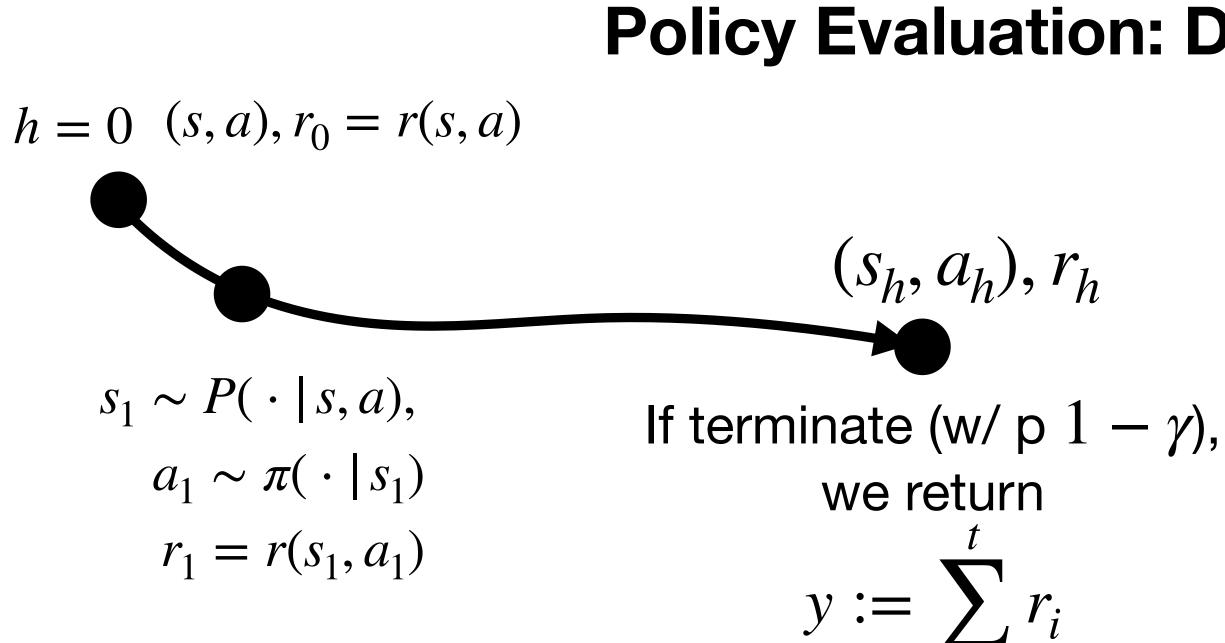


i=0

Policy Evaluation: Dataset Generation

Claim: A roll-out from (s, a) gives an unbiased estimate of $Q^{\pi}(s, a)$ $\mathbb{E}\left[y\right] = Q^{\pi}(s,a)$

Proof sketch (full proof is left as an exercise):



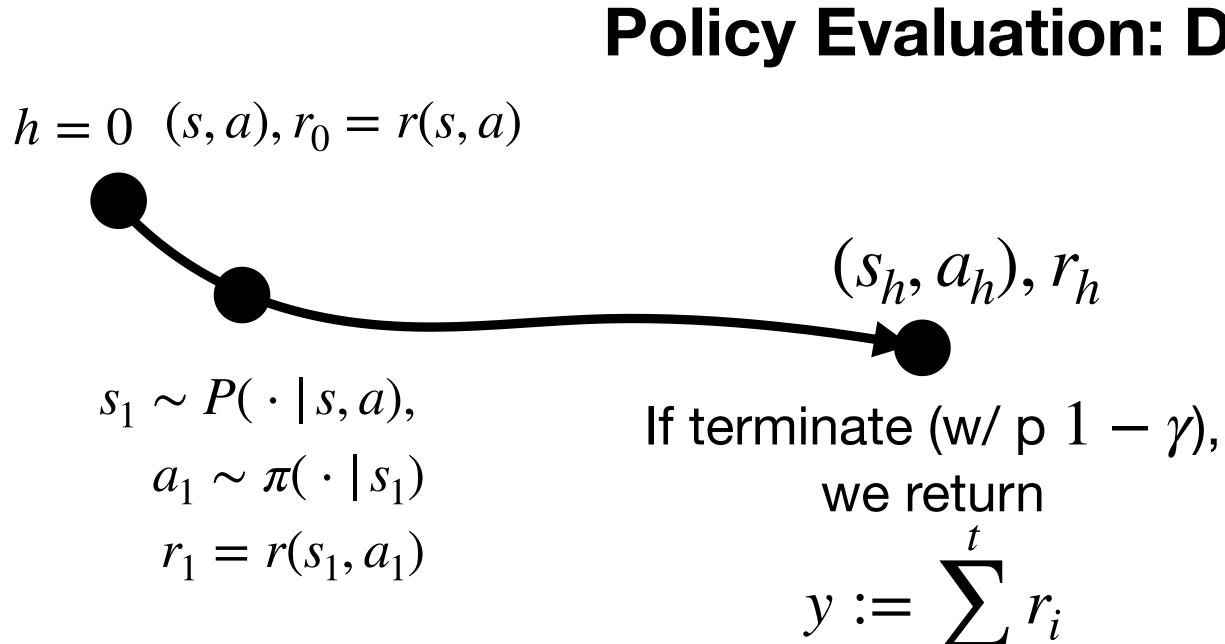
Proof sketch (full proof is left as an exercise):

i=0

Policy Evaluation: Dataset Generation

Claim: A roll-out from (s, a) gives an unbiased estimate of $Q^{\pi}(s, a)$ $\mathbb{E} |y| = Q^{\pi}(s, a)$

- Q: What's the probability of returning $y = r_0$,
- and what's the probability of returning $y = r_0 + r_1$?



Proof sketch (full proof is left as an exercise):

i=0

$$(1-\gamma)r_0 + \gamma(1-\gamma)(r_0+r_1) + \gamma^2(1-\gamma)(r_0+r_1+r_2) + \dots = \sum_{h=0}^{\infty} \gamma^h r_h$$

Policy Evaluation: Dataset Generation

Claim: A roll-out from (s, a) gives an unbiased estimate of $Q^{\pi}(s, a)$ $\mathbb{E} |y| = Q^{\pi}(s, a)$

- Q: What's the probability of returning $y = r_0$,
- and what's the probability of returning $y = r_0 + r_1$?

Summary of the dataset generation process:

- Given π^t :
- 1. we roll-in to generate $(s, a) \sim d_{\mu_0}^{\pi}$
- 2. At (s, a), we roll-out w/ π to generate an unbiased estimate of $Q^{\pi}(s, a)$: y
 - In other words, one roll-in & roll-out gives us a triple (s, a, y)

Summary of the dataset generation process:

- Given π^t :
- 1. we roll-in to generate $(s, a) \sim d_{\mu_0}^{\pi}$
- 2. At (s, a), we **roll-out** w/ π to generate an unbiased estimate of $Q^{\pi}(s, a)$: y
 - In other words, one roll-in & roll-out gives us a triple (s, a, y)
 - Given π , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

Summary of the dataset generation process:

 $\mathcal{Y}^{n} = \langle$

- Given π^t :
- 1. we roll-in to generate $(s, a) \sim d_{\mu_0}^{\pi}$
- 2. At (s, a), we **roll-out** w/ π to generate an unbiased estimate of $Q^{\pi}(s, a)$: y
 - In other words, one roll-in & roll-out gives us a triple (s, a, y)
 - Given π , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\left\{s^{i}, a^{i}, y^{i}\right\}_{i=1}^{N}$$