Approximate Policy lteration
And Performance Difference Lemma

Recap: Supervised Learning and Data Generation Process

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

Recap: Supervised Learning and Data Generation Process

1. Supervised Learning works (in both theory and practice) if there is no train-test mismatch

2. A data generation process: given 7z, we roll-in & roll-out to ge@
where (s, a) ~ d;, E[y] = Q"(s, a)

—_—

.
h=0 = Q (9%“‘4) If terminate (w/ p 1 —),
\.\ we return
So ~ Ho> Gy ~ (- |SO) (Sh7 ah)’ rh, d
Yy = Z T
h ocK =
‘,.(st, a,), 1,

A

Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

Estimating the function O”(s, a) using Least Square Regression

@ repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

N i
S @ ~ol)m

.. N
T I 0 4,0 . \
D" = {S’a’y }i=1 Ew\l - Q)

Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples:

G = {Si’ai,yi}i\il

Least square regression:
Q” € arg min Z (0(s',a’) — y")
oe0 i
A pr—

Estimating the function O”(s, a) using Least Square Regression

Given x, repeat N times of the roll-in & roll-out process,
we get a training dataset of N samples: 4

?ﬁﬁiva‘) —R
A= eTﬁb(sJ,).-ueu;i]

nJ L
N ek (T
0" € argmin Z (O(s',a’) — yi)2 ileﬂbfi

oe0 D

G = {Si’ai,yi}i\il

Least square regression:

Assume successful supervise learning, we have:

e e g, E\/;@”(s,m—Qﬂ(s,a))zsaf"

,aNd,’j

where 0 being some small number (e.g., 1/\/N)
vy

Put things together: Algorithm of Approximate Policy Iteration

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

a

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

a

- “ Mo(\’:JV\ £ -
) \n%'d”’ jX 7
e
Data
ﬂ-t generalization

Process (roll-in &
roll-out)

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

Data
generalization
Process (roll-in &
roll-out)

a

D" = (s’ al,y'}V |
Ely] = QO (s}, d))

. t
l l
st a NdZO

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q° € @, set 7%s) = argmax Q (s, a)

a

t . . .
n o _ i i N
; Data @ — {S,Cl,y }i=1
T generalization . ' Least Square
Process (roll-in & Ely;] = Q" (s;, ai) »| Regression oracle
roll-out)

i
st a NdZO

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

a

t . . .
T i i N
. Data 9" = {S,Cl,y }i=1
T generalization . ' Least Square
Process (roll-in & Ely;] = Q" (s;, ai) »| Regression oracle
roll-out) ;
stat ~ dgo l

N
Q' € argmin) (O(s", a’) — y')’
gee i

/I~ x

Q < QF

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

a

t . . .
T i i N
. Data 9" = {S,Cl,y }i=1
T generalization . ' Least Square
Process (roll-in & Ely;] = Q" (s;, ai) »| Regression oracle
roll-out) ;
stat ~ dgo l

N
Policy Qt € are min (Q(Si, Cli) _ yi)2
& Q€@
i=1

Improvement

7'1(s) = arg max 0'(s, a)
T n

Put things together: Algorithm of Approximate Policy Iteration

Initialize O ° € @, set 7%s) = arg max Q OCs, a)

a

t . . .
T i i N
. Data 9" = {S,Cl,y }i=1
T — generalization . ' Least Square
™| process (roll-in & Ely;] = Q" (s;, ai) »| Regression oracle
roll-out) ;
stat ~ dgo l

N
Policy Qt € are min (Q(Si, Cli) _ yi)2
& Q€@
i=1

Improvement

7'1(s) = arg max 0'(s, a)
a

Put things together: Algorithm of Approximate Policy Iteration

Initialize Q° € @, set 2%(s) = argmin O (s, a)
a

Fort = 0,...§9M{ o
7\

Repeat N roll-in & roll-out w/ 7’; get N training points {si, ai,yi}ﬁ\;l
N
Least Square Minimization: Q' € arg min 2 (0(s',a’) - yi)2 ,
06 = Aproxiustig

i=1 m
R s=)

Policy Improvement 7' *!(s) = arg max Q (s, a)
a

Plans for Today

1. Algorithm: Approximate Policy Iteration

2. When does API could make monotonic improvement?

3. Performance Difference Lemma (Another important lemma)

The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;
—_—

But API cannot guarantee to make monotonic improvement:

Q7(s, a)

/ /_/Qﬂr

_——t — — - = = = .
L N s,a
<< t

Soanf) Green dots: (s, a) from x

Red dots: (s, a) from 7'+

The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

TT
Q" (s, a)] AL
N - o Mma¥
o O
-------————---.
o~
Y4
—0—0—0 0 00000 0 © @ L ad
s,a

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

Q7(s, a)

—~ 4(4‘ 7\

+1 Q' ! >azg max&

Ql[‘__----
- [
—‘7

TmT TTTT o

4 Green dots: (s, a) from 7z’
yo Red dots: (s, a) from 7'+

1

The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monoionic improvement:

e o
Iy -
T ~
Q*(s,a) iem=a_ O™
~~ —" ~~
A.- ~.----. -

Green dots: (s, a) from 7’
Red dots: (s, a) from 7'+

The Oscillation of API from Abrupt Distribution Change

Recall that Policy lteration w/ known (P, r) makes monotonic improvement;

But API cannot guarantee to make monotonic improvement:

T ~
Q"(s, a) s QH—I

& -
~--" ©

o Green dots: (s, a) from 7’
Oscillation between two updates: Req gots: (s, a) from z'*!

No monotonic improvement

Key Issue: Abrupt Policy Change, i.e., d;fot+1 and d/ff; could be widely different

Key Issue: Abrupt Policy Change, i.e., dgom and d;f; could be widely different

Our estimator Q' is only good under d;f;
ie. B, (Q'(s,a)— 07 (s, a))? small,
' HO

Key Issue: Abrupt Policy Change, i.e., d’r "and a,”r could be W|dely different
K‘_/\‘IO"“"@A V\Mdu S oo~ d\/J

Our estimator Q is only good under d”,
i.e. ﬂESNd;,,z([0, ’(s, a) — Q" (s, a))? small,
40

but i /Q\t(s, a) — Q”’(s, a))? might be arbitrarily big
: HO

Key Issue: Abrupt Policy Change, i.e., d;f:l and d;fot could be widely different

Our estimator Q 'is only good under d”ot,
i.e. [Es~d;r’(0 (s, a) — O™ (s, a))* small,
40

but i /Q\t(s, a) — Q”r(s, a))? might be arbitrarily big
: HO

To make API to make monotonic improvement, we need a strong coverage assumption:

dy ()
A strong Concentrability Coefficient: max max il <C< o
n s po(s)
~ —
q
v, ve AL o s
pos)

Yo

T

7

Key Issue: Abrupt Policy Change, i.e., d;f:l and d;f; could be widely different

Our estimator /Q\’ is only good under a’”ot, /ub A (5>
i.e. [Es~d;r’(/Q\t(s, a) — 0" (s, a))* small,
10

but i /Q\t(s, a) — Q”f(s, a))? might be arbitrarily big
: HO

To make API to make monotonic improvement, we need a strong coverage assumption:

dy ()
A strong Concentrability Coefficient: max max il
x s po(s)

If C < o0, i.e., pcoversalld,

/\

then we can expect Q can approximate Q” almost everywhere

S.& /\/d{jjo Qar))l)(L/&KV

Outline for Today

1. API could fail to make improvement?

2. When does API could make steady improvement?
(Next a few lectures, we will talk about incremental algorithms

that forces 7'*! to be close to 7’

3. Performance Difference Lemma (Another important lemma)

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

Let’s recall simulation lemma, given two MDPs, j’\, P, and a policy 7,
\///W
| V ™(s9) — V(5o

= ©C LZ ¥ (\,t\‘ «
i.e., we can upper bound value dn‘ference by model disagreement (average over real traces)

?’\(s, a) — P(s,a) ” .

—FE, 4
(1)2 sa~d

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

~

Let’s recall simulation lemma, given two MDPs, P , P, and a policy 7,

| V(sp) — VA(sp) P (s,a) — P(s,a) || 1

Y
S

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given@n infinite horizon M and two policies 7 and &

what is the performance difference: V*(s;) — Vﬂ/(SO) =77
r('\

9\/ tha dl\ﬁlm“@'
Lot weer <)/

Motivation (or the key question) behind the
Performance Difference Lemma (PDL)

~

Let’s recall simulation lemma, given two MDPs, P , P, and a policy 7,

| V(sp) — VA(sp) P (s,a) — P(s,a) || 1

Y
S

i.e., we can upper bound value difference by model disagreement (average over real traces)

Given an infinite horizon MDP, and two policie€ 7 and 7’
what is the performance difference: V*(s;) — Vﬂ/(SO) =77

(Diff in performances < = Diff in policies?)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) Z)/hﬂ:DZ(S; So)
h=0

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) 2 yhﬂj’z(s; So)
h=0
A new definition: Advantage A”*(s,a) := Q"(s,a) — V*(s)

(The “advantage” of deviating from 7 for one and only one step)

< (9-1(5‘“>
N — T
4//—> Vos)
5 °® Q’/’ﬂ\é) ﬁ

ol T
Q& (sa)-\/ 1s)
L = ﬁ'ﬂlf‘“’)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) 2)/hﬂ:DZ(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”(s,a) — V*(s)

(The “advantage” of deviating from 7 for one and only one step)

(Quick sanity check: A”(s, 7(s)) = 0) f{(‘ Lo S2)

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r, P}

State visitation: d{(s) = (1 —y) 2)/hﬂ:DZ(S; So)
h=0
A new definition: Advantage A”(s, a) := Q”(s,a) — V*(s)

(The “advantage” of deviating from 7 for one and only one step)

(Quick sanity check: A”(s, n(s)) = 0) . é/Jv 4
S \> v
Recall PI:
arg max Q(s, a) = arg max A”(s,a),

i.e., Policy-improve step seeks the action that has the largest adv

PDL:

Given two policies 7 : S = A(A), 7' : S = A(A), recall V*(sy) =E [iyhr(sh, ah)|ﬂ]

h=0

PDL:

Given two policies 7 : S = A(A), 7' : S = A(A), recall V7(sy) =E [iyhr(sh, ah)lﬂ]

h=0

Performance Difference Lemma (PDL):

, 1 - , |
\wz 1 [Es~d;f0 [EaNE(.|S)Qﬂ(S, a)—V” (s)]

1 [/
<) = l—ylEsng) [ECZNJZ'(-ls)Aﬂ(S’ CZ)]
p (oo AR -

AN

-

T

ol
O)\SOCS\:\\) - OISJ\S)-’\T(mF)

PDL Explanation ,
— T
// = o‘f;, E A (S)]

, I |
Vis0) = V¥(s0) = T Eveay E A7)
__;\ \/(((5°) M ©-0G)

(\ _’_;
) T~ 1/ =\ ,@;@/@
o _“/ ——
sb \ @ /)_\ |
J
,ﬂ
Dy @)@
,(\l

</ ! o
P((3°,au>; (9- C S oD — \/ (SD) :-@y@

PDL Proof

, 1 ,
Vﬂ(SO) - VT[(So) — 1—_}/|ESNCZ§TO [ECZNJZ(-lS)AT[(S’ Cl)

Proof of Sketch (see reading material for detailed steps)

PDL Proof
T 7’ 1 7’
VG0 = V7o) = T Ere [[EaNﬂ(,ls)A (s, a)]

Proof of Sketch (see reading material for detailed steps)
VA(s9) — V¥ (50)
= V(s0) — Eqensy) [r(s 7ay) + yE,.. P(SO’aO)V”'(s’)] + Eopertlsy) [r(so, ap) + yE,.. P(SO,aO)V”/(s’)] — V7 (s,)

S{)) G ®
®E _ «
- L\(%M y & \/ ‘gs’)J

S)

S
/—__/“

PDL Proof

, 1 ,
VG0 = V7o) = T Ere [[EaNﬂ(,ls)A”(s, a)]

E L= »jl(X)

Proof of Sketch (see reading material for detailed steps) N

V(so) — V7 (5,)

= V”(SO) - [an,\,n-(,|s0)\|:r(S0, (10) + yES’NP(SO,ao)V”/(SI)] + IanN”('lsO) [I’(SO, ao) + YIES’NP(SO,QO)VE/(S/):I - Vﬂ,(SO)

J

= y[Ea0~7t(-|s0)[Es1~P(s0,ao) Vﬂ(sl) - Vﬂ/(sl)

g = E ($)
(6}

Eoontiog [r(so, ag) + }/[ES/NP(SO,%)V”'(S’)] ~ V() N
Re car 501 G (50.00) M(f’s)%/ }

PDL Proof

/ 1 /

T /4 _ /4

V(s0) = V¥(s9) = T, gy |EurigA" (5)]
Proof of Sketch (see reading material for detailed steps)

V7(sy) — VZ(sp)

= Vﬂ:(SO) - lanNn:(-|s0) [I”(SO, ao) + y[ES’NP(SO,ClO)Vﬂ:/(S/)] + IanNﬂ('ls()) [I’(SO, ao) + YIES/NP(SO,QO)VE/(S/):I - Vﬂ/(SO)

= y[ECloNﬂ(‘|So)[ES1~P(Soﬂo) [Vﬂ(sl) - Vﬂ/(sl)] + [Ea0~7r(-lso) [F(SO’ a()) + 7[Es'~P(s0,a0)Vﬂ/(S,)] - Vﬂ/(so)

= y[Ea()Nﬂ(‘|So)[E51~P(Soﬂo) [Vﬂ(sl) - Vﬂ/(sl)] + [an~77:(-|so) Qﬂl(so’ a()) - Vﬂ/(so)]
—r—

< f

A cson)

PDL Proof

, 1 ,
Vi(s0) = V(s) = ——E, [[anﬂ(,ls)A”(s, a)]

Proof of Sketch (see reading material for detailed steps)
V(s9) — V™ (s0)

= Vﬂ(SO) - lanNﬂ-(-|s0) [I”(SO, ao) + y[ES,NP(SO,ClO)Vﬂ/(S/)] + IanNﬂ('lso) [I’(SO, ao) + YIES/NP(SO,QO)VE/(S/)] - V”/(SO)
= Y apentlspEspspan [V = V(D] + Egny [r (50 o) + YEgp(span V" (5 ')] — V*(s)

= y[Ea()N’T(‘|So)[ES1~P(Soﬂo) [Vﬂ(sl) - Vﬂ/(sl)] + [an~7r(-|s0) [Qﬂl(so’ ap) — Vﬂ/(so)]

= VE gyt 1) Esy~Pspao LV 51 = V7 ()] + Eqion.tsy) [A” (500 a0)]

Summary of PDL:

: 1 ‘ : :
V(s0) = V(5) =~y | Eqrn@75.0) = V7(5)]

— —yl]ESNd” [EaNTL'('ls)Aﬂ/(S’ Cl)]

Summary of PDL:

, 1] , ,
V(50) = V¥(s) = T——E, g | Eaer10Q7(5: @) = V(o)

— —y[ESNdﬁ [EaNﬂ.(.ls)Aﬂl(S, Cl)]

(Use the fact that Q"(s, a) € [0,1/(1 — y)])

Summary of PDL:

: 1 ‘ : :
V(s0) = V(5) =~y | Eqrn@75.0) = V7(5)]

— —ESNd” [EQNTL'('lS)Aﬂ/(S’ Cl)]
4 i
(Use the fact that Q*(s, a) € [0,1/(1 — y)])

| i)3) <Al)
V(o) = V7 (s0)| < @% IEGDEE@EDIN
-5 l«mqs)/«‘(mp)}

4/ ! '(/

l a
) A¢ ‘/(;5\)'& gégig 4 rep - > Hﬂp,s)/ ﬂ((-ls)/l

Tl

S -

9.8 £
| B (Gor = B K

~ﬁ(\é) a1 ‘,‘S)

. =
Summary of PE!. &ﬁ'(w)’ c, & <s‘o,);

-3¢/

VE(ST) V7(sy) = _] —[ESNd” _ aNﬂ(,ls)Qﬂ’(S, a) — Vﬂf(‘s)]

el ///? &

\

TEM” E o 19A™ (5 “)]

£ wex Q (5er)
G

(Use the fact that Q”(s, a) € [0,1/(1 —y)]) ’ \\ T (’\9)’ ’T/(’\‘)L/—
, 1
[Vi) = V0| < =5y IEQDEE@EDIN

Policy disagreement (') averaged over one policy’s traces

An Application of PDL in Policy lteration
&
($-
g G ()

Recall that 7! (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL:

An Application of PDL in Policy lteration

Recall that 7! (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL:
pol-
Y

1+ t 1 '
%4 1(SO) -V (SO) = I—_J/[Es~d§é+l[EdNﬂt+l('|S)Aﬂ(S’ Cl)

An Application of PDL in Policy lteration

Recall that z/t1(s) = @A%, a)
a

Show monotonic improvement using PDL:

=+ t 1 t
%4 1(so) — V% (sp) = 1T[E o d§é+1@A” (s, q)
Y N2

1 z
=—F, A" (s,2'M(s))
-y 0

An Application of PDL in Policy lteration

Recall that 7! (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL:

t+1 t !
V7 (s9) — V7 (sp) E.. d§,5+1[E a~r+i(AT (S, @)

! 1
= —[Esngr(;HA”(S, 7Z't+ (S)) "

Sogr Ay
> ﬁﬁ%gé“%ﬁ@

An Application of PDL in Policy lteration

& Ou'f&\’DY\\\—Q \

Recall that 7! (s) = arg max A” (s, a) App £ R ytiwedl
a
A’T\kj
Show monotonic improvement using PDL:
ﬁH\ (\{
n.t+1 o 1 P l }Jo OQ 4 E
V (So) -V (So) = ITESNds]g-HlEaNﬂHI('ls)A (S, a) //B

A

=——F, A" (s, 7'71(s))
-y 0
1

2 T B A7) =0

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs: L
Model ~Reset K

A

(4

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (congg#t the perf diff of 7 & " under one MDP)
/t_) VOQ;"H \\MY’(’\)VQM

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of £ & z’ under one MDP)
3. How to draw samples from d”o, and how to get unbiased estimate of O”(s, a)

Roll -1 1{,10 U —out

Two Algorithms:

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of £ & z’ under one MDP)
3. How to draw samples from d”o, and how to get unbiased estimate of O”(s, a)

/ |90~
) DbgMM S /V? (\)
\qpth‘ / Two Algorithms:

1. Model-based RL w/ Generative model: fit a2 (by counting) and run Policy;l}er on (ﬁ, r)
Tl A Y oA S AT TL
Lok, O=7x w6] R e ;HM*%*\,/
’ AD 2 /Qxl)lz

»«/\@ [y

\!

Summary for the recent 3 lectures:

Three fundamental ingredients in RL and MDPs:

1. Simulation Lemma (concerns the perf difference of 7 under two MDPs)
2. PDL (concert the perf diff of £ & z’ under one MDP)
3. How to draw samples from d”o, and how to get unbiased estimate of O”(s, a)

Two Algorithms:

1. Model-based RL w/ Generative model: fit P (by counting) and run Policy-Iter on (ﬁ, r)
2. Approximate Policy lteration (Alg that uses W)
L> A4 <X
R~

Next Week:

We will talk about Incremental Policy Optimization
(Recall the failure case of API; we will force incremental update on policies)

) <
- = T

\ T Pﬁw/ z Q\X)‘%&x)\

'S

