Approximate Policy Iteration And Performance Difference Lemma

Recap: Supervised Learning and Data Generation Process

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given
$$\pi$$
, we roll-in & roll-out to get (s, a, y) ,
where $(s, a) \sim d_{\mu_0}^{\pi}$, $\mathbb{E}[y] = Q^{\pi}(s, a)$
 $h = 0$
 $s_0 \sim \mu_0, a_0 \sim \pi(\cdot | s_0)$
If terminate (w/ p $1 - \gamma$),
we return
 $(s_h, a_h), r_h$
 $y := \sum_{i=h}^{t} r_i$
 $(s_t, a_t), r_t$

Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

Estimating the function $Q^{\pi}(s, a)$ using Least Square Regression

Given π repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N} \qquad \begin{array}{c} \text{s.a.} & \text{s.a.} & \text{d.j.a.} \\ & \text{E[y']} & \text{e.a.} \end{array}$$

TI

Estimating the function $Q^{\pi}(s, a)$ using Least Square Regression

Given π , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples:

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N}$$

Least square regression:

$$\widehat{Q}^{\pi} \in \arg\min_{\substack{Q \in \mathcal{Q} \\ \mathbf{\Delta}}} \sum_{i=1}^{N} \left(Q(s^{i}, a^{i}) - y^{i} \right)^{2}$$

Estimating the function $Q^{\pi}(s, a)$ using Least Square Regression

Given π , repeat N times of the roll-in & roll-out process, we get a training dataset of N samples: $\phi(s,a) \in \mathbb{R}^d$ $Q = \int \overline{\partial} \phi(s,a) : \|\overline{\partial}\|_{L^{\infty}}^{1} = 1$

$$\mathcal{D}^{\pi} = \left\{ s^{i}, a^{i}, y^{i} \right\}_{i=1}^{N}$$

Least square regression:

$$\widehat{Q}^{\pi} \in \arg\min_{Q \in \mathcal{Q}} \sum_{i=1}^{N} \left(Q(s^{i}, a^{i}) - y^{i} \right)^{2}$$

 $m_{i} \sum_{j=1}^{N} \left(\theta^{T} \phi(s_{i},a_{j}) - y_{i} \right)^{2}$

101 =1

Assume successful supervise learning, we have:

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^0 \in Q$$
, set $\pi^0(s) = \arg \max_a \widehat{Q}^0(s, a)$

Initialize
$$\widehat{Q}^{0} \in \mathbb{Q}$$
, set $\pi^{0}(s) = \arg \min_{a} \widehat{Q}^{0}(s, a)$
For $t = 0, \dots$ for $t = 0, \dots$ for $t \mu_{0}$
Repeat N roll-in & roll-out w/ π^{t} ; get N training points $\{s^{i}, a^{i}, y^{i}\}_{i=1}^{N}$
Least Square Minimization: $\widehat{Q}^{t} \in \arg \min_{Q \in \mathbb{Q}} \sum_{i=1}^{N} (Q(s^{i}, a^{i}) - y^{i})^{2} \rightarrow Approximating Q^{\pi^{t}(s, o)})$
Policy Improvement $\pi^{t+1}(s) = \arg \max \widehat{Q}^{t}(s, a)$

Plans for Today

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

Red dots: (s, a) from π^{t+1}

Recall that Policy Iteration w/ known (P, r) makes monotonic improvement;

Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different

Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different

Our estimator \widehat{Q}^{t} is only good under $d_{\mu_{0}}^{\pi^{t}}$, i.e. $\mathbb{E}_{s \sim d_{\mu_{0}}^{\pi^{t}}}(\widehat{Q}^{t}(s, a) - Q^{\pi^{t}}(s, a))^{2}$ small, Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different Our estimator \widehat{Q}^t is only good under $d_{\mu_0}^{\pi^t}$,

i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}} (\widehat{Q}^t(s, a) - Q^{\pi^t}(s, a))^2$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}} (\widehat{Q}^t(s, a) - Q^{\pi^t}(s, a))^2$ might be arbitrarily big

Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different

Our estimator \widehat{Q}^t is only good under $d_{\mu_0}^{\pi^t}$, i.e. $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^t}} (\widehat{Q}^t(s, a) - Q^{\pi^t}(s, a))^2$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$ might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient: $\max_{\pi} \max_{s} \frac{d_{\mu_{0}}^{\pi}(s)}{\mu_{0}(s)} \leq C < \infty$ $\forall \pi, \forall s, \frac{d_{\mu_{0}}^{\pi}(s)}{\mu_{s}(s)} \leq C < \infty$ (π, π, π, M_{s})

Key Issue: Abrupt Policy Change, i.e., $d_{\mu_0}^{\pi^{t+1}}$ and $d_{\mu_0}^{\pi^t}$ could be widely different

Our estimator \widehat{Q}^{t} is only good under $d_{\mu_{0}}^{\pi^{t}}$, i.e. $\mathbb{E}_{s \sim d_{\mu_{0}}^{\pi^{t}}} (\widehat{Q}^{t}(s, a) - Q^{\pi^{t}}(s, a))^{2}$ small,

but $\mathbb{E}_{s \sim d_{\mu_0}^{\pi^{t+1}}}(\widehat{Q}^t(s,a) - Q^{\pi^t}(s,a))^2$ might be arbitrarily big

To make API to make monotonic improvement, we need a strong coverage assumption:

A strong Concentrability Coefficient:
$$\max_{\pi} \max_{s} \frac{d_{\mu_{0}}^{\pi}(s)}{\mu_{0}(s)} \leq C < \infty$$

$$\forall \pi, \forall s, \quad \frac{d_{\mu_{0}}^{\pi}(s)}{\mu_{0}(s)} is find the stress of the stress of$$

Mo + A(S)

Outline for Today

1. API could fail to make improvement? 2. When does API could make steady improvement? (Next a few lectures, we will talk about **incremental** algorithms that **forces** π^{t+1} **to be close to** π^t

3. Performance Difference Lemma (Another important lemma)

Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs, \widehat{P} , P, and a policy π ,

$$\left| \begin{array}{c} \widehat{V}^{\pi}(s_{0}) - \widehat{V}^{\pi}(s_{0}) \\ A \\ = \mathbb{E} \left[\begin{array}{c} \sum_{k=0}^{\infty} S^{h} \Gamma_{k} \\ \end{array} \right]^{\pi} + \widehat{P} \right] \\ \end{array} \right| \leq \frac{\gamma}{(1-\gamma)^{2}} \mathbb{E}_{s,a \sim d_{s_{0}}^{\pi}} \left\| \begin{array}{c} \widehat{P}(s,a) - P(s,a) \\ \end{array} \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs, \widehat{P} , P, and a policy π ,

$$\left| \widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) \right| \leq \frac{\gamma}{(1-\gamma)^2} \mathbb{E}_{s,a \sim d_{s_0}^{\pi}} \left\| \widehat{P}(s,a) - P(s,a) \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies
$$\pi$$
 and π' ,
what is the performance difference: $V^{\pi}(s_0) - V^{\pi'}(s_0) = ??$

Motivation (or the key question) behind the Performance Difference Lemma (PDL)

Let's recall simulation lemma, given two MDPs, \widehat{P} , P, and a policy π ,

$$\left\| \widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) \right\| \leq \frac{\gamma}{(1-\gamma)^2} \mathbb{E}_{s,a \sim d_{s_0}^{\pi}} \left\| \widehat{P}(s,a) - P(s,a) \right\|_{1}$$

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policies π and π' , what is the performance difference: $V^{\pi}(s_0) - V^{\pi'}(s_0) = ??$

(Diff in performances $\Leftrightarrow \Rightarrow$ Diff in policies?)

Discounted infinite horizon MDP:

$$\mathscr{M} = \{S, A, \gamma, r, P\}$$

State visitation:
$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: $d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$ A new definition: Advantage $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: $d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$ A new definition: Advantage $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$

(The "advantage" of deviating from π for one and only one step)

(Quick sanity check:
$$A^{\pi}(s, \pi(s)) = 0$$
)
 $\Rightarrow \mathcal{A}^{T}(\varsigma, \pi(s)) = \sqrt{\tau}(s)$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P\}$$

State visitation: $d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s; s_0)$ A new definition: Advantage $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$

(The "advantage" of deviating from π for one and only one step)

(Quick sanity check: $A^{\pi}(s, \pi(s)) = 0$)

Recall PI: $\arg \max_{a} Q^{\pi}(s, a) = \arg \max_{a} A^{\pi}(s, a),$ i.e., Policy-improve step seeks the action that has the **largest adv**
PDL:

Given two policies
$$\pi : S \mapsto \Delta(A), \ \pi' : S \mapsto \Delta(A), \text{ recall } V^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi\right]$$

PDL:

Given two policies
$$\pi : S \mapsto \Delta(A), \ \pi' : S \mapsto \Delta(A), \text{ recall } V^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi\right]$$

Performance Difference Lemma (PDL):

$$\underbrace{V^{\pi}(s_0) - V^{\pi'}(s_0)}_{A^{\pi'}(s_0)} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

Proof of Sketch (see reading material for detailed steps)

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

Proof of Sketch (see reading material for detailed steps)

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$$

$$F = \left[\int_{a_{0} \sim \pi(\cdot|s_{0})} V(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$$

$$F = \left[\int_{a_{0} \sim \pi(\cdot|s_{0})} V(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

E f(x) = f(x)Proof of Sketch (see reading material for detailed steps) $V^{\pi}(s_{0}) - V^{\pi'}(s_{0})$ $= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$ $= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$ $= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$ $= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0})$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

Proof of Sketch (see reading material for detailed steps)

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

Proof of Sketch (see reading material for detailed steps)

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[A^{\pi'}(s_{0}, a_{0}) \right] \end{split}$$

Summary of PDL:

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

Summary of PDL:

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

(Use the fact that $Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)])$

Summary of PDL:

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$

$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

(Use the fact that $Q^{\pi}(s, a) \in [0, 1/(1 - \gamma)]$)

$$\left| V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \right| \leq \underbrace{\frac{1}{(1 - \gamma)^{2}}}_{s \sim d_{s_{0}}^{\pi}} \left[\frac{\pi(\cdot|s) - \pi'(\cdot|s)}{\pi(\cdot|s) - \pi'(\cdot|s)} \right]_{1}^{1}$$

$$= \frac{1}{s \sim d_{s_{0}}^{\pi'}} \left[\frac{\pi(\cdot|s) - \pi'(\cdot|s)}{\pi(\cdot|s) - \pi'(\cdot|s)} \right]_{1}^{1}$$

Policy disagreement (ℓ_1) averaged over one policy's traces

Recall that
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^{t}}(s, a) = \arg \max_{a} Q^{\pi^{t}}(s, a)$$

Recall that
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^{t}}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a)$$

Recall that
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^{t}}(s, a)$$

$$V^{\pi^{t+1}}(s_0) - V^{\pi^t}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} \mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a)$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi^{t+1}}} A^{\pi^t}(s, \pi^{t+1}(s))$$

Recall that
$$\pi^{t+1}(s) = \arg \max_{a} A^{\pi^{t}}(s, a)$$

Recall that $\pi^{t+1}(s) = \arg \max_{a} A^{\pi^{t}}(s, a)$ App to estimate

Show monotonic improvement using PDL:

Ant

111

Three fundamental ingredients in RL and MDPs:

Two Algorithms:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of π under two MDPs)

Two Algorithms:

Three fundamental ingredients in RL and MDPs:

Kodel-Based RL Simulation Lemma (concerns the perf difference of π under two MDPs) 1.

2. PDL (concert the perf diff of $\pi \& \pi'$ under one MDP)

Two Algorithms:

T pulicy improvement

Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of π under two MDPs)
- 2. PDL (concert the perf diff of π & π' under one MDP)
- 3. How to draw samples from $d^{\pi}_{\mu_0}$, and how to get unbiased estimate of $Q^{\pi}(s, a)$ Roll-in

Two Algorithms:

Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of π under two MDPs)
- 2. PDL (concert the perf diff of $\pi \& \pi'$ under one MDP)

leser (c.a.) observe s'~P(-(s.a) Two Algorithms:

3. How to draw samples from $d^{\pi}_{\mu_0}$, and how to get unbiased estimate of $Q^{\pi}(s, a)$

1. Model-based RL w/ Generative model: fit \widehat{P} (by counting) and run Policy-Iter on (\widehat{P}, r) $L \oslash k$, $D = \widehat{P} \times \widehat{P}$, ω^{i} , $(\times^{i})^{j}$ \widehat{A} , $\widehat{B} = argmin \sum_{i=1}^{N} ||A \times^{i} + B \times^{i} - (\times^{i})^{j}|_{2}^{2}$ $A \cdot B = \widehat{P} \times \widehat{P}$, ω^{i} , $(\times^{i})^{j}$ \widehat{A} , $\widehat{B} = argmin \sum_{i=1}^{N} ||A \times^{i} + B \times^{i} - (\times^{i})^{j}|_{2}^{2}$ $+ \sum_{i=1}^{N} ||A \times^{i} + ||B ||_{F}^{2}$

Three fundamental ingredients in RL and MDPs:

- 1. Simulation Lemma (concerns the perf difference of π under two MDPs)
- 2. PDL (concert the perf diff of $\pi \& \pi'$ under one MDP)
- 3. How to draw samples from $d^{\pi}_{\mu_0}$, and how to get unbiased estimate of $Q^{\pi}(s, a)$

Two Algorithms:

1. Model-based RL w/ Generative model: fit \widehat{P} (by counting) and run Policy-Iter on (\widehat{P}, r)

S & t ~ ot

2. Approximate Policy Iteration (Alg that uses a Regression oracle)

Next Week:

We will talk about Incremental Policy Optimization (Recall the failure case of API; we will force incremental update on policies)

$\sum_{x} p(x) f(x) - \sum_{x} Q(x) f(x)$