Approximate Policy Iteration
And Performance Difference Lemma

Recap: Supervised Learning and Data Generation Process

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given 7z, we roll-in & roll-out to get (s,a,y),
where (s,a) ~ d; , E[y] = Q"(s, a)

If terminate (W/ p 1 —),

we return
S0 ~ Mo, Ao ~ 7(- ‘S()) (Sha Clh), rh . t
y = Z i
i=h

h oy

(s,,a,),r,

Plans for Today

1. Algorithm: Approximate Policy lteration

2. When does API| could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G — {Si’ai,yi}il

Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G — {Si’ai,yi}il

Least square regression:

N

/Q\’Z € arg min Z (Q(Si, a') — yi)z

T

Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G — {Si’ai,yi}il

Least square regression:

N

/Q\” € arg min Z (Q(Si, a') — yi)z

T

Assume successful supervise learning, we have:

—~ 2
amgp (0750 = 07(s5,0)) <6
where 0 being some small number (e.g., ll\ﬁ\f)

Put things together: Algorithm of Approximate Policy Iteration

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

Data
generalization

Process (roll-in &
roll-out)

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

n . 1 N
Data D" = {S Uy Y }i=1
generalization

A
Process (roll-in & - [yi] = Q" (Sia ai)
roll-out)

L 4l 7
s'. a dﬂO

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

at I 1 N
Data ‘QZ _{s,a,y }i=1

generalization Least Square

4
_ —_ T —_P
Process (roll-in & [yi] — Q (Sia ai) Regression oracle
roll-out)

L 4l 7
s'. a dﬂO

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

Data @ﬂt — {Si ai yl}]\;

generalization Least Square

_ —_ 72' —_P
Process (roll-in & [yl] Q (Sp z) Regression oracle
roll-out)

~ T
st al dﬂO

N

QfeargminZ(Q@ a’) = y'y?

Qe@

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

Data @ﬂt — {Si ai yl}]\;

generalization Least Square

_ 72' —_P
Process (roll-in & [yl] — Q (Sp z) Regression oracle
roll-out)

~ T
st al dﬂO

N

Policy «— Qf € arg IQnE11@1 Z (Q(S Cll))’)

Improvement

7't1(s) = arge max Q (s, a)

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q¥ € @, set 7°(s) = argmax Q (s, a)

a

n i i l N
generalization

Least Square

_ 72' —_P

Process (roll-in & [yl] — Q (Sp z) Regression oracle
roll-out)

~ T
st al dﬂO

N

Policy «— Qf € arg IQnE11@1 Z (Q(S Cll))’)

Improvement

7't1(s) = arge max Q (s, a)

Put things together: Algorithm of Approximate Policy Iteration

Initialize QY € @, set 7°(s) = argmin O (s, a)

a

Fort=0,...,

: L - - - I 1 ION
Repeat N roll-in & roll-out w/ 7°; get N training points {s’,a’, y'} ",
N

P . L)
Least Square Minimization: Q' € arg min Z (Q(Sl, a') — yl)
oeq “
=1

Policy Improvement z't!(s) = arg max Q (s, a)
a

Plans for Today

1. Algorithm: Approximate Policy lteration

2. When does API| could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

Q"(s, a)
/\/Qﬂt
O O—0 000000 0 ¢ O o
S, d

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

Q*(s,a)

O o0 0 00000 0 © O o
S, d

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

Q*(s,a)

1 Q'

O O — 0 0 00000 0 0 0 00 0 0000000
S, d

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

o

Q*(s,a)

Cam=

i+
e==s_ O
« &N

N

-

.----. Pl

O O — 0 0 00000 0 0 0 00 0 0000000
S, d

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of APl from Abrupt Distribution Change

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

A

o

Q*(s,a)

Cam=

i+
e==s_ O
« &N

N

-

.----. Pl

O O — 0 0 00000 0 0 0 00 0 0000000
S, d

- Green dots: (s, a) from 7z’
Oscillation between two updates: Req qots: (s, a) from z'*!

No monotonic improvement

Key Issue: Abrupt Policy Change, i.e., d/ffom and d/ffot could be widely different

Key Issue: Abrupt Policy Change, i.e., d/ffom and d/ffot could be widely different

Our estimator Q 'is only good under dlf(:

.e. _Sngg(/Q\t(s, a) — O (s, a))?* small,

Key Issue: Abrupt Policy Change, i.e., djom and d/ff; could be widely different

Our estimator Q 'is only good under d;f(:

.e. -SNC%(/Q\t(s, a) — O (s, a))?* small,

but E_ 1 0 (s, a) — O™ (s, a))* might be arbitrarily big

Key Issue: Abrupt Policy Change, i.e., djom and d/ff; could be widely different

Our estimator Q 'is only good under d;f(:

.e. -SNC%(/Q\t(s, a) — O (s, a))?* small,

but E_ 1 0 (s, a) — O™ (s, a))* might be arbitrarily big

To make APl to make monotonic improvement, we need a strong coverage assumption:

dy ()
A strong Concentrability Coefficient: max max a <C< o
T) //t()(S)

Key Issue: Abrupt Policy Change, i.e., d/ffom and d/ff; could be widely different

Our estimator Q 'is only good under d;f;

.e. -SNdﬁ(t)(/Q\t(s, a) — O (s, a))?* small,

but E_ 1 0 (s, a) — O™ (s, a))* might be arbitrarily big

To make APl to make monotonic improvement, we need a strong coverage assumption:

d, (s)
A strong Concentrability Coefficient: max max a <C< o
T) //t()(S)

If C < o0, ie., pcoversalld,,

N . t
then we can expect O can approximate O” almost everywhere

Outline for Today

1. API could fail to make improvement?

2. When does API| could make steady improvement?
(Next a few lectures, we will talk about incremental algorithms

that forces 7'*! to be close to 7’

3. Performance Difference Lemma (Another important lemma)

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

N

Let’s recall simulation lemma, given two MDPs, P , P, and a policy ,

V(so) — V(sg) | < —

< s, | Poa—P6a |

l.e., we can upper bound value difference by model disagreement (average over real traces)

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

N

Let’s recall simulation lemma, given two MDPs, P , P, and a policy ,

V(so) — V(sg) | < —

< s, | Poa—P6a |

l.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies 7 and 7/,
what is the performance difference: V*(s,) — Vﬂ,(SO) = 77

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

N

Let’s recall simulation lemma, given two MDPs, P , P, and a policy ,

V(so) — V(sg) | < —

< s, | Poa—P6a |

l.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies 7 and 7/,
what is the performance difference: V*(s,) — Vﬂ,(SO) = 77

(Diff in performances <= = Diff in policies?)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d¢ (s) = (1 —) Z)/hPZ(S; So)
h=0

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P}

0

State visitation: d (s) = (1 — y) Z }/hﬂj)Z(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”"(s,a) — V*(s)

(The “advantage” of deviating from & for one and only one step)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P}

o0
State visitation: ds’(’))= -1y Z yhl]j’Z(s; So)
h=0
A new definition: Advantage A”(s, a) := Q”"(s,a) — V*(s)
(The “advantage” of deviating from & for one and only one step)

(Quick sanity check: A”(s, z(s)) = 0)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P}

o0
State visitation: d;f))= -1y Z }/hPZ(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”"(s,a) — V*(s)
(The “advantage” of deviating from & for one and only one step)

(Quick sanity check: A”(s, z(s)) = 0)

Recall PI:

arg max Q”(s,a) = arg max A”(s, a),
a da
l.e., Policy-improve step seeks the action that has the largest adv

PDL.:

Given two policies 7t : S = A(A), 7' : § — A(A), recall V*(s)) =E [iyhr(sh, ah)\zz]
h=0

PDL.:

Given two policies 7t : S = A(A), 7' : § — A(A), recall V*(s)) =E [thr(sh, ah)\yz]
h=0

Performance Difference Lemma (PDL):

, 1 , ,
VA(s) = VA (50) = ——F e [Emmy Q5,0 = VF(5)]

1 ,
= C gn [_aNﬂ(,‘S)Aﬂ(S, Cl)]

PDL Explanation

/ 1 /
VA(sg) — V(s =——SN,,[—aNﬂ_SA” S,a]
(9) = V¥(50) = T Evety [Euemi A5 0

PDL Proof

/ 1 /
V*(sy) — V*(s = —IC. _jr —aNﬂ.SAﬂS,Cl]
(()) (()) l—ySdSO (-|s) (s, a)

Proof of Sketch (see reading material for detailed steps)

, 1
Vi(sg) — V' (sg) = ——

V*(so) — VZ(sp)

= V7(sp) -

aog~7(-|sp)

PDL

1=y

Proof

s~d”

_aNﬂ(.‘S)Aﬂl(Sa Cl)]

Proof of Sketch (see reading material for detailed steps)

I"(S(), aO) + 4

_S,NP(So,ao) V]T (S ,) +

ag~7(-|sp)

I"(S(), aO) + 4

- S,NP(So,ao) V]T (S ,)

— V7 (sp)

: |
Vﬂ(SO) — V* (SO) _

V*(so) — VZ(sp)

= V*(sy) —

=7

a0~7r(- |S0)

PDL Proof

s~d”

| —vy 0

a1y (8, a)

Proof of Sketch (see reading material for detailed steps)

(S, ag) + ¥

_aONﬂ(-lsO) _SlNP(SO,aO) [Vﬂ(sl) - V” (Sl)] +

= 5"~ P(Sg,00) 4 (S /)

|

aONﬂ(‘ |S0)

a0~7r(° |S0)

r(Sp, ag) + ¥

(S, ag) + ¥

= 5"~ P(So,00) 4 (S /)

_S’NP(SO,aO) VEI(S ,) _ Vﬂ’(s())

— Vﬂ,(SO)

: |
Vﬂ(SO) — V* (SO) _

V*(so) — VZ(sp)

= V*(sy) —

=7

=7

a0~7r(- |S0)

PDL Proof

s~d”

| —vy 0

—a~(-|s

A" (s, a)

Proof of Sketch (see reading material for detailed steps)

(S, ag) + ¥

_aONﬂ(-lsO) _SlNP(SO,aO) [Vﬂ(sl) - V” (Sl)] +

= ag~a(+|50) =51~ P(50,00) [Vﬂ(sl) -V (Sl)] +

= 5"~ P(Sg,00) 4 (S /)

|

aONﬂ(‘ |S0)

a0~7r(° |S0)

r(Sp, ag) + ¥

(S, ag) + ¥

= (el 127 (05 @) = V7 (s0))

= 5"~ P(So,00) 4 (S /)

_S’NP(SO,aO) VEI(S ,) _ Vﬂ’(s())

— Vﬂ,(SO)

: |
Vﬂ(SO) — V* (SO) _

V*(so) — VZ(sp)

= V*(sy) —

a0~7r(° |S0)

PDL Proof

s~d”

| —vy 0

—a~(-|s

A" (s, a)

Proof of Sketch (see reading material for detailed steps)

(S, ag) + ¥

_aONﬂ(-lsO) _SlNP(SO,aO) [Vﬂ(sl) - V” (Sl)] +

= ag~a(+|50) =51~ P(50,00) [Vﬂ(sl) -V (Sl)] +

_ClONﬂ(°|SO) _SlfvP(SO,aO) [Vﬂ(sl) — V" (Sl)] +

= 5"~ P(Sg,00) 4 (S /)

|

aONﬂ'(‘ |S0)

a0~7r(° |S0)

r(Sp, ag) + ¥

(S, ag) + ¥

= (el 127 (05 @) = V7 (s0))

= qg~r(-|5o) [A ﬂ,(SO» ao)]

= 5"~ P(So,00) 4 (S /)

_S’NP(SO,aO) VEI(S ,) _ Vﬂ’(s())

— Vﬂ,(SO)

Summary of PDL.:

, 1 , ,
Vi) = Vo) = T Ery Er1Q7(5,0) = VE(5)

1 ,
= T Eagn [aNﬂ(-\s)Aﬂ(S’ Cl)]

Summary of PDL.:

, 1 , ,
VA(s) = VA (50) = ——F e [Eommy Q5,0 = VZ(5)]

1 —vy 0
= —IC 7 ~(-ls S, d
1 _ }/ SNdSO a (‘)

(Use the fact that Q”(s,a) € [0,1/(1 — y)])

Summary of PDL.:

, 1 , ,
Vi) = Vo) = T Ery Er1Q7(5,0) = VE(5)

1 ,
=1L . gz aNﬁ-.SAﬂ- Saa]
vy [Eanr1 A0

(Use the fact that Q”(s,a) € [0,1/(1 — y)])

: |
Vi(sg) — V7(sp) | < (a —}/)2

i | [219 =7C 19 ||

Summary of PDL.:

, 1 , ,
VA(s) = VA (50) = ——F e [Eommy Q5,0 = VZ(5)]

1 —vy 0
1 ;
.= 1—_}/ _Sngfo [aNﬂ(-\s)A (S’ Cl)]
(Use the fact that Q”(s,a) € [0,1/(1 — y)])
| 1 |
VE(sp) — V*(sp) SW_SN% [H (- |s)—a'(-]|s) H 1]

Policy disagreement (£|) averaged over one policy’s traces

An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

r+1 5 1 5
VT (s9) — V" (sg) = i =g E g A" (s, a)

An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

t+ t 1
% 1(SO) — VvV (SO) — _Sngng

A”ts,a
— A%(s,a)

1
— = AT (s, 1 (s))
50

1 —vy

An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

r+1 5 1 5
VT (s9) — V" (sg) = i =g E g A" (s, a)

— Sy (s, ()

AV

- dg,éHA (s, 7(s))

An Application of PDL in Policy lteration

Recall that 7/*!(s) = arg max A" (s, a)
a

Show monotonic improvement using PDL.:

r+1 5 1 5
VT (s9) — V" (sg) = i =g E g A" (s, a)

— Sy (s, ()

AV

_SNdfotHAﬂt(Sa 711(5)) =0

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of # & z’ under one MDP)

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of # & z’ under one MDP)
3. How to draw samples from d/’fo, and how to get unbiased estimate of OQ”(s, a)

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of # & z’ under one MDP)
3. How to draw samples from d/’fo, and how to get unbiased estimate of OQ”(s, a)

Two Algorithms:

1. Model-based RL w/ Generative model: fit P (by counting) and run Policy-Iter on (ﬁ, r)

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of # & z’ under one MDP)
3. How to draw samples from d/’fo, and how to get unbiased estimate of OQ”(s, a)

Two Algorithms:

1. Model-based RL w/ Generative model: fit P (by counting) and run Policy-Iter on (ﬁ, r)
2. Approximate Policy lteration (Alg that uses a Regression oracle)

Next Week:

We will talk about Incremental Policy Optimization
(Recall the failure case of API; we will force incremental update on policies)

