
Approximate Policy Iteration

Recap: Policy Iteration

Recall Policy Iteration (PI) for the setting where and are known:P r

We compute exactly for all , PI updates policy as: Qπ(s, a) s, a

π′￼(s) = arg max
a

Qπ(s, a)

i.e., be greedy with respect to at every state , π s

Monotonic improvement of PI: Qπ′￼(s, a) ≥ Qπ(s, a), ∀s, a

Recap: Policy Iteration

Recall Policy Iteration (PI) for the setting where and are known:P r

We compute exactly for all , PI updates policy as: Qπ(s, a) s, a

π′￼(s) = arg max
a

Qπ(s, a)

i.e., be greedy with respect to at every state , π s

Monotonic improvement of PI: Qπ′￼(s, a) ≥ Qπ(s, a), ∀s, a

What if are unknown, and MDP is large (e.g., infinitely many states)?P & r

Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′￼∼ ̂P (s,a)
̂V π(s′￼) − 𝔼s′￼∼P(s,a) ̂V π(s′￼)]

≤
γ

(1 − γ)2
𝔼s,a∼dπ

s0
̂P (⋅ |s, a) − P(⋅ |s, a)

1

Recap: Model-based RL

Recap: Model-based RL

An Algorithm under Generative Model Setting for (small) discrete MDP:

Recap: Model-based RL

An Algorithm under Generative Model Setting for (small) discrete MDP:

1. Model fitting:
: collect next states, ;

set

∀s, a N s′￼i ∼ P(⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

Recap: Model-based RL

An Algorithm under Generative Model Setting for (small) discrete MDP:

1. Model fitting:
: collect next states, ;

set

∀s, a N s′￼i ∼ P(⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

2. Planning w/ the learned model:

 ̂π ⋆ = PI (̂P , r)

We are moving on to large scale MDPs

When we face extremely large state space
or continuous state space:

Enumerate over all state-action pairs is not possible

in both computation, space, and statistics;

What should we do?

We are moving on to large scale MDPs

When we face extremely large state space
or continuous state space:

Enumerate over all state-action pairs is not possible

in both computation, space, and statistics;

What should we do?

Answer: generalization via function approximation

(e.g., linear, decision tree, SVM, GP, neural nets)

We are moving on to large scale MDPs

When we face extremely large state space
or continuous state space:

Enumerate over all state-action pairs is not possible

in both computation, space, and statistics;

What should we do?

Answer: generalization via function approximation

(e.g., linear, decision tree, SVM, GP, neural nets)

Indeed, in LQR, we are using quadratic function
to represent Q & V

Another example: Video games

State s: RGB image

Another example: Video games

State s: RGB image
We can try to capture via deep nets:Q⋆(s, a)

Another example: Video games

State s: RGB image
We can try to capture via deep nets:Q⋆(s, a)

Game action a

Question for Today (and the next a few lectures):

How to (approximately) learn using function approximation for large scale MDPs?

(i.e., numeration over state-action is not feasible)

π⋆

Outline:

1. Quick recap on supervised learning’s performance guarantee

(classification & regression)

2. Approximate Policy Iteration (relies regression oracle)

Recap on Supervised Learning: Classification

Recap on Supervised Learning: Classification

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

Recap on Supervised Learning: Classification

f 2 F

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

Recap on Supervised Learning: Classification

f 2 F

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

Using function approximator, we are able to
predict on cats/dogs that we never see

before (i.e., we generalize)

Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of
a house

Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of
a house

Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of
a house

Using function approximator, we are able to
predict on the value of some house not

from the training data

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate using finite training samples;f ⋆

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate using finite training samples;f ⋆

Let us introduce an abstract function class , and do least square:ℱ = {f : 𝒳 ↦ ℝ}

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate using finite training samples;f ⋆

Let us introduce an abstract function class , and do least square:ℱ = {f : 𝒳 ↦ ℝ}

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate using finite training samples;f ⋆

Let us introduce an abstract function class , and do least square:ℱ = {f : 𝒳 ↦ ℝ}

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2
Empirical Risk Minimizer (ERM)

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate using finite training samples;f ⋆

Let us introduce an abstract function class , and do least square:ℱ = {f : 𝒳 ↦ ℝ}

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Q: quality of ERM ? ̂f

Empirical Risk Minimizer (ERM)

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize,

i.e., we can predict well under the same distribution:

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize,

i.e., we can predict well under the same distribution:

Assume (this is called realizability), we can expect:f ⋆ ∈ ℱ

Recap on Supervised Learning: regression

We have a data distribution , , , where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize,

i.e., we can predict well under the same distribution:

𝔼x∼𝒟 (̂f(x) − f ⋆(x))
2

≤ δ

Assume (this is called realizability), we can expect:f ⋆ ∈ ℱ

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some , might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
(f(x) − f ⋆(x))2

[openAI Gym]

Deeper neural nets or larger dataset do
not help if there is distribution shift;

(ML is not black magic)

Throughout the semester, we will often just assume supervised learning succeed:

Recap on Supervised Learning: regression

Throughout the semester, we will often just assume supervised learning succeed:

For any data distribution , , , where noise , define ERM:𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Recap on Supervised Learning: regression

Throughout the semester, we will often just assume supervised learning succeed:

Assume (this is called realizability), we can expect small test error under :f ⋆ ∈ ℱ 𝒟

For any data distribution , , , where noise , define ERM:𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Recap on Supervised Learning: regression

Throughout the semester, we will often just assume supervised learning succeed:

Assume (this is called realizability), we can expect small test error under :f ⋆ ∈ ℱ 𝒟

𝔼x∼𝒟 (̂f(x) − f ⋆(x))
2

≤ δ

(where (sometime it could be))δ ≈ 1/N 1/N

For any data distribution , , , where noise , define ERM:𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Recap on Supervised Learning: regression

Outline:

1. Quick recap on supervised learning’s performance guarantee

(classification & regression)

2. Approximate Policy Iteration (relies regression oracle)

Setting and Notation

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

Setting and Notation

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

State visitation: dπ
μ0

(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ0)

Setting and Notation

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

State visitation: dπ
μ0

(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ0)

As we will consider large scale unknown MDP here, we start with a (restricted) function class :𝒬

𝒬 = {Q : S × A ↦ [0,1/(1 − γ)]}

Setting and Notation

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

State visitation: dπ
μ0

(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ0)

As we will consider large scale unknown MDP here, we start with a (restricted) function class :𝒬

𝒬 = {Q : S × A ↦ [0,1/(1 − γ)]}

(e.g., all 2 layer neural networks, all 10 layer regression tree, all possible linear functions)

Setting and Notation

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

State visitation: dπ
μ0

(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ0)

As we will consider large scale unknown MDP here, we start with a (restricted) function class :𝒬

𝒬 = {Q : S × A ↦ [0,1/(1 − γ)]}

(e.g., all 2 layer neural networks, all 10 layer regression tree, all possible linear functions)

We can only reset according to s0 ∼ μ0

Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation ̂Q t ≈ Qπt

Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation ̂Q t ≈ Qπt

2. Policy Improvement πt+1(s) = arg max
a

̂Q t(s, a)

Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation ̂Q t ≈ Qπt

2. Policy Improvement πt+1(s) = arg max
a

̂Q t(s, a)

We use supervised learning
(regression) to estimate Qπt

Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation ̂Q t ≈ Qπt

2. Policy Improvement πt+1(s) = arg max
a

̂Q t(s, a)

We use supervised learning
(regression) to estimate Qπt

a. How to get training data?

b. Quality of the learned ? ̂Q t

Policy Evaluation: Dataset Generation

Q1: how do we sample a state-action pair ? (s, a) ∼ dπ
μ0

Policy Evaluation: Dataset Generation

Q1: how do we sample a state-action pair ? (s, a) ∼ dπ
μ0

1. Sample time step with probability h γh(1 − γ)

Policy Evaluation: Dataset Generation

Q1: how do we sample a state-action pair ? (s, a) ∼ dπ
μ0

1. Sample time step with probability h γh(1 − γ)

2. Roll-in to time step and return

(i.e., we sample)

π h, (sh, ah)
(s, a) ∼ ℙπ

h(⋅ , ⋅ ; μ0)

Policy Evaluation: Dataset Generation

Q1: how do we sample a state-action pair ? (s, a) ∼ dπ
μ0

1. Sample time step with probability h γh(1 − γ)

2. Roll-in to time step and return

(i.e., we sample)

π h, (sh, ah)
(s, a) ∼ ℙπ

h(⋅ , ⋅ ; μ0)

h ∝ γh

h = 0

s0 ∼ μ0, a0 ∼ π(⋅ |s0)

s1 ∼ P(⋅ |s0, a0), a1 ∼ π(⋅ |s1)

(sh, ah)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

For h = 0,…,
Denote (s0, a0) = (s, a)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

With probability : 1 − γ Break and Return
t

∑
i=0

ri

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

With probability : 1 − γ Break and Return
t

∑
i=0

ri

Transition: sh+1 ∼ P(sh, ah), ah+1 ∼ π(⋅ |sh+1)

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

With probability : 1 − γ Break and Return
t

∑
i=0

ri

Transition: sh+1 ∼ P(sh, ah), ah+1 ∼ π(⋅ |sh+1)

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

A Roll-out process

Policy Evaluation: Dataset Generation

Q2: Given that we are at how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

With probability : 1 − γ Break and Return
t

∑
i=0

ri

Transition: sh+1 ∼ P(sh, ah), ah+1 ∼ π(⋅ |sh+1)

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)
If terminate (w/ p),

we return

1 − γ

t

∑
i=0

ri

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

A Roll-out process

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

If terminate (w/ p),

we return

1 − γ

y :=
t

∑
i=0

ri

Policy Evaluation: Dataset Generation

Claim: A roll-out from gives an
unbiased estimate of

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

If terminate (w/ p),

we return

1 − γ

y :=
t

∑
i=0

ri

Policy Evaluation: Dataset Generation

Claim: A roll-out from gives an
unbiased estimate of

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

Proof sketch (full proof is left as an exercise):

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

If terminate (w/ p),

we return

1 − γ

y :=
t

∑
i=0

ri

Policy Evaluation: Dataset Generation

Claim: A roll-out from gives an
unbiased estimate of

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

Proof sketch (full proof is left as an exercise):

Q: What’s the probability of returning , y = r0

 and what’s the probability of returning ? y = r0 + r1

h = 0 (s, a), r0 = r(s, a)

s1 ∼ P(⋅ |s, a),
a1 ∼ π(⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

If terminate (w/ p),

we return

1 − γ

y :=
t

∑
i=0

ri

Policy Evaluation: Dataset Generation

Claim: A roll-out from gives an
unbiased estimate of

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

Proof sketch (full proof is left as an exercise):

Q: What’s the probability of returning , y = r0

 and what’s the probability of returning ? y = r0 + r1

(1 − γ)r0 + γ(1 − γ)(r0 + r1) + γ2(1 − γ)(r0 + r1 + r2) + … =
∞

∑
h=0

γhrh

Summary of the dataset generation process:

Given :

1. we roll-in to generate

2. At , we roll-out w/ to generate an unbiased estimate of :

πt

(s, a) ∼ dπ
μ0

(s, a) π Qπ(s, a) y

In other words, one roll-in & roll-out gives us a triple (s, a, y)

Summary of the dataset generation process:

Given :

1. we roll-in to generate

2. At , we roll-out w/ to generate an unbiased estimate of :

πt

(s, a) ∼ dπ
μ0

(s, a) π Qπ(s, a) y

Given , repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

π

In other words, one roll-in & roll-out gives us a triple (s, a, y)

Summary of the dataset generation process:

Given :

1. we roll-in to generate

2. At , we roll-out w/ to generate an unbiased estimate of :

πt

(s, a) ∼ dπ
μ0

(s, a) π Qπ(s, a) y

Given , repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

π

In other words, one roll-in & roll-out gives us a triple (s, a, y)

𝒟π = {si, ai, yi}N
i=1

