# Approximate Policy Iteration And Performance Difference Lemma

Recap: Supervised Learning and Data Generation Process

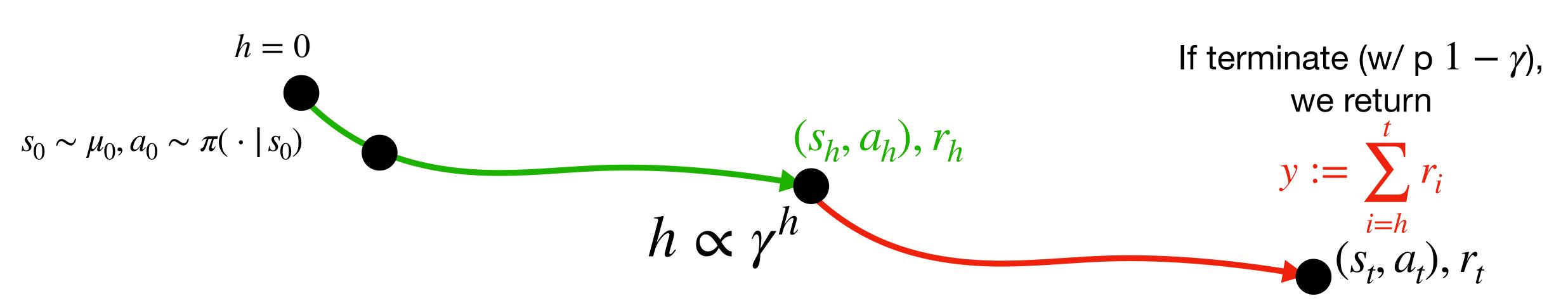
#### Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

#### Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given  $\pi$ , we roll-in & roll-out to get (s, a, y), where  $(s, a) \sim d_{\mu_0}^{\pi}$ ,  $\mathbb{E}[y] = Q^{\pi}(s, a)$ 



#### **Plans for Today**

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

#### Estimating the function $Q^{\pi}(s,a)$ using Least Square Regression

Given  $\pi$ , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N}$$

#### Estimating the function $Q^{\pi}(s,a)$ using Least Square Regression

Given  $\pi$ , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N}$$

#### Least square regression:

$$\widehat{Q}^{\pi} \in \arg\min_{Q \in \mathcal{Q}} \sum_{i=1}^{N} \left( Q(s^{i}, a^{i}) - y^{i} \right)^{2}$$

#### Estimating the function $Q^{\pi}(s,a)$ using Least Square Regression

Given  $\pi$ , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N}$$

#### Least square regression:

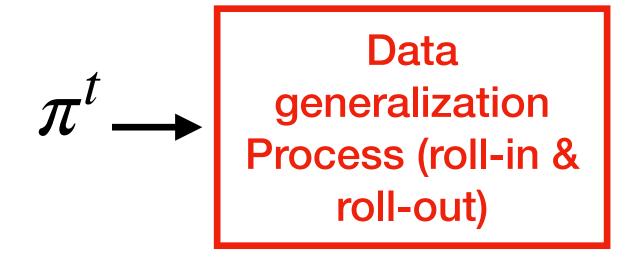
$$\widehat{Q}^{\pi} \in \arg\min_{Q \in \mathcal{Q}} \sum_{i=1}^{N} \left( Q(s^{i}, a^{i}) - y^{i} \right)^{2}$$

#### Assume successful supervise learning, we have:

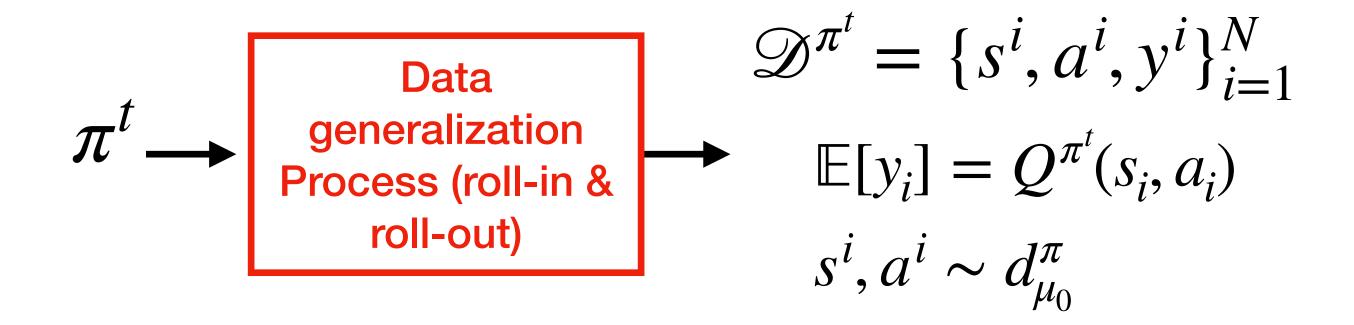
$$\mathbb{E}_{s,a\sim d^\pi_\mu}\bigg(\,\widehat{Q}^\pi(s,a)-Q^\pi(s,a)\bigg)^2\leq \delta,$$
 where  $\delta$  being some small number (e.g.,  $1/\sqrt{N}$ )

Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s, a)$ 

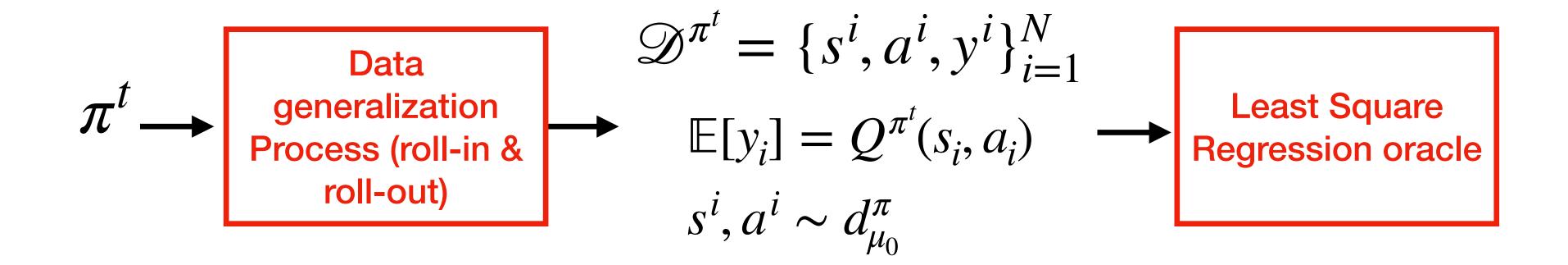
Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s, a)$ 



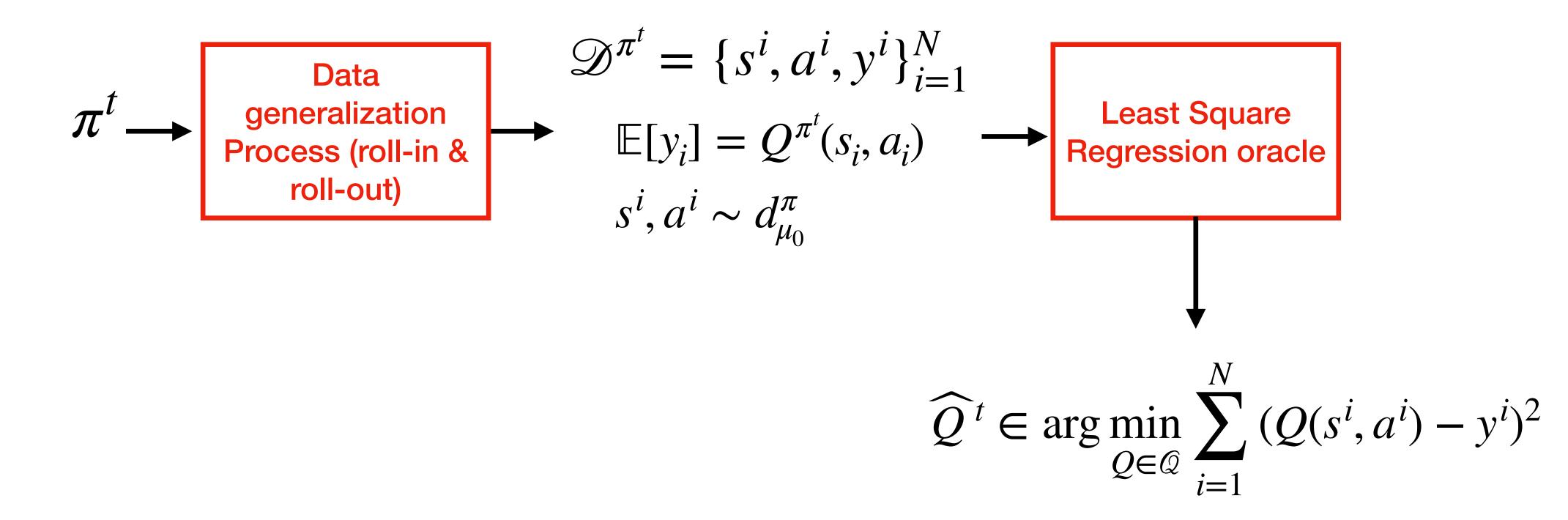
Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s,a)$ 



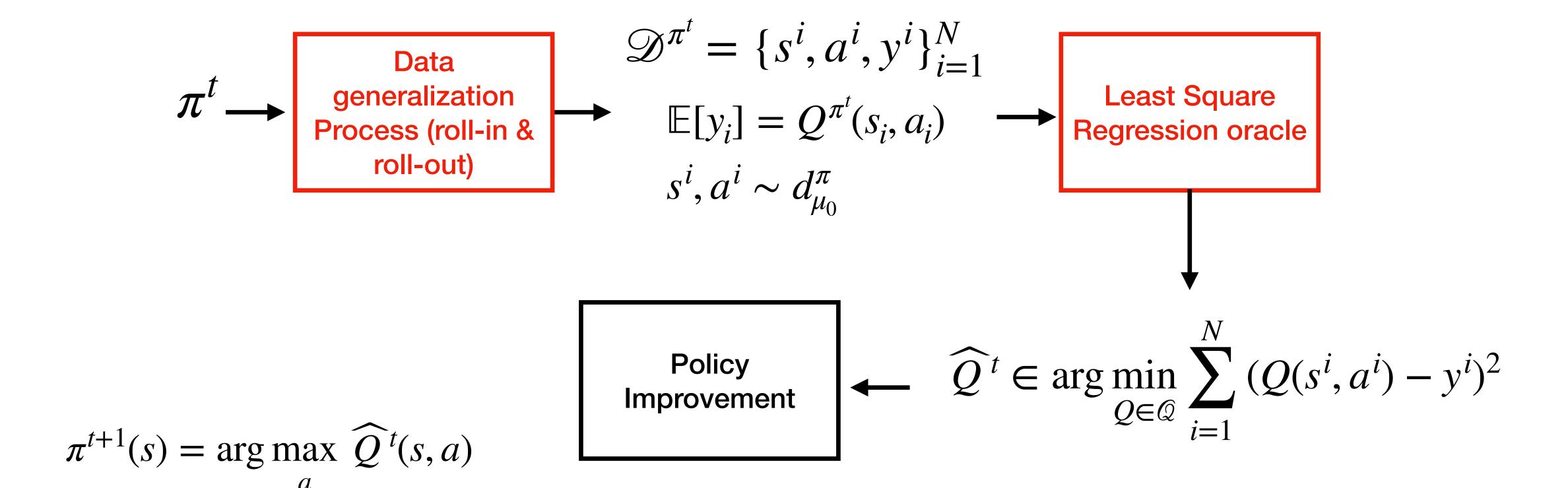
Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s,a)$ 



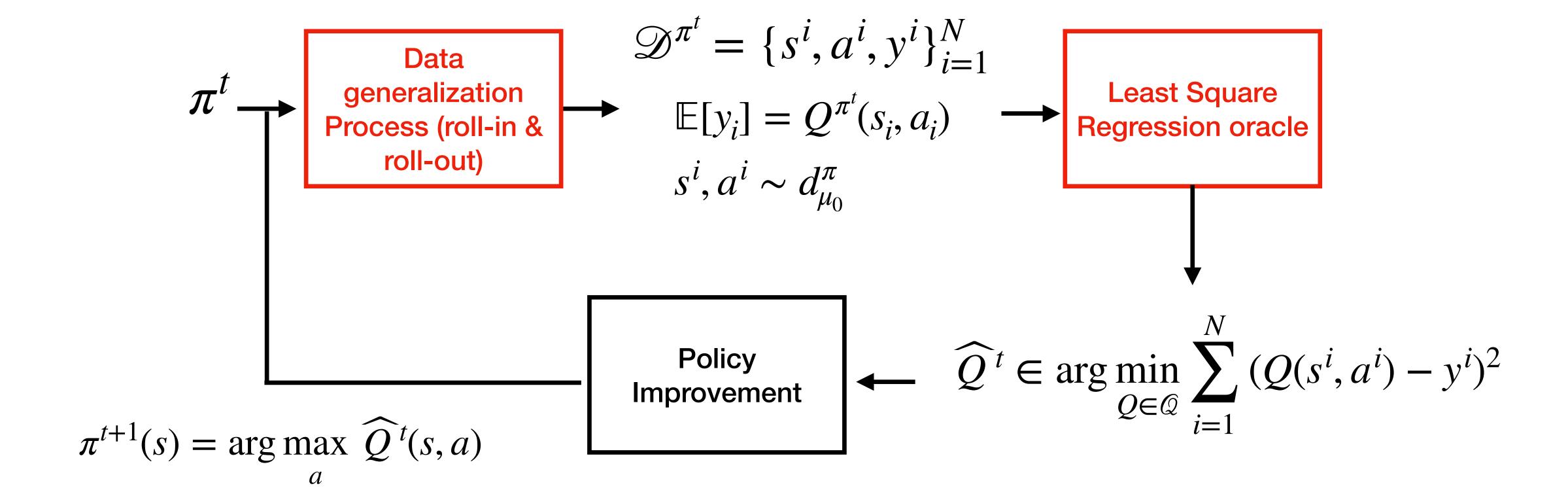
Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s,a)$ 



Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s,a)$ 



Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\max_a \widehat{Q}^0(s,a)$ 



Initialize 
$$\widehat{Q}^0 \in \mathcal{Q}$$
, set  $\pi^0(s) = \arg\min_{a} \widehat{Q}^0(s, a)$ 

For 
$$t = 0, ...,$$

Repeat N roll-in & roll-out w/  $\pi^t$ ; get N training points  $\{s^i, a^i, y^i\}_{i=1}^N$ 

Least Square Minimization: 
$$\widehat{Q}^t \in \arg\min_{Q \in \mathcal{Q}} \sum_{i=1}^N \left( Q(s^i, a^i) - y^i \right)^2$$

Policy Improvement 
$$\pi^{t+1}(s) = \arg\max_{a} \widehat{Q}^{t}(s, a)$$

#### **Plans for Today**



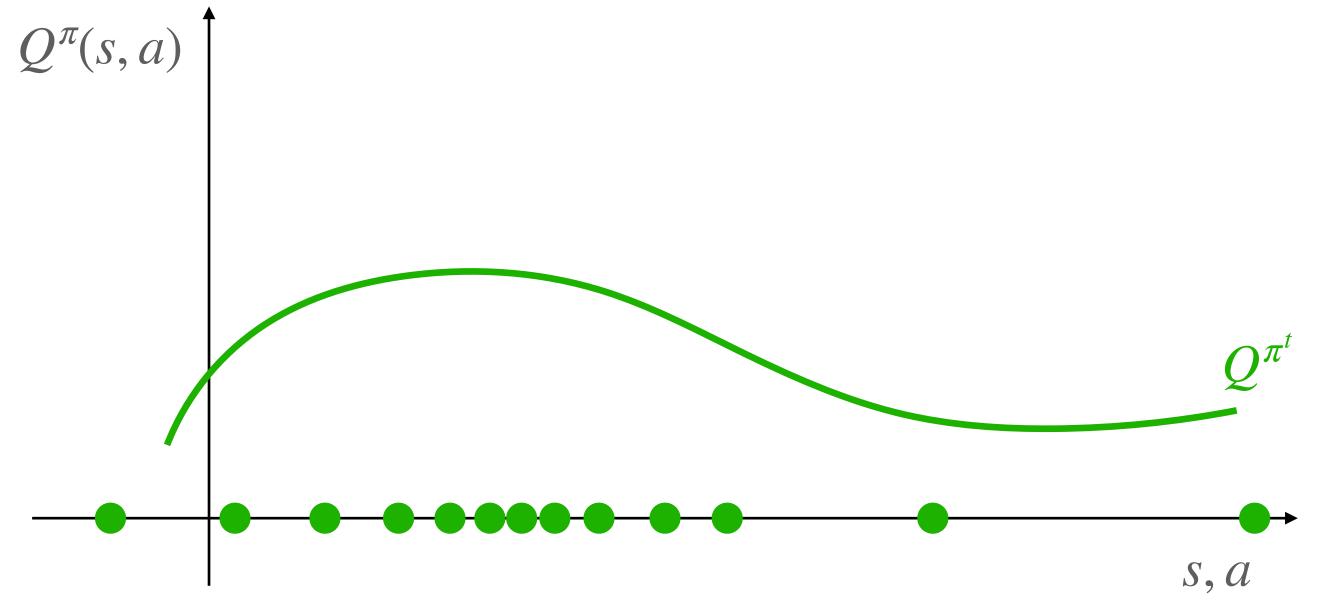
1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

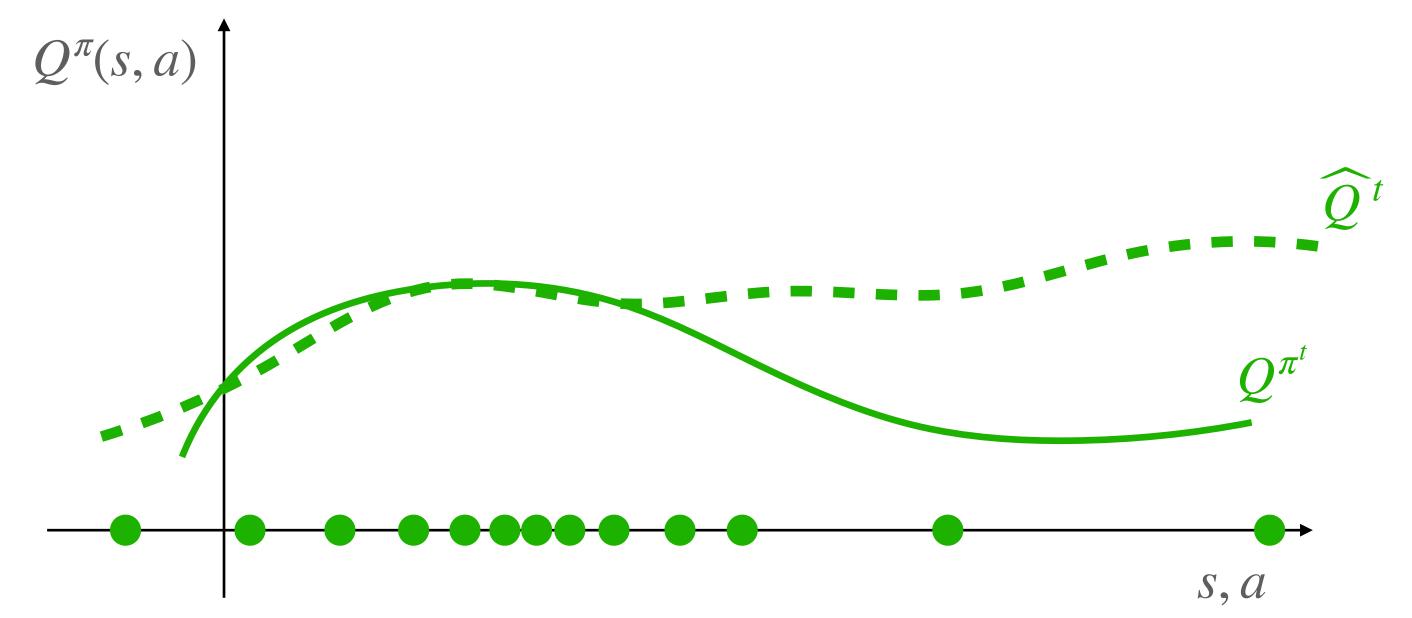
But API cannot guarantee to make monotonic improvement:



Green dots: (s, a) from  $\pi^t$ 

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

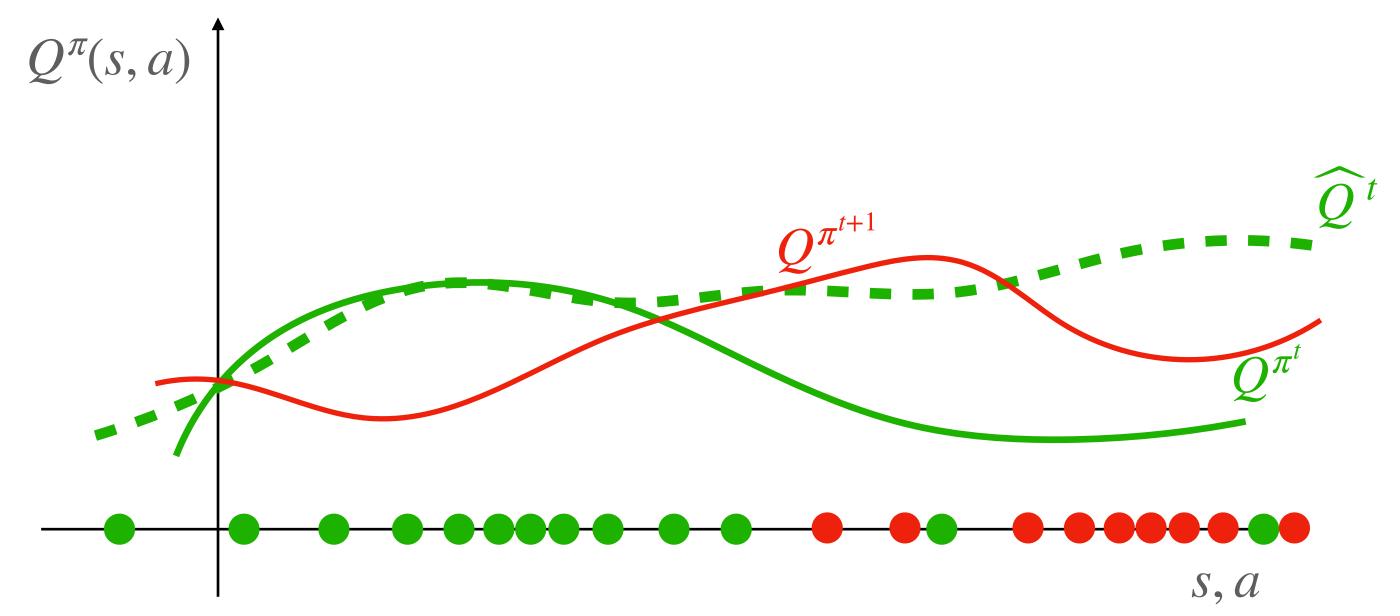
But API cannot guarantee to make monotonic improvement:



Green dots: (s, a) from  $\pi^t$ 

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

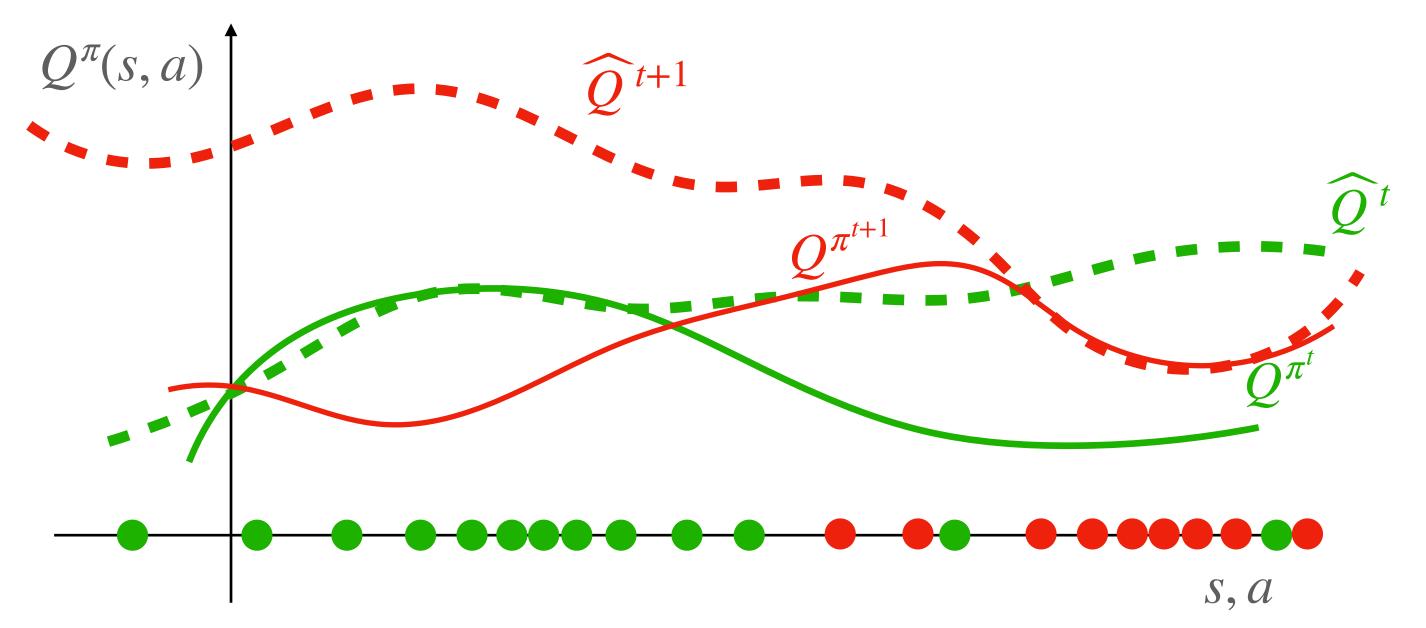
But API cannot guarantee to make monotonic improvement:



Green dots: (s, a) from  $\pi^t$ 

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

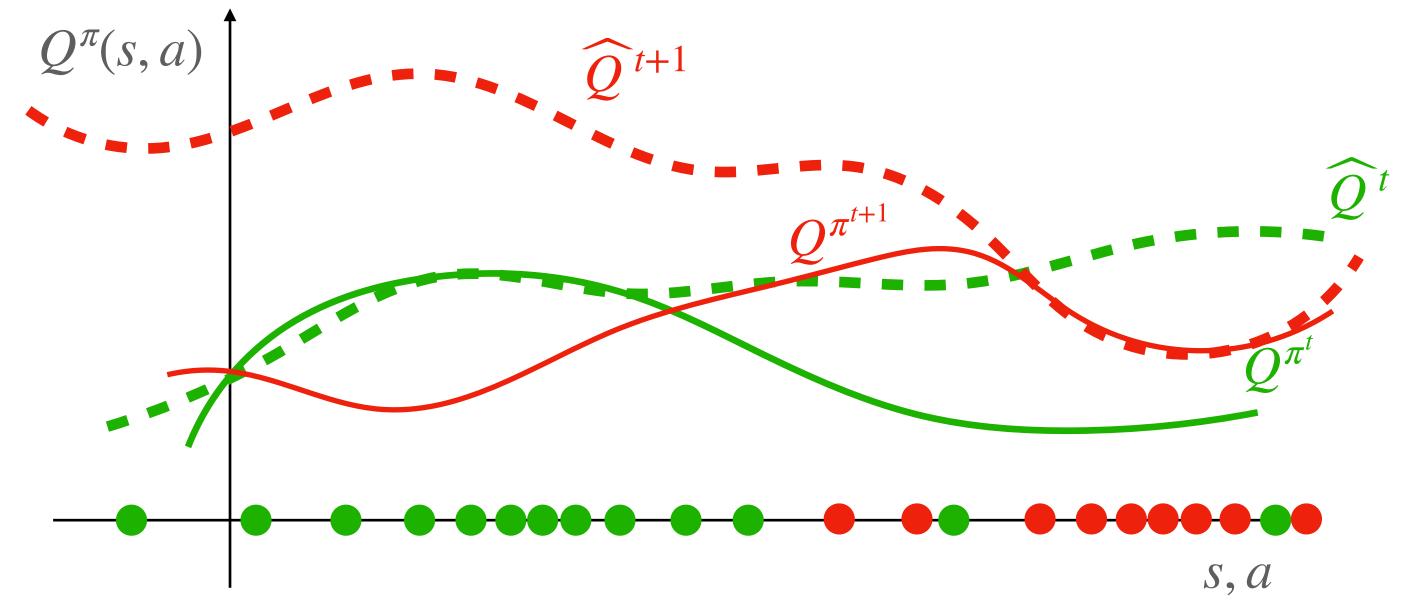
But API cannot guarantee to make monotonic improvement:



Green dots: (s, a) from  $\pi^t$ 

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:



Oscillation between two updates: No monotonic improvement

Green dots: (s, a) from  $\pi^t$ 

Our estimator  $\widehat{Q}^t$  is only good under  $d_{\mu_0}^{\pi^t}$ , i.e.  $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$  small,

Our estimator  $\widehat{Q}^t$  is only good under  $d_{\mu_0}^{\pi^t}$ , i.e.  $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$  small,

but  $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$  might be arbitrarily big

Our estimator 
$$\widehat{Q}^t$$
 is only good under  $d_{\mu_0}^{\pi^t}$ , i.e.  $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$  small,

but 
$$\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$$
 might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient: 
$$\max_{\pi} \max_{s} \frac{d_{\mu_0}^{\pi}(s)}{\mu_0(s)} \leq C < \infty$$

Our estimator 
$$\widehat{Q}^t$$
 is only good under  $d_{\mu_0}^{\pi^t}$ , i.e.  $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$  small,

but 
$$\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$$
 might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient: 
$$\max_{\pi} \max_{s} \frac{d_{\mu_0}^{\pi}(s)}{\mu_0(s)} \leq C < \infty$$

If  $C<\infty$ , i.e.,  $\mu$  covers all  $d^\pi_{\mu_0}$ , then we can expect  $\widehat{Q}^t$  can approximate  $Q^{\pi^t}$  almost everywhere

#### **Outline for Today**

- 1. API could fail to make improvement?
- 2. When does API could make steady improvement? (Next a few lectures, we will talk about **incremental** algorithms that **forces**  $\pi^{t+1}$  **to be close to**  $\pi^t$ 
  - 3. Performance Difference Lemma (Another important lemma)

# Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs,  $\widehat{P}$ , P, and a policy  $\pi$ ,

$$\left| \widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) \right| \le \frac{\gamma}{(1 - \gamma)^2} \mathbb{E}_{s, a \sim d_{s_0}^{\pi}} \left\| \widehat{P}(s, a) - P(s, a) \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

# Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs,  $\widehat{P}$ , P, and a policy  $\pi$ ,

$$\left| \widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) \right| \le \frac{\gamma}{(1 - \gamma)^2} \mathbb{E}_{s, a \sim d_{s_0}^{\pi}} \left\| \widehat{P}(s, a) - P(s, a) \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies  $\pi$  and  $\pi'$ , what is the performance difference:  $V^{\pi}(s_0) - V^{\pi'}(s_0) = ??$ 

# Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs,  $\widehat{P}$ , P, and a policy  $\pi$ ,

$$\left| \widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) \right| \le \frac{\gamma}{(1-\gamma)^2} \mathbb{E}_{s,a \sim d_{s_0}^{\pi}} \left\| \widehat{P}(s,a) - P(s,a) \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies  $\pi$  and  $\pi'$ , what is the performance difference:  $V^{\pi}(s_0) - V^{\pi'}(s_0) = ??$ 

(Diff in performances  $\Leftarrow \Rightarrow$  Diff in policies?)

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: 
$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: 
$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$$

A new definition: Advantage  $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$ 

(The "advantage" of deviating from  $\pi$  for one and only one step)

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: 
$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$$

A new definition: Advantage  $A^{\pi}(s,a) := Q^{\pi}(s,a) - V^{\pi}(s)$ 

(The "advantage" of deviating from  $\pi$  for one and only one step)

(Quick sanity check:  $A^{\pi}(s, \pi(s)) = 0$ )

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: 
$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$$

A new definition: Advantage  $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$ 

(The "advantage" of deviating from  $\pi$  for one and only one step)

(Quick sanity check:  $A^{\pi}(s, \pi(s)) = 0$ )

Recall PI:

$$\arg\max_{a} Q^{\pi}(s, a) = \arg\max_{a} A^{\pi}(s, a),$$

i.e., Policy-improve step seeks the action that has the **largest adv** 

### PDL:

Given two policies  $\pi: S \mapsto \Delta(A), \ \pi': S \mapsto \Delta(A), \text{ recall } V^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi\right]$ 

### PDL:

Given two policies  $\pi: S \mapsto \Delta(A), \ \pi': S \mapsto \Delta(A), \text{ recall } V^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi\right]$ 

### Performance Difference Lemma (PDL):

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

### PDL Explanation

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0)$$

$$= V^{\pi}(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[ r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[ r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0)$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \end{split}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \end{split}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[ V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[ A^{\pi'}(s_{0}, a_{0}) \right] \end{split}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot | s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot | s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot | s)} A^{\pi'}(s, a) \right]$$

(Use the fact that  $Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)]$ )

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

(Use the fact that  $Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)]$ )

$$\left| V^{\pi}(s_0) - V^{\pi'}(s_0) \right| \leq \frac{1}{(1 - \gamma)^2} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \left\| \pi(\cdot \mid s) - \pi'(\cdot \mid s) \right\|_{1} \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

(Use the fact that  $Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)]$ )

$$\left| V^{\pi}(s_0) - V^{\pi'}(s_0) \right| \le \frac{1}{(1 - \gamma)^2} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[ \left\| \pi(\cdot \mid s) - \pi'(\cdot \mid s) \right\|_{1} \right]$$

Policy disagreement ( $\ell_1$ ) averaged over one policy's traces

Recall that 
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^t}(s, a)$$

Recall that 
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^t}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a)$$

Recall that 
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^t}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a)$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^{t+1}(s))$$

Recall that 
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^t}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^{t+1}(s))$$

$$\geq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^t(s))$$

Recall that 
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^t}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot | s)} A^{\pi^t}(s, a)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^{t+1}(s))$$

$$\geq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^t(s)) = 0$$

Three fundamental ingredients in RL and MDPs:

### Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of  $\pi$  under two MDPs)

### Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of  $\pi$  under two MDPs)
- 2. PDL (concert the perf diff of  $\pi \& \pi'$  under one MDP)

### Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of  $\pi$  under two MDPs)
- 2. PDL (concert the perf diff of  $\pi \& \pi'$  under one MDP)
- 3. How to draw samples from  $d_{\mu_0}^{\pi}$ , and how to get unbiased estimate of  $Q^{\pi}(s,a)$

### Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of  $\pi$  under two MDPs)
- 2. PDL (concert the perf diff of  $\pi \& \pi'$  under one MDP)
- 3. How to draw samples from  $d_{\mu_0}^{\pi}$ , and how to get unbiased estimate of  $Q^{\pi}(s,a)$

### **Two Algorithms:**

1. Model-based RL w/ Generative model: fit  $\widehat{P}$  (by counting) and run Policy-Iter on  $(\widehat{P},r)$ 

### Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of  $\pi$  under two MDPs)
- 2. PDL (concert the perf diff of  $\pi \& \pi'$  under one MDP)
- 3. How to draw samples from  $d_{\mu_0}^{\pi}$ , and how to get unbiased estimate of  $Q^{\pi}(s,a)$

- 1. Model-based RL w/ Generative model: fit  $\widehat{P}$  (by counting) and run Policy-Iter on  $(\widehat{P}, r)$
- 2. Approximate Policy Iteration (Alg that uses a Regression oracle)

#### Next Week:

We will talk about Incremental Policy Optimization (Recall the failure case of API; we will force incremental update on policies)