Approximate Policy lteration
And Performance Difference Lemma
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Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given 7z, we roll-in & roll-out to ge@
where (s, a) ~ d;, E[y] = Q"(s, a)
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Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)



Estimating the function O”(s, a) using Least Square Regression

@ repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:
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Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G = {Si’ai,yi}i\il

Least square regression:
Q” € arg min Z (0(s',a’) — y")
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Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples: 4
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G = {Si’ai,yi}i\il

Least square regression:

Assume successful supervise learning, we have:
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where 0 being some small number (e.g., 1/\/N)
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Put things together: Algorithm of Approximate Policy Iteration
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Put things together: Algorithm of Approximate Policy Iteration

Initialize Q° € @, set 7%s) = argmax Q (s, a)
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Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)
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Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)
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Put things together: Algorithm of Approximate Policy Iteration

Initialize Q° € @, set 2%(s) = argmin O (s, a)
a

Fort = 0,...§9M{ o
7\

Repeat N roll-in & roll-out w/ 7’; get N training points {si, ai,yi}ﬁ\;l
N
Least Square Minimization: Q' € arg min 2 (0(s',a’) - yi)2 ,
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Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)



The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;
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But API cannot guarantee to make monotonic improvement:
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The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:
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The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:
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The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monoionic improvement:
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The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:
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Key Issue: Abrupt Policy Change, i.e., d;f:l and d;fot could be widely different

Our estimator Q 'is only good under d”ot,
i.e. [Es~d;r’( 0 (s, a) — O™ (s, a))* small,
40

but i /Q\t(s, a) — Q”r(s, a))? might be arbitrarily big
: HO

To make API to make monotonic improvement, we need a strong coverage assumption:

dy ()
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Key Issue: Abrupt Policy Change, i.e., d;f:l and d;f; could be widely different

Our estimator /Q\’ is only good under a’”ot, /ub A (5>
i.e. [Es~d;r’( /Q\t(s, a) — 0" (s, a))* small,
10

but i /Q\t(s, a) — Q”f(s, a))? might be arbitrarily big
: HO

To make API to make monotonic improvement, we need a strong coverage assumption:

dy ()
A strong Concentrability Coefficient: max max il
x s po(s)

If C < o0, i.e., pcoversalld,

/\

then we can expect Q can approximate Q” almost everywhere
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Outline for Today

1. API could fail to make improvement?

2. When does API could make steady improvement?
(Next a few lectures, we will talk about incremental algorithms

that forces 7'*! to be close to 7’

3. Performance Difference Lemma (Another important lemma)



Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

Let’s recall simulation lemma, given two MDPs, j’\, P, and a policy 7,
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i.e., we can upper bound value dn‘ference by model disagreement (average over real traces)
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Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

~

Let’s recall simulation lemma, given two MDPs, P , P, and a policy 7,

| V(sp) — VA(sp) P (s,a) — P(s,a) || 1

Y
S

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given@n infinite horizon M and two policies 7 and &

what is the performance difference: V*(s;) — Vﬂ/(SO) =77
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Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

~

Let’s recall simulation lemma, given two MDPs, P , P, and a policy 7,

| V(sp) — VA(sp) P (s,a) — P(s,a) || 1

Y
S

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policie€ 7 and 7’
what is the performance difference: V*(s;) — Vﬂ/(SO) =77

( Diff in performances < = Diff in policies? )



Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) Z )/hﬂ:DZ(S; So)
h=0



Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) 2 yhﬂj’z(s; So)
h=0
A new definition: Advantage A”*(s,a) := Q"(s,a) — V*(s)

(The “advantage” of deviating from 7 for one and only one step)
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Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) 2 )/hﬂ:DZ(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”(s,a) — V*(s)

(The “advantage” of deviating from 7 for one and only one step)

(Quick sanity check: A”(s, n(s)) = 0) . é/Jv 4
S \> v
Recall PI:
arg max Q(s, a) = arg max A”(s,a),

i.e., Policy-improve step seeks the action that has the largest adv



PDL:

Given two policies 7 : S = A(A), 7' : S = A(A), recall V*(sy) =E [iyhr(sh, ah)|ﬂ]

h=0



PDL:

Given two policies 7 : S = A(A), 7' : S = A(A), recall V7(sy) =E [iyhr(sh, ah)lﬂ]

h=0

Performance Difference Lemma (PDL):
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PDL Proof

, 1 ,
Vﬂ(SO) - VT[ (So) — 1—_}/|ESNCZ§TO [ECZNJZ(-lS)AT[(S’ Cl)

Proof of Sketch (see reading material for detailed steps)



PDL Proof
T 7’ 1 7’
VG0 = V7o) = T Ere [[EaNﬂ(,ls)A (s, a)]

Proof of Sketch (see reading material for detailed steps)
VA(s9) — V¥ (50)
= V(s0) — Eqensy) [r(s 7ay) + yE,.. P(SO’aO)V”'(s’)] + Eopertlsy) [r(so, ap) + yE,.. P(SO,aO)V”/(s’)] — V7 (s,)
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PDL Proof

, 1 ,
VG0 = V7o) = T Ere [[EaNﬂ(,ls)A”(s, a)]

E L= »jl(X)

Proof of Sketch (see reading material for detailed steps) N

V(so) — V7 (5,)
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PDL Proof
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V(s0) = V¥(s9) = T, gy |EurigA" (5 )]
Proof of Sketch (see reading material for detailed steps)

V7(sy) — VZ(sp)
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PDL Proof

, 1 ,
Vi(s0) = V(s) = ——E, [[anﬂ(,ls)A”(s, a)]

Proof of Sketch (see reading material for detailed steps)
V(s9) — V™ (s0)

= Vﬂ(SO) - lanNﬂ-(-|s0) [I”(SO, ao) + y[ES,NP(SO,ClO)Vﬂ/(S/)] + IanNﬂ('lso) [I’(SO, ao) + YIES/NP(SO,QO)VE/(S/)] - V”/(SO)
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Summary of PDL:

: 1 ‘ : :
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Summary of PDL:
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(Use the fact that Q"(s, a) € [0,1/(1 — y)])



Summary of PDL:

: 1 ‘ : :
V(s0) = V(5) =~y | Eqrn@75.0) = V7(5)]

— —ESNd” [EQNTL'('lS)Aﬂ/(S’ Cl)]
4 i
(Use the fact that Q*(s, a) € [0,1/(1 — y)])
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An Application of PDL in Policy lteration
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An Application of PDL in Policy lteration

Recall that 7! (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL:
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An Application of PDL in Policy lteration

Recall that z/t1(s) = @A%, a)
a

Show monotonic improvement using PDL:
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An Application of PDL in Policy lteration

Recall that 7! (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL:
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An Application of PDL in Policy lteration
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Recall that 7! (s) = arg max A” (s, a) App £ R ytiwedl
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Show monotonic improvement using PDL:
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1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
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Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of £ & z’ under one MDP)
3. How to draw samples from d”o, and how to get unbiased estimate of O”(s, a)
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1. Model-based RL w/ Generative model: fit a2 (by counting) and run Policy;l}er on (ﬁ, r)
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Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of £ & z’ under one MDP)
3. How to draw samples from d”o, and how to get unbiased estimate of O”(s, a)

Two Algorithms:

1. Model-based RL w/ Generative model: fit P (by counting) and run Policy-Iter on (ﬁ, r)
2. Approximate Policy lteration (Alg that uses W)
L> A4 <X
R~



Next Week:

We will talk about Incremental Policy Optimization
(Recall the failure case of API; we will force incremental update on policies)
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