
Exploration in RL:  
Contextual Bandit
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Recap: MAB

For t = 0 → T − 1
1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νIt
It

(# based on historical information)

Interactive learning process:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Learning metric:

Arm distributions are fixed across learning..



Question for Today:

Incorporate contexts into the interactive learning framework



Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations
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Make the framework Context Dependent:

For t = 0 → T − 1

Interactive learning process:

1. A new context  appearsxt ∈ &

2. Learner picks action at ∈ '
(# based on context  and 

historical information)
xt

3. Learner observes an reward rt := r(xt, at)
Reward is context and arm 

dependent now! 



Make the framework Context Dependent:
Interactive learning process:

Environment

xt ∼ μ

Learning 
algorithm

at

rt := r(xt, at)
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Examples:

Personalize 
recommendation system Context: user’s information (e.g., 

history health conditions, age, height, 
weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes 
user click rate

Different users have different 
preferences on news, so 

need to personalize 
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Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

ℳ = {&, ', r, H = 1, μ}

Objective function:

max
π∈Π

*x∼μ [r(x, π(x))]
For simplicity, we assume reward is deterministic; 


The challenge is really from randomness in contexts
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The Regret Metric
Fix a policy class  ( think about  as a classier from )Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

Every iteration, learner has a policy  

(Recommends , receives reward )

πt ∈ Π
at = πt(xt) rt := r(xt, π(xt))

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))]
Total expected reward if we always 

uses  to recommendπ⋆
Total expected reward of our learned 

sequence of policies



Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations
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Assume  ( ), and we log receive , at ∼ p p ∈ Δ(') pt(a), rt = r(xt, at)
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*at∼p
r(xt, a)1[a = at]

p(at)
= ∑

at∈'
p(at)

r(xt, a)1[a = at]
p(at)

= p(a) r(xt, a)
p(a) = r(xt, a)

Consider any a ∈ ' :
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Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

x,
r[1]
r[2]…

r[ |' | ]arg max
π∈Π

N

∑
i=1

ri[π(xi)]
We will do reduction to RSC
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Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample  receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

̂r :=

0
0…

rt /p(at)
0,…
0

Call RSC oracle: ̂π = arg max
π∈Π

N−1

∑
i=0

̂rt[π(xt)]

1. Observe , and play xt ∼ μ at = ̂π(xt)
For t = N → T − 1 : (# exploitation phase)
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1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations
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Theory of the Explore and Commit Algorithm

For simplicity, assume  is discrete (but could be exponential large)Π

[Theorem—informal]  W/ high probability, properly setting the hyper-parameter , 
Explore-and-Commit has the following regret:


N

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))] = O (T2/3K1/3 ⋅ ln( |Π | )1/3)
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Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave 
explore and exploitation

-greedy:ϵ
Every iteration :


With probability , we play  

and w/ probability , we play 

t
1 − ϵ at = πt(xt),

ϵ at ∼ Unif(')

Q: What’s the action distribution induced by -greedy at iteration t?ϵ
a ∼ pt, pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
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Put things together:  greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

3. Play , and observe at ∼ pt rt := r(xt, at)

4. Via IW, form unbiased estimate rt

5. Update via RSC oracle: πt+1 = arg max
π∈Π

t

∑
i=1

ri[π(xi)]

(Additionally 6. Gradually decay …)ϵ



https://azure.microsoft.com/en-us/services/cognitive-services/personalizer/

CB algorithm is being used in real world application at Microsoft:



Framework


