Exploration in RL:
Contextual Bandit

Recap: MAB

Interactive learning process:

Fort=0—->T-1
or - (# based on historical information)

1. Learner pullsarm [, € {1,...,K}

2. Learner observes an i.i.d reward r, ~ v; of arm [,

Recap: MAB

Interactive learning process:

Fort=0—->T-1
or - (# based on historical information)

1. Learner pullsarm [, € {1,...,K}

2. Learner observes an i.i.d reward r, ~ v; of arm [,

Learning metric:

T—1
Regret, = Tu™ — Z 173
=0

Recap: MAB

Interactive learning process:

Fort=0—->T-1
or — (# based on historical information)

1. Learner pullsarm , € {1,..., K}

2. Learner observes an i.i.d reward r, ~ v; of arm [,

Learning metric:

Regret.. @ Z,u,

Arm distributions are fixed across Iearnlng

Question for Today:

Incorporate contexts into the interactive learning framework

Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Make the framework Context Dependent:

Interactive learning process:

Fort=0->T-1

1. A new context x, € 2 appears

Make the framework Context Dependent:

Interactive learning process:

Fort=0->T-1

1. A new context x, € 2 appears
(# based on context x; and

2. Learner picks action a, € & historical information)

Make the framework Context Dependent:

Interactive learning process:

Fort=0->T-1

1. A new context x, € 2 /appears /
(# based on context x; and

2. Learner picks action a, € & historical information)

" Ve Rocndndtr o

3. Learner observes an reward r, := r(x,, a,) ———

Reward is context and arm
dependent now!

Make the framework Context Dependent:

Interactive learning process:

vl
X, ~ U

a,

r, i =r(x,a,)

Examples:

Personalize
recommendation system

£ = € | F§ New - mas

S Ebola diagnosis ‘déeply-concerning’
e

Examples:

Personalize _ _
recommendation system Context: user’s information (e.g.,

history health-conditiens, age, height,
weight, job type, etc)

Examples:

Personalize _ _
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Examples:

Personalize _ _
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

I

[-

1y

Goal: learn to maximizes
user click rate

Examples:

Personalize _ _
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes
user click rate

Different users have different
preferences on news, so
need to personalize

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, A, r,H=1, u}

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, d,r,H=1,)

Objective function:

max E,., |r(x, m(x))]

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, d,r,H=1,)

Objective function:

I}Tleaé(E,-, [7” (x, Z(X))]

For simplicity, we assume reward is deterministic;
The challenge is really from randomness in contexts

The Regret Metric

Fix a policy class I1 (think about 7 as a classier from x — a)

Denote optimal policy 7 = arg max [ExNﬂr(x, 7(x))
nell

The Regret Metric

Fix a policy class I1 (think about 7 as a classier from x — a)
Denote optimal policy 7 = arg max [ExNMr(x, 7(x))
nell

Every iteration, learner has a policy 7’ € I1
(Recommends a, = r'(x,), receives reward r, := r(x,, (x,)))

The Regret Metric

Fix a policy class I1 (think about 7 as a classier from x — a)

Denote optimal policy 7 = arg max E,.,r(x, 7(x))
nell

Every iteration, learner has a policy 7’ € I1
(Recommends a, = r'(x,), receives reward r, := r(x,, (x,)))

T-1

Regret, = TE, _ [r(x, 7*(x))] — z E,. [r(x, 7'(x))]
=0

The Regret Metric

Fix a policy class I1 (think about 7 as a classier from x — a)

Denote optimal policy 7 = arg max E,.,r(x, 7(x))
nell
Every iteration, learner has a policy 7’ € I1
(Recommends a, = r'(x,), receives reward r, := r(x,, (x,)))

T-1

Regret, = TE,_,[r(x, 7*(0))] = Y| E,.[r(x, 7'(x))]

Total expected reward if we always =0

uses 7* to recommend

The Regret Metric

Fix a policy class I1 (think about 7 as a classier from x — a)
Denote optimal policy 7 = arg max E,.,r(x, 7(x))
nell

Every iteration, learner has a policy 7’ € I1
(Recommends a, = r'(x,), receives reward r, := r(x,, (x,)))

T-1
Regret; = TE,,[r(x, 7 ()] =) E,,[r(x, /()]
Total expected reward if we always =0 Total expected reward of our learned

uses ¥ to recommend sequence of policies

Outline for today:

[. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume a, ~ p (p € A()), and we log p(a,), receive r, = r(x,, a,),

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume a, ~ p (p € A()), and we log p(a,), receive r, = r(x,, a,),

rx,a)lla = a
Foralla € of,)define fla] = '(p D1 2
p(a,)

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume a, ~ p (p € A()), and we log p(a,), receive r, = r(x,, a,),
r(x,a)lla = a,)

pla,)

>
Il

For alla € &, define I'la] =

Ingredient 1: Importance Weighting

The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume a, ~ p (p € A()), and we log p(a,), receive r, = r(x,, a,),
r(x,a)lla = a,]
p(a,)

E, . rlal =r(x,a),Va e A

a~p

For alla € &, define I'la] =

Proving Importance Weighting

Assume q, N@\}) € A()), and we log p(a), receive r, = r(x,, a,),

r(x,a)lla = a/]

pla,)

Foralla € &/, define #[a] = . we have: [Eathf'[a] = r(x,a),Va € o

Proving Importance Weighting

Assume a, ~ p (p € A(&)), and we log p,(a), receive r, = r(x,, a,),

, r(x, a)lla = a
For alla € &/, define t[a] = O D1 /
— pla,)
RMM—AOWL"s
U Q,){:)w/\ A<

—
—

. we have: [Eathf'[a] =r(x,a),Va e o

Considerany a € :

Proving Importance Weighting

Assume a, ~ p (p € A(&)), and we log p,(a), receive r, = r(x,, a,),

r(x,a)lla = a/]

pla,)

Foralla € &/, define #[a] = . we have: [Eazwpf'[a] = r(x,a),Va € o

¢ O o)

-
.

Considerany a € « : E [S W]

y
r(x,a)lla = a] B r(x,, a@

E,. pla
T play £ / pla)

Proving Importance Weighting

Assume a, ~ p (p € A(&)), and we log p,(a), receive r, = r(x,, a,),

r(x,a)lla = a,]

pla,)

For alla € &f, define t[a] =

Consider ar@

r(x,a)lla = a] _ Z (@) r(x,a)lla = a,]

. we have: [Easzf'[a] =r(x,a),Va e o

v]C\‘\r_gs wk,u\ Ax = o~

a~p p(a t> = p (Clt)]
(o, @) | S0 | = Yo
= = r(x,a)
p@p@ r/—\ Q,\,QA/F

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip €,y €{L,.... [}

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip v €,y €{L,.... [}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip v €,y €{L,.... [}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Let’s generalize it to Reward-Sensitive Classification:

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip v €,y €{L,.... [}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Let’s generalize it to Reward-Sensitive Classification:

(. r}¥,, xeZ.r el01]

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip v €,y €{L,.... [}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Let’s generalize it to Reward-Sensitive Classification:

{xi7 ri}ﬁil’ xi € %, I‘l- € [0,1]|,Q7| r[l]
X r(2]

]

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip x, €y, €{l,..., ||}

N AN
arg max Z 1{n(x;) = y;} —
nell i1

Let’s generalize it to Reward-Sensitive Classification:

(.t} x€Z,r; €[0,1] @
N L -
arg max Z r[z(x;)]

nell £
=1

Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip x, €y, €{l,..., ||}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Let’s generalize it to Reward-Sensitive Classification:

r}Y,, x€2,r el0,1]¥ 1]
X (2]
S (/]
r
arg max Z r[z(x;)]

We will do reduction to RSC rell i=1

Summary so far:

1. Importance Weighting: we “magically” get unbiased estimate for all actions!
r(x,a)lla = a/]

, we have:
pla,)

Assume a, ~ p (p € A(H)), Foralla € o, define #[a] =

[Eathf'[a] =r(x,a),Va € o

Summary so far:

1. Importance Weighting: we “magically” get unbiased estimate for all actions!

r(x,a)lla = a/]

Assume a, ~ p (p € A(H)), Foralla € o, define #[a] = = ., we have:
pla;
0 [Eathf'[a] =r(x,a),Va € o
r:.= rt/})‘(.at)
0,
-
2. Reward-Sensitive Classification:
Y, x€Z,rel0,1] ril]
- X, r[2]
r[| 1]

N
arg max Ir.|m7T(X.:
g may 21, [7(x)]

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x, ~ u

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x, ~ u

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,
3. Use IW, form unbiased estimate t,[a] = r,
/]|

a=a,

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,

3. Use IW, form unbiased estimate t,[a] = r, [0]
e a=a, 0

f:=(r/pla,)
0’

L 0 .

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,
3. Use IW, form unbiased estimate t,[a] = r, B [0]
a) 4% 0
= P = |nip@)
Call RSC oracle: 7 = argmax |} £;[n(x;)] 0,
¢ Yo+~ /J\ o

T 1 \ I
o & wrbivied seftots ¢ (D

K/?%l YC [(\ L)h\)}
[f(x)ﬂw)}

T wnbiesed eof 4’ E [{(X, 7“"))) Z ~ g
P

s~

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x, ~ u

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

3. Use IW, form unbiased estimate t,[a] =

N-1

Call RSC oracle: # = argmax) f*,[n()it)%
nell =0 N

Fort=N— T —1: (#exploitation phase)

0 a# a,

o0]

0

r,/p(a,)
0,

L 0 .

Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,
3. Use IW, form unbiased estimate t,[a] = r, B [0]
a) 4% 0
N1 f:= |r/pla)
Call RSC oracle: # = argmax). #[7(x)] o 0.
L5 T (ﬁcwj [0
N \>0

Fort=N— T —1: (#exploitation phase) _
N [T‘C& «%ﬂ

1. Observe x, ~ pu, and play a, = 7(x,) kg 4

Outline for today:

[. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Theory of the Explore and Commit Algorithm

For simplicity, assume I1 is discrete (but could be exponential large)

Theory of the Explore and Commit Algorithm

For simplicity, assume I1 is discrete (but could be exponential large)

[Theorem—informal] W/ high probability, properly setting the hyper-parameter NV,
Explore-and-Commit has the following regret:

T—1
Regret,. = T[ExNﬂ[r(x, 7*(x))] — 2 [EXNM[F(X, 7'(x))] = O <T2/3K1/3 : E(LH\D]B)
=0 T

RQ@’MT _(; /,/b \/CAP"W\(@

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

Every iteration f: - Brploitetb—
With probability 1 — €, we play a, = 7'(x,),
and w/ probability €, we play a, ~ Unif(&f) < Expl

UY“‘I?“\\’D v\

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

e-greedy:

Every iteration :
With probability 1 — €, we play a, = 7'(x,),
and w/ probability €, we play a, ~ Unif(<f)

Q: What’s the action distribution induced by €-greedy at iteration t?

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

e-greedy:
Every iteration :
S (8)z =7 = With probability 1 — ¢, we play a, = 7(x,),
and w/ probability €, we play a, ~ Unif(<f)

Q: What’s the action distribution induced by €-greedy at iteration t?
¢ o ExplreIis

a~PpPp P (1 B e)_(i(_xﬁ-r@Unif(ﬂ) Cor o e el

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)

3. Play a, ~ p,, and observe r, := r(x,, a,)

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)

3. Play a, ~ p,, and observe r, := r(x,, a,)

4. Via IW, form unbiased estimate r,

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)
1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)

3. Play a, ~ p,, and observe r, := r(x,, a,)

4. Via IW, form unbiased estimate r,
!

5. Update via RSC oracle: 7#'*! = arg max Z r;[7(x)]
nell i—1

Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)
3. Play a, ~ p,, and observe r, := r(x,, a,)

4. Via IW, form unbiased estimate r;
!

5. Update via RSC oracle: 7#'*! = arg max Z r;[7(x)]
nell i—1

(Additionally 6. Gradually decay €...)

CB algorithm is being used in real world application at Microsoft:

https://azure.microsoft.com/en-us/services/cognitive-services/personalizer/

= Microsoft Azure Contact Sales K search Q My account Portal Sign in

Overview Solutions Products ~ Documentation Pricing ~ Training Marketplace Partners v Support ~ Blog More ~

Personalizer - \

An award-winning Al service that delivers a personalized, relevant experience
for every user

Already using Azure? Try this service for free now >

Framework

g - G ﬂeo@_

-

Gv@(Vacd B
Irference & Training & Al (2_

User interacts with ormation, Exploration Evaluation
application /site Context,)+ Features
.
B > - * Evaluation

@A |0 “amp

Inference Model

) &

Rank Response Exploration Poli

Personalization Service

Training Service

Action Ranking Z“Ct‘/ﬂ.v%
User chcoses an

action. lfé[ﬁé I{é]!{é

[0.8
Reward Score Q Reward A

