Approximate Policy Iteration
And Performance Difference Lemma
Recap: Supervised Learning and Data Generation Process
Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch
Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch.

2. A data generation process: given π, we roll-in & roll-out to get (s, a, y),
 where $(s, a) \sim d^{\pi}_{\mu_0}$, $\mathbb{E}[y] = Q^{\pi}(s, a)$

If terminate (w/ $p = 1 - \gamma$),
we return

$y := \sum_{i=h}^{t} r_i$
Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)
Estimating the function $Q^\pi(s, a)$ using Least Square Regression

Given π, repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^\pi = \{s^i, a^i, y^i\}_{i=1}^{N}$$
Estimating the function $Q^\pi(s, a)$ using Least Square Regression

Given π, repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^\pi = \{s^i, a^i, y^i\}_{i=1}^N$$

Least square regression:

$$\hat{Q}^\pi \in \arg \min_{Q \in \mathcal{Q}} \sum_{i=1}^{N} (Q(s^i, a^i) - y^i)^2$$
Estimating the function $Q_\pi(s, a)$ using Least Square Regression

Given π, repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}_\pi = \{s^i, a^i, y^i\}_{i=1}^N$$

Least square regression:

$$\hat{Q}_\pi \in \arg \min_{Q \in \mathcal{Q}} \sum_{i=1}^N (Q(s^i, a^i) - y^i)^2$$

Assume successful supervise learning, we have:

$$\mathbb{E}_{s, a \sim d_\mu}(\hat{Q}_\pi(s, a) - Q_\pi(s, a))^2 \leq \delta,$$

where δ being some small number (e.g., $1/\sqrt{N}$)
Put things together: Algorithm of Approximate Policy Iteration
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg \max_a \hat{Q}^0(s, a)$
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg \max_a \hat{Q}^0(s, a)$

\[\pi^t\]

Data generalization Process (roll-in & roll-out)
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg \max_a \hat{Q}^0(s, a)$

$\mathcal{D}^\pi_t = \{s^i, a^i, y^i\}_{i=1}^N$

$\mathbb{E}[y_i] = Q^\pi(s_i, a_i)$

$s^i, a^i \sim d^\pi_{\mu_0}$
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg\max_a \hat{Q}^0(s, a)$

$\mathcal{D}^{\pi_t} = \{s^i, a^i, y^i\}_{i=1}^N$

$\mathbb{E}[y^i] = Q^{\pi_t}(s_i, a_i)$

$s^i, a^i \sim d^{\pi}_{\mu_0}$

Least Square Regression oracle
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\widehat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg\max_a \widehat{Q}^0(s, a)$

Data generalization
Process (roll-in & roll-out)

$\mathcal{D}^{\pi_t} = \{s^i, a^i, y^i\}_{i=1}^N$

$\mathbb{E}[y_i] = Q^{\pi_t}(s_i, a_i)$

$s^i, a^i \sim d^{\pi}_{\mu_0}$

Least Square Regression oracle

$\widehat{Q}^t \in \arg\min_{Q \in \mathcal{Q}} \sum_{i=1}^N (Q(s^i, a^i) - y^i)^2$
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg \max_a \hat{Q}^0(s, a)$

\[\mathcal{D}^{\pi^t} = \{s^i, a^i, y^i\}_{i=1}^N \]
\[\mathbb{E}[y^i] = Q^{\pi^t}(s^i, a^i) \]
\[s_i, a_i \sim d^\pi_{\mu_0} \]

Least Square Regression oracle

\[\hat{Q}^t \in \arg \min_{Q \in \mathcal{Q}} \sum_{i=1}^N (Q(s^i, a^i) - y^i)^2 \]

Policy Improvement

$\pi^{t+1}(s) = \arg \max_a \hat{Q}^t(s, a)$
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\widehat{Q}^0 \in \mathcal{Q}$, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

$\mathcal{D}^{\pi^t} = \{s^i, a^i, y^i\}_{i=1}^N$

$\pi^{t+1}(s) = \arg \max_a \widehat{Q}^t(s, a)$

π^t Data generalization Process (roll-in & roll-out)

$\mathbb{E}[y_i] = Q^{\pi^t}(s_i, a_i)$

$s^i, a^i \sim d_{\mu_0}^{\pi}$

Least Square Regression oracle

$\widehat{Q}^t \in \arg \min_{Q \in \mathcal{Q}} \sum_{i=1}^N (Q(s^i, a^i) - y^i)^2$
Put things together: Algorithm of Approximate Policy Iteration

Initialize $\hat{Q}^0 \in Q$, set $\pi^0(s) = \arg \min_a \hat{Q}^0(s, a)$

For $t = 0, \ldots,$

Repeat N roll-in & roll-out w/ π^t; get N training points $\{s^i, a^i, y^i\}_{i=1}^N$

Least Square Minimization: $\hat{Q}^t \in \arg \min_{Q \in Q} \sum_{i=1}^N (Q(s^i, a^i) - y^i)^2$

Policy Improvement $\pi^{t+1}(s) = \arg \max_a \hat{Q}^t(s, a)$
Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)
The Oscillation of API from Abrupt Distribution Change

Recall that Policy Iteration w/ known \((P, r)\) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

\[
Q^\pi(s, a)
\]

Green dots: \((s, a)\) from \(\pi^t\)
Red dots: \((s, a)\) from \(\pi^{t+1}\)
The Oscillation of API from Abrupt Distribution Change

Recall that Policy Iteration w/ known \((P, r)\) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

Green dots: \((s, a)\) from \(\pi^t\)
Red dots: \((s, a)\) from \(\pi^{t+1}\)
The Oscillation of API from Abrupt Distribution Change

Recall that Policy Iteration w/ known \((P, r)\) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

\[
Q^{\pi}(s, a) \quad \text{and} \quad Q^{\pi_{t+1}}(s, a) \quad \text{and} \quad \hat{Q}^t
\]

Green dots: \((s, a)\) from \(\pi^t\)
Red dots: \((s, a)\) from \(\pi^{t+1}\)
The Oscillation of API from Abrupt Distribution Change

Recall that Policy Iteration w/ known \((P, r)\) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

\[
Q^\pi(s, a) = \hat{Q}_t^\pi(s, a)
\]

Green dots: \((s, a)\) from \(\pi^t\)
Red dots: \((s, a)\) from \(\pi^{t+1}\)
The Oscillation of API from Abrupt Distribution Change

Recall that Policy Iteration w/ known \((P, r)\) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

Oscillation between two updates:
No monotonic improvement

Green dots: \((s, a)\) from \(\pi^t\)
Red dots: \((s, a)\) from \(\pi^{t+1}\)
Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi_{t+1}}$ and $d_{\mu_0}^{\pi_t}$ could be widely different.
Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi_{t+1}}$ and $d_{\mu_0}^{\pi_t}$ could be widely different

Our estimator \hat{Q}^t is only good under $d_{\mu_0}^{\pi_t}$, i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi_t}}(\hat{Q}^t(s, a) - Q^{\pi_t}(s, a))^2$ small,
Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different

Our estimator \hat{Q}^t is only good under $d_{\mu_0}^{\pi^t}$, i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}}(\hat{Q}^t(s, a) - Q^{\pi^t}(s, a))^2$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\hat{Q}^t(s, a) - Q^{\pi^t}(s, a))^2$ might be arbitrarily big
Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi_{t+1}}$ and $d_{\mu_0}^{\pi_t}$ could be widely different

Our estimator \hat{Q}^t is only good under $d_{\mu_0}^{\pi_t}$, i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi_t}} (\hat{Q}^t(s, a) - Q^{\pi_t}(s, a))^2$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi_{t+1}}} (\hat{Q}^{t+1}(s, a) - Q^{\pi_t}(s, a))^2$ might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient: $\max_{\pi} \max_s \frac{d_{\mu_0}^{\pi}(s)}{\mu_0(s)} \leq C < \infty$
Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi_{t+1}}$ and $d_{\mu_0}^{\pi_t}$ could be widely different

Our estimator \hat{Q}^t is only good under $d_{\mu_0}^{\pi_t}$, i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi_t}} (\hat{Q}^t(s, a) - Q^{\pi_t}(s, a))^2$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi_{t+1}}} (\hat{Q}^t(s, a) - Q^{\pi_t}(s, a))^2$ might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient: $\max_{\pi} \max_s \frac{d_{\mu_0}^{\pi}(s)}{\mu_0(s)} \leq C < \infty$

If $C < \infty$, i.e., μ covers all $d_{\mu_0}^{\pi_t}$, then we can expect \hat{Q}^t can approximate Q^{π_t} almost everywhere
Outline for Today

1. API could fail to make improvement?

2. When does API could make steady improvement?
 (Next a few lectures, we will talk about incremental algorithms that forces π^{t+1} to be close to π^t)

3. Performance Difference Lemma (Another important lemma)
Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let’s recall simulation lemma, given two MDPs, \hat{P}, P, and a policy π,

$$\left| \tilde{V}^\pi(s_0) - V^\pi(s_0) \right| \leq \frac{\gamma}{(1 - \gamma)^2} \mathbb{E}_{s,a \sim d_{s_0}^\pi} \left\| \hat{P}(s,a) - P(s,a) \right\|_1$$

i.e., we can upper bound value difference by model disagreement (average over real traces)
Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let’s recall simulation lemma, given two MDPs, \(\hat{P}, P \), and a policy \(\pi \),

\[
\left| \hat{V}^\pi(s_0) - V^\pi(s_0) \right| \leq \frac{\gamma}{(1 - \gamma)^2} \mathbb{E}_{s, a \sim \hat{d}^\pi_{s_0}} \left\| \hat{P}(s, a) - P(s, a) \right\|_1
\]

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies \(\pi \) and \(\pi' \), what is the performance difference: \(V^\pi(s_0) - V^{\pi'}(s_0) = ?? \)
Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let’s recall simulation lemma, given two MDPs, \widehat{P}, P, and a policy π,

$$\left| \widehat{V}_\pi(s_0) - V_\pi(s_0) \right| \leq \frac{\gamma}{(1 - \gamma)^2} \mathbb{E}_{s,a \sim d_\pi} \left\| \widehat{P}(s, a) - P(s, a) \right\|_1$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies π and π', what is the performance difference: $V_\pi(s_0) - V_{\pi'}(s_0) = ??$

(Diff in performances \iff Diff in policies?)
Setting and Notation

Discounted infinite horizon MDP:

\[\mathcal{M} = \{ S, A, \gamma, r, P \} \]

State visitation:
\[d_{s_0}^\pi(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h P_h^\pi(s; s_0) \]
Setting and Notation

Discounted infinite horizon MDP:

\[\mathcal{M} = \{ S, A, \gamma, r, P \} \]

State visitation:
\[d^\pi_{s_0}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_\pi^h(s; s_0) \]

A new definition: Advantage \(A^\pi(s, a) := Q^\pi(s, a) - V^\pi(s) \)

(The “advantage” of deviating from \(\pi \) for one and only one step)
Setting and Notation

Discounted infinite horizon MDP:

\[\mathcal{M} = \{ S, A, \gamma, r, P \} \]

State visitation:

\[d_{s_0}^\pi(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^\pi(s; s_0) \]

A new definition: Advantage

\[A^\pi(s, a) := Q^\pi(s, a) - V^\pi(s) \]

(The “advantage” of deviating from \(\pi \) for one and only one step)

(Quick sanity check: \(A^\pi(s, \pi(s)) = 0 \))
Setting and Notation

Discounted infinite horizon MDP:

\[\mathcal{M} = \{S, A, \gamma, r, P\} \]

State visitation:

\[d_{s_0}^\pi(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h P^\pi_h(s; s_0) \]

A new definition: Advantage \(A^\pi(s, a) := Q^\pi(s, a) - V^\pi(s) \)

(The “advantage” of deviating from \(\pi \) for one and only one step)

(Quick sanity check: \(A^\pi(s, \pi(s)) = 0 \))

Recall PI:

\[\arg \max_a Q^\pi(s, a) = \arg \max_a A^\pi(s, a), \]

i.e., Policy-improve step seeks the action that has the largest adv
Given two policies $\pi : S \mapsto \Delta(A)$, $\pi' : S \mapsto \Delta(A)$, recall $V^\pi(s_0) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi \right]$.
Given two policies $\pi : S \mapsto \Delta(A)$, $\pi' : S \mapsto \Delta(A)$, recall $V^\pi(s_0) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi \right]$

Performance Difference Lemma (PDL):

$$V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$

$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$
$V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right]$
PDL Proof

\[V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right] \]

Proof of Sketch (see reading material for detailed steps)
PDL Proof

\[V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right] \]

Proof of Sketch (see reading material for detailed steps)

\[V^\pi(s_0) - V^{\pi'}(s_0) = V^\pi(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \]
PDL Proof

\[
V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]
\]

Proof of Sketch (see reading material for detailed steps)

\[
V^\pi(s_0) - V^{\pi'}(s_0)
= V^\pi(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0,a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0,a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0)
\]

\[
= \gamma \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \mathbb{E}_{s_1 \sim P(s_0,a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0,a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0)
\]
\[V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_s^\pi} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right] \]

Proof of Sketch (see reading material for detailed steps)

\[
V^\pi(s_0) - V^{\pi'}(s_0) \\
= V^\pi(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \\
= \gamma \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \\
= \gamma \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[Q^\pi(s_0, a_0) - V^{\pi'}(s_0) \right]
\]
PDL Proof

\[V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{s_0}} \left[\mathbb{E}_{a \sim \pi(s)} A^{\pi'}(s, a) \right] \]

Proof of Sketch (see reading material for detailed steps)

\[
V^\pi(s_0) - V^{\pi'}(s_0) \\
= V^\pi(s_0) - \mathbb{E}_{a_0 \sim \pi(s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \\
= \mathbb{E}_{a_0 \sim \pi(s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \\
= \gamma \mathbb{E}_{a_0 \sim \pi(s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(s_0)} \left[Q^{\pi'}(s_0, a_0) - V^{\pi'}(s_0) \right] \\
= \gamma \mathbb{E}_{a_0 \sim \pi(s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^\pi(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(s_0)} \left[A^{\pi'}(s_0, a_0) \right] \]
Summary of PDL:

\[V^\pi(s_0) - V'^\pi(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q'^\pi(s, a) - V'^\pi(s) \right] \]

\[:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A'^\pi(s, a) \right] \]
Summary of PDL:

\[
V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^\pi'(s, a) - V^{\pi'}(s) \right]
\]

\[
:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]
\]

(Use the fact that \(Q^\pi(s, a) \in [0, 1/(1 - \gamma)] \))
Summary of PDL:

\[
V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]
\]

\[
:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right]
\]

(Use the fact that \(Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)] \))

\[
\left| V^{\pi}(s_0) - V^{\pi'}(s_0) \right| \leq \frac{1}{(1 - \gamma)^2} \mathbb{E}_{s \sim d^{\pi}_{s_0}} \left[\| \pi(\cdot | s) - \pi'(\cdot | s) \|_1 \right]
\]
Summary of PDL:

\[
V^\pi(s_0) - V'^\pi(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} Q'^\pi(s, a) - V'^\pi(s) \right]
\]

\[\overset{:=}{=} \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} A'^\pi(s, a) \right]\]

(Use the fact that \(Q^\pi(s, a) \in [0, 1/(1 - \gamma)]\))

\[
\left| V^\pi(s_0) - V'^\pi(s_0) \right| \leq \frac{1}{(1 - \gamma)^2} \mathbb{E}_{s \sim d^\pi_{s_0}} \left[\| \pi(\cdot | s) - \pi'(\cdot | s) \|_1 \right]
\]

Policy disagreement (\(\ell_1\)) averaged over one policy’s traces
An Application of PDL in Policy Iteration

Recall that $\pi^{t+1}(s) = \arg \max_a A^{\pi^t}(s, a)$

Show monotonic improvement using PDL:
An Application of PDL in Policy Iteration

Recall that $\pi^{t+1}(s) = \arg \max_{a} A^\pi'(s, a)$

Show monotonic improvement using PDL:

$$V^{\pi^{t+1}}(s_0) - V^\pi'(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_0^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot | s)} A^\pi'(s, a)$$
An Application of PDL in Policy Iteration

Recall that $\pi^{t+1}(s) = \arg\max_a A^\pi(s, a)$

Show monotonic improvement using PDL:

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot | s)} A^\pi(s, a)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^\pi(s, \pi^{t+1}(s))$$
An Application of PDL in Policy Iteration

Recall that $\pi_{t+1}(s) = \arg\max_a A_{\pi^t}(s, a)$

Show monotonic improvement using PDL:

$$V^{\pi_{t+1}}(s_0) - V^{\pi_t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_{t+1}}_{s_0}} \mathbb{E}_{a \sim \pi_{t+1}(\cdot | s)} A^{\pi_t}(s, a)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_{t+1}}_{s_0}} A^{\pi_t}(s, \pi^{t+1}(s))$$

$$\geq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_{t+1}}_{s_0}} A^{\pi_t}(s, \pi^t(s))$$
An Application of PDL in Policy Iteration

Recall that $\pi^{t+1}(s) = \arg\max_a A^{\pi'}(s, a)$

Show monotonic improvement using PDL:

$$V^{\pi^{t+1}}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_0} \mathbb{E}_{a \sim \pi^{t+1}(.|s)} A^{\pi'}(s, a)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_0} A^{\pi'}(s, \pi^{t+1}(s))$$

$$\geq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_0} A^{\pi'}(s, \pi^t(s)) = 0$$
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

Two Algorithms:
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of π under two MDPs)

Two Algorithms:
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of π under two MDPs)
2. PDL (concern the perf diff of π & π' under one MDP)

Two Algorithms:
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of π under two MDPs)
2. PDL (concerns the perf diff of π & π' under one MDP)
3. How to draw samples from $d^\pi_{\mu_0}$, and how to get unbiased estimate of $Q^\pi(s, a)$

Two Algorithms:
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of \(\pi \) under two MDPs)
2. PDL (concerns the perf diff of \(\pi \) & \(\pi' \) under one MDP)
3. How to draw samples from \(d^{\pi}_{\mu_0} \), and how to get unbiased estimate of \(Q^\pi(s, a) \)

Two Algorithms:

1. Model-based RL w/ Generative model: fit \(\hat{P} \) (by counting) and run Policy-Iter on \((\hat{P}, r) \)
Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of π under two MDPs)
2. PDL (concern the perf diff of π & π' under one MDP)
3. How to draw samples from $d^{\pi}_{\mu_0}$, and how to get unbiased estimate of $Q^\pi(s, a)$

Two Algorithms:

1. Model-based RL w/ Generative model: fit \hat{P} (by counting) and run Policy-Iter on (\hat{P}, r)
2. Approximate Policy Iteration (Alg that uses a Regression oracle)
Next Week:

We will talk about Incremental Policy Optimization
(Recall the failure case of API; we will force incremental update on policies)