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Recall Policy Iteration (PI) for the setting where  and  are known:P r

We compute  exactly for all , PI updates policy as: Qπ(s, a) s, a

π′ (s) = arg max
a

Qπ(s, a)

i.e., be greedy with respect to  at every state , π s

Monotonic improvement of PI: Qπ′ (s, a) ≥ Qπ(s, a), ∀s, a

What if  are unknown, and MDP is large (e.g., infinitely many states)?P & r



Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′ ∼ ̂P (s,a)
̂V π(s′ ) − 𝔼s′ ∼P(s,a) ̂V π(s′ )]

≤
γ

(1 − γ)2
𝔼s,a∼dπ

s0
̂P ( ⋅ |s, a) − P( ⋅ |s, a)

1
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An Algorithm under Generative Model Setting for (small) discrete MDP:

1. Model fitting:  
: collect  next states, ; 


set   

∀s, a N s′ i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′ |s, a) =
∑N

i=1 1{s′ i = s′ }

N
;

2. Planning w/ the learned model: 

 ̂π ⋆ = PI ( ̂P , r)
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We are moving on to large scale MDPs

When we face extremely large state space 
or continuous state space:

Enumerate over all state-action pairs is not possible

in both computation, space, and statistics;

What should we do? 

Answer: generalization via function approximation

(e.g., linear, decision tree, SVM, GP, neural nets)

Indeed, in LQR, we are using quadratic function 
to represent Q & V
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Another example: Video games

State s: RGB image
We can try to capture  via deep nets:Q⋆(s, a)

Game action a



Question for Today (and the next a few lectures):

How to (approximately) learn  using function approximation for large scale MDPs? 

(i.e., numeration over state-action is not feasible)

π⋆



Outline:

1. Quick recap on supervised learning’s performance guarantee

(classification & regression)

2. Approximate Policy Iteration (relies regression oracle)
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Recap on Supervised Learning: Classification

f 2 F

,cat ,cat ,dog( )( )

Given i.i.d examples at training:

( )

Using function approximator, we are able to 
predict on cats/dogs that we never see 

before (i.e., we generalize)
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Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of 
a house

Using function approximator, we are able to 
predict on the value of some house not 

from the training data
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̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Q: quality of ERM  ? ̂f

Empirical Risk Minimizer (ERM)
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We have a data distribution ,  , ,  where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, 

i.e., we can predict well under the same distribution:

𝔼x∼𝒟 ( ̂f(x) − f ⋆(x))
2

≤ δ

Assume  (this is called realizability), we can expect:f ⋆ ∈ ℱ



Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]



M̂

Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′ ≠ 𝒟 𝔼x∼𝒟′ 
( f(x) − f ⋆(x))2

[openAI Gym]

Deeper neural nets or larger dataset do 
not help if there is distribution shift; 


(ML is not black magic)
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Assume  (this is called realizability), we can expect small test error under :f ⋆ ∈ ℱ 𝒟

𝔼x∼𝒟 ( ̂f(x) − f ⋆(x))
2

≤ δ

( where  (sometime it could be ) )δ ≈ 1/N 1/N

For any data distribution ,  , ,  where noise , define ERM:𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c
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Setting and Notation 

ℳ = {S, A, γ, r, P, μ0}

Discounted infinite horizon MDP:

State visitation: dπ
μ0

(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ0)

As we will consider large scale unknown MDP here, we start with a (restricted) function class :𝒬

𝒬 = {Q : S × A ↦ [0,1/(1 − γ)]}

(e.g., all 2 layer neural networks, all 10 layer regression tree, all possible linear functions)

We can only reset according to s0 ∼ μ0
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Approximate Policy Iteration

Like Policy Iteration, we iterate between two steps:

1. Policy Evaluation ̂Q t ≈ Qπt

2. Policy Improvement πt+1(s) = arg max
a

̂Q t(s, a)

We use supervised learning 
(regression) to estimate Qπt

a. How to get training data?

b. Quality of the learned ? ̂Q t
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Policy Evaluation: Dataset Generation

Q1: how do we sample a state-action pair  ? (s, a) ∼ dπ
μ0

1. Sample time step  with probability h γh(1 − γ)

2. Roll-in  to time step  and return  

(i.e., we sample )

π h, (sh, ah)
(s, a) ∼ ℙπ

h( ⋅ , ⋅ ; μ0)

h ∝ γh

h = 0

s0 ∼ μ0, a0 ∼ π( ⋅ |s0)

s1 ∼ P( ⋅ |s0, a0), a1 ∼ π( ⋅ |s1)

(sh, ah)
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Q2: Given that we are at  how do we get an unbiased estimate of ? (s, a), Qπ(s, a)

With probability : 1 − γ Break and Return 
t

∑
i=0

ri

Transition: sh+1 ∼ P(sh, ah), ah+1 ∼ π( ⋅ |sh+1)

For h = 0,…,
Denote (s0, a0) = (s, a)

Receive rh = r(sh, ah)
If terminate (w/ p ), 


we return

1 − γ

t

∑
i=0

ri
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s1 ∼ P( ⋅ |s, a),
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If terminate (w/ p ), 
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Policy Evaluation: Dataset Generation

Claim: A roll-out from  gives an 
unbiased estimate of 

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

Proof sketch (full proof is left as an exercise):

Q: What’s the probability of returning , y = r0

 and what’s the probability of returning ? y = r0 + r1



h = 0 (s, a), r0 = r(s, a)

s1 ∼ P( ⋅ |s, a),
a1 ∼ π( ⋅ |s1)
r1 = r(s1, a1)

(sh, ah), rh

If terminate (w/ p ), 

we return


1 − γ

y :=
t

∑
i=0

ri

Policy Evaluation: Dataset Generation

Claim: A roll-out from  gives an 
unbiased estimate of 

(s, a)
Qπ(s, a)

𝔼 [y] = Qπ(s, a)

Proof sketch (full proof is left as an exercise):

Q: What’s the probability of returning , y = r0

 and what’s the probability of returning ? y = r0 + r1

(1 − γ)r0 + γ(1 − γ)(r0 + r1) + γ2(1 − γ)(r0 + r1 + r2) + … =
∞

∑
h=0

γhrh
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Summary of the dataset generation process:

Given : 

1. we roll-in to generate 


2. At , we roll-out w/  to generate an unbiased estimate of : 

πt

(s, a) ∼ dπ
μ0

(s, a) π Qπ(s, a) y

Given , repeat N times of the roll-in & roll-out process,  
we get a training dataset of N samples:

π

In other words, one roll-in & roll-out gives us a triple (s, a, y)

𝒟π = {si, ai, yi}N
i=1


