
Exploration in RL:
Contextual Bandit

Recap: MAB

For t = 0 → T − 1
1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νIt
It

(# based on historical information)

Interactive learning process:

Recap: MAB

For t = 0 → T − 1
1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νIt
It

(# based on historical information)

Interactive learning process:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Learning metric:

Recap: MAB

For t = 0 → T − 1
1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νIt
It

(# based on historical information)

Interactive learning process:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Learning metric:

Arm distributions are fixed across learning..

Question for Today:

Incorporate contexts into the interactive learning framework

Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Make the framework Context Dependent:

For t = 0 → T − 1

Interactive learning process:

1. A new context appearsxt ∈ &

Make the framework Context Dependent:

For t = 0 → T − 1

Interactive learning process:

1. A new context appearsxt ∈ &

2. Learner picks action at ∈ '
(# based on context and

historical information)
xt

Make the framework Context Dependent:

For t = 0 → T − 1

Interactive learning process:

1. A new context appearsxt ∈ &

2. Learner picks action at ∈ '
(# based on context and

historical information)
xt

3. Learner observes an reward rt := r(xt, at)
Reward is context and arm

dependent now!

Make the framework Context Dependent:
Interactive learning process:

Environment

xt ∼ μ

Learning
algorithm

at

rt := r(xt, at)

Examples:

Personalize
recommendation system

Examples:

Personalize
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Examples:

Personalize
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Examples:

Personalize
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes
user click rate

Examples:

Personalize
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes
user click rate

Different users have different
preferences on news, so

need to personalize

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

ℳ = {&, ', r, H = 1, μ}

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

ℳ = {&, ', r, H = 1, μ}

Objective function:

max
π∈Π

*x∼μ [r(x, π(x))]

Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

ℳ = {&, ', r, H = 1, μ}

Objective function:

max
π∈Π

*x∼μ [r(x, π(x))]
For simplicity, we assume reward is deterministic;

The challenge is really from randomness in contexts

The Regret Metric
Fix a policy class (think about as a classier from)Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

The Regret Metric
Fix a policy class (think about as a classier from)Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

Every iteration, learner has a policy

(Recommends , receives reward)

πt ∈ Π
at = πt(xt) rt := r(xt, π(xt))

The Regret Metric
Fix a policy class (think about as a classier from)Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

Every iteration, learner has a policy

(Recommends , receives reward)

πt ∈ Π
at = πt(xt) rt := r(xt, π(xt))

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))]

The Regret Metric
Fix a policy class (think about as a classier from)Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

Every iteration, learner has a policy

(Recommends , receives reward)

πt ∈ Π
at = πt(xt) rt := r(xt, π(xt))

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))]
Total expected reward if we always

uses to recommendπ⋆

The Regret Metric
Fix a policy class (think about as a classier from)Π π x → a

Denote optimal policy π⋆ = arg max
π∈Π

*x∼μr(x, π(x))

Every iteration, learner has a policy

(Recommends , receives reward)

πt ∈ Π
at = πt(xt) rt := r(xt, π(xt))

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))]
Total expected reward if we always

uses to recommendπ⋆
Total expected reward of our learned

sequence of policies

Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume (), and we log , receive , at ∼ p p ∈ Δ(') p(at) rt = r(xt, at)

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume (), and we log , receive , at ∼ p p ∈ Δ(') p(at) rt = r(xt, at)

For all , define ,a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume (), and we log , receive , at ∼ p p ∈ Δ(') p(at) rt = r(xt, at)

For all , define ,a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

̂r :=

0
0…

rt /p(at)
0,…
0

Ingredient 1: Importance Weighting
The key challenging here is that we observe ,

but we do not know for
rt := r(xt, at)

r(xt, a) a ≠ at

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume (), and we log , receive , at ∼ p p ∈ Δ(') p(at) rt = r(xt, at)

For all , define ,a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '

̂r :=

0
0…

rt /p(at)
0,…
0

Proving Importance Weighting
Assume (), and we log receive , at ∼ p p ∈ Δ(') pt(a), rt = r(xt, at)

For all , define , we have:a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '

Proving Importance Weighting
Assume (), and we log receive , at ∼ p p ∈ Δ(') pt(a), rt = r(xt, at)

For all , define , we have:a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '

Consider any a ∈ ' :

Proving Importance Weighting
Assume (), and we log receive , at ∼ p p ∈ Δ(') pt(a), rt = r(xt, at)

For all , define , we have:a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '

*at∼p
r(xt, a)1[a = at]

p(at)
= ∑

at∈'
p(at)

r(xt, a)1[a = at]
p(at)

Consider any a ∈ ' :

Proving Importance Weighting
Assume (), and we log receive , at ∼ p p ∈ Δ(') pt(a), rt = r(xt, at)

For all , define , we have:a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '

*at∼p
r(xt, a)1[a = at]

p(at)
= ∑

at∈'
p(at)

r(xt, a)1[a = at]
p(at)

= p(a) r(xt, a)
p(a) = r(xt, a)

Consider any a ∈ ' :

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

x,
r[1]
r[2]…

r[|' |]

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

x,
r[1]
r[2]…

r[|' |]arg max
π∈Π

N

∑
i=1

ri[π(xi)]

Ingredient 2: Reward-sensitive Classification Oracle
Recall classic classification:

{xi, yi}N
i=1, xi ∈ &, yi ∈ {1,…, |' |}

arg max
π∈Π

N

∑
i=1

1{π(xi) = yi}

Let’s generalize it to Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

x,
r[1]
r[2]…

r[|' |]arg max
π∈Π

N

∑
i=1

ri[π(xi)]
We will do reduction to RSC

Summary so far:
1. Importance Weighting: we “magically” get unbiased estimate for all actions!

Assume (), For all , define , we have:
at ∼ p p ∈ Δ(') a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '
̂r :=

0
0…

rt /p(at)
0,…
0

Summary so far:
1. Importance Weighting: we “magically” get unbiased estimate for all actions!

2. Reward-Sensitive Classification:

{xi, ri}N
i=1, xi ∈ &, ri ∈ [0,1]|'|

x,
r[1]
r[2]…

r[|' |]arg max
π∈Π

N

∑
i=1

ri[π(xi)]

Assume (), For all , define , we have:
at ∼ p p ∈ Δ(') a ∈ ' ̂r[a] = r(xt, a)1[a = at]
p(at)

*at∼p ̂r[a] = r(xt, a), ∀a ∈ '
̂r :=

0
0…

rt /p(at)
0,…
0

Put things together: Explore and Commit

For t = 0 → N − 1 : (# exploration phase)

Put things together: Explore and Commit

For t = 0 → N − 1 :
1. Observe xt ∼ μ

(# exploration phase)

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

(# exploration phase)

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

̂r :=

0
0…

rt /p(at)
0,…
0

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

̂r :=

0
0…

rt /p(at)
0,…
0

Call RSC oracle: ̂π = arg max
π∈Π

N−1

∑
i=0

̂rt[π(xt)]

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

̂r :=

0
0…

rt /p(at)
0,…
0

Call RSC oracle: ̂π = arg max
π∈Π

N−1

∑
i=0

̂rt[π(xt)]

For t = N → T − 1 : (# exploitation phase)

Put things together: Explore and Commit

For t = 0 → N − 1 :

2. Uniform-randomly sample receive reward at ∼ Unif('), rt = r(xt, at)
1. Observe xt ∼ μ

3. Use IW, form unbiased estimate ̂rt[a] = {
0 a ≠ at

rt

1/ |' | a = at

(# exploration phase)

̂r :=

0
0…

rt /p(at)
0,…
0

Call RSC oracle: ̂π = arg max
π∈Π

N−1

∑
i=0

̂rt[π(xt)]

1. Observe , and play xt ∼ μ at = ̂π(xt)
For t = N → T − 1 : (# exploitation phase)

Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations

Theory of the Explore and Commit Algorithm

For simplicity, assume is discrete (but could be exponential large)Π

Theory of the Explore and Commit Algorithm

For simplicity, assume is discrete (but could be exponential large)Π

[Theorem—informal] W/ high probability, properly setting the hyper-parameter ,
Explore-and-Commit has the following regret:

N

RegretT = T*x∼μ[r(x, π⋆(x))] −
T−1

∑
t=0

*x∼μ[r(x, πt(x))] = O (T2/3K1/3 ⋅ ln(|Π |)1/3)

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

-greedy:ϵ
Every iteration :

With probability , we play

and w/ probability , we play

t
1 − ϵ at = πt(xt),

ϵ at ∼ Unif(')

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

-greedy:ϵ
Every iteration :

With probability , we play

and w/ probability , we play

t
1 − ϵ at = πt(xt),

ϵ at ∼ Unif(')

Q: What’s the action distribution induced by -greedy at iteration t?ϵ

Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

-greedy:ϵ
Every iteration :

With probability , we play

and w/ probability , we play

t
1 − ϵ at = πt(xt),

ϵ at ∼ Unif(')

Q: What’s the action distribution induced by -greedy at iteration t?ϵ
a ∼ pt, pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')

Put things together: greedyϵ−
For t = 0 → ∞

1. Observe xt ∼ μ
(# interleve exploration & exploitation)

Put things together: greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

Put things together: greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

3. Play , and observe at ∼ pt rt := r(xt, at)

Put things together: greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

3. Play , and observe at ∼ pt rt := r(xt, at)

4. Via IW, form unbiased estimate rt

Put things together: greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

3. Play , and observe at ∼ pt rt := r(xt, at)

4. Via IW, form unbiased estimate rt

5. Update via RSC oracle: πt+1 = arg max
π∈Π

t

∑
i=1

ri[π(xi)]

Put things together: greedyϵ−
For t = 0 → ∞

2. Use -greedy to form action distribution ϵ pt = (1 − ϵ)δ(πt(xt)) + ϵUnif(')
1. Observe xt ∼ μ

(# interleve exploration & exploitation)

3. Play , and observe at ∼ pt rt := r(xt, at)

4. Via IW, form unbiased estimate rt

5. Update via RSC oracle: πt+1 = arg max
π∈Π

t

∑
i=1

ri[π(xi)]

(Additionally 6. Gradually decay …)ϵ

https://azure.microsoft.com/en-us/services/cognitive-services/personalizer/

CB algorithm is being used in real world application at Microsoft:

Framework

