Approximate Policy Iteration
And Performance Difference Lemma
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Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given 7z, we roll-in & roll-out to get (s,a,y),
where (s,a) ~ d; , E[y] = Q"(s, a)

If terminate (W/ p 1 — ),

we return
S0 ~ Mo, Ao ~ 7( - ‘S()) (Sha Clh), rh . t
y = Z i
i=h

h oy

(s,,a,),r,



Plans for Today

1. Algorithm: Approximate Policy lteration

2. When does API| could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)
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Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G — {Si’ai,yi}il

Least square regression:

N

/Q\” € arg min Z (Q(Si, a') — yi)z

T

Assume successful supervise learning, we have:

—~ 2
amgp (0750 = 07(s5,0)) <6
where 0 being some small number (e.g., ll\ﬁ\f)
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Put things together: Algorithm of Approximate Policy Iteration

Initialize QY € @, set 7°(s) = argmin O (s, a)

a

Fort=0,...,

: L - - - I 1 ION
Repeat N roll-in & roll-out w/ 7°; get N training points {s’,a’, y'} ",
N

P . L )
Least Square Minimization: Q' € arg min Z (Q(Sl, a') — yl)
oeq “
=1

Policy Improvement z't!(s) = arg max Q (s, a)
a
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1. Algorithm: Approximate Policy lteration

2. When does API| could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)



The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:
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The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:
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The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

o

Q*(s,a)
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« &N
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- Green dots: (s, a) from 7z’
Oscillation between two updates: Req qots: (s, a) from z'*!

No monotonic improvement
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Key Issue: Abrupt Policy Change, i.e., d/ffom and d/ff; could be widely different

Our estimator Q 'is only good under d;f;

.e. -SNdﬁ(t)( /Q\t(s, a) — O (s, a))?* small,

but E_ 1 0 (s, a) — O™ (s, a))* might be arbitrarily big

To make APl to make monotonic improvement, we need a strong coverage assumption:

d, (s)
A strong Concentrability Coefficient: max max a <C< o
T ) //t()(S)

If C < o0, ie., pcoversalld,,

N . t
then we can expect O can approximate O” almost everywhere



Outline for Today

1. API could fail to make improvement?

2. When does API| could make steady improvement?
(Next a few lectures, we will talk about incremental algorithms

that forces 7'*! to be close to 7’

3. Performance Difference Lemma (Another important lemma)
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Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

N

Let’s recall simulation lemma, given two MDPs, P , P, and a policy ,

V(so) — V(sg) | < —

< s, | Poa—P6a |

l.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies 7 and 7/,
what is the performance difference: V*(s,) — Vﬂ,(SO) = 77

( Diff in performances <= = Diff in policies? )
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Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P}

o0
State visitation: d;f) )= -1y Z }/hPZ(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”"(s,a) — V*(s)
(The “advantage” of deviating from & for one and only one step)

(Quick sanity check: A”(s, z(s)) = 0)

Recall PI:

arg max Q”(s,a) = arg max A”(s, a),
a da
l.e., Policy-improve step seeks the action that has the largest adv
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PDL.:

Given two policies 7t : S = A(A), 7' : § — A(A), recall V*(s)) =E [thr(sh, ah)\yz]
h=0

Performance Difference Lemma (PDL):

, 1 , ,
VA(s) = VA (50) = ——F e [Emmy Q5,0 = VF(5)]

1 ,
= C gn [ _aNﬂ(,‘S)Aﬂ(S, Cl)]
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PDL Proof

/ 1 /
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, 1
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PDL

1=y

Proof

s~d”
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Proof of Sketch (see reading material for detailed steps)
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Summary of PDL.:

, 1 , ,
Vi) = Vo) = T Ery Er1Q7(5,0) = VE(5)

1 ,
=1L . gz aNﬁ-.SAﬂ- Saa]
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Summary of PDL.:

, 1 , ,
VA(s) = VA (50) = ——F e [Eommy Q5,0 = VZ(5)]

1 —vy 0
1 ;
.= 1—_}/ _Sngfo [ aNﬂ(-\s)A (S’ Cl)]
(Use the fact that Q”(s,a) € [0,1/(1 — y)])
| 1 |
VE(sp) — V*(sp) SW_SN% [ H (- |s)—a'(-]|s) H 1]

Policy disagreement (£|) averaged over one policy’s traces
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Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:
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An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

r+1 5 1 5
VT (s9) — V" (sg) = i =g E g A" (s, a)
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Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of # & z’ under one MDP)
3. How to draw samples from d/’fo, and how to get unbiased estimate of OQ”(s, a)

Two Algorithms:

1. Model-based RL w/ Generative model: fit P (by counting) and run Policy-Iter on ( ﬁ, r)
2. Approximate Policy lteration (Alg that uses a Regression oracle)



Next Week:

We will talk about Incremental Policy Optimization
(Recall the failure case of API; we will force incremental update on policies)



