Exploration in RL:
Contextual Bandit
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Recap: MAB

Interactive learning process:

Fort=0—->T-1
or — (# based on historical information)

1. Learner pullsarm , € {1,..., K}

2. Learner observes an i.i.d reward r, ~ v; of arm [,

Learning metric:

Regret.. @ Z,u,

Arm distributions are fixed across Iearnlng



Question for Today:

Incorporate contexts into the interactive learning framework



Outline for today:

1. Introduction of the model

2. Algorithm

3. Theory and some practical considerations
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Make the framework Context Dependent:

Interactive learning process:

Fort=0->T-1

1. A new context x, € 2 /appears /
(# based on context x; and

2. Learner picks action a, € & historical information)

" Ve Rocndndtr o

3. Learner observes an reward r, := r(x,, a,) ———

Reward is context and arm
dependent now!



Make the framework Context Dependent:

Interactive learning process:

vl
X, ~ U

a,

r, i =r(x,a,)
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Examples:

Personalize _ _
recommendation system Context: user’s information (e.g.,

history health conditions, age, height,
weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes
user click rate

Different users have different
preferences on news, so
need to personalize




Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, A, r,H=1, u}



Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, d,r,H=1, )

Objective function:

max E,., |r(x, m(x))]



Equivalently, it is an MDP with H = 1

Finite horizon MDP with H = 1

M=, d,r,H=1, )

Objective function:

I}Tleaé( E,-, [7” (x, Z(X))]

For simplicity, we assume reward is deterministic;
The challenge is really from randomness in contexts
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The Regret Metric

Fix a policy class I1 ( think about 7 as a classier from x — a)
Denote optimal policy 7 = arg max E,.,r(x, 7(x))
nell

Every iteration, learner has a policy 7’ € I1
(Recommends a, = r'(x,), receives reward r, := r(x,, (x,)))

T-1
Regret; = TE,,[r(x, 7 ()] = ) E,,[r(x, /()]
Total expected reward if we always =0 Total expected reward of our learned

uses ¥ to recommend sequence of policies
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3. Theory and some practical considerations
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The key challenging here is that we observe r, := r(x,, a,),
but we do not know r(x,, a) for a # q,

Importance weighting actually allows us to get
unbiased estimate for ALL actions!

Assume a, ~ p (p € A()), and we log p(a,), receive r, = r(x,, a,),
r(x,a)lla = a,]
p(a,)

E, . rlal =r(x,a),Va e A
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Assume a, ~ p (p € A(&)), and we log p,(a), receive r, = r(x,, a,),

r(x,a)lla = a/]

pla,)

Foralla € &/, define #[a] = . we have: [Eazwpf'[a] = r(x,a),Va € o
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Proving Importance Weighting

Assume a, ~ p (p € A(&)), and we log p,(a), receive r, = r(x,, a,),

r(x,a)lla = a,]

pla,)

For alla € &f, define t[a] =

Consider ar@

r(x,a)lla = a] _ Z (@) r(x,a)lla = a,]

. we have: [Easzf'[a] =r(x,a),Va e o

v ]C\‘\r_gs wk,u\ Ax = o~

a~p p(a t> = p (Clt) ]
(o, @) | S0 | = Yo
= = r(x,a)
p@p@ r/—\ Q,\,QA/F
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Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip x, €y, €{l,..., ||}

N AN
arg max Z 1{n(x;) = y;} —
nell i1

Let’s generalize it to Reward-Sensitive Classification:

(.t} x€Z,r; €[0,1] @
N L -
arg max Z r[z(x;)]

nell £
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Ingredient 2: Reward-sensitive Classification Oracle

Recall classic classification:

{x y; ?ip x, €y, €{l,..., ||}

N
arg max Z 1{n(x;) = y;}
i=1

mell -

Let’s generalize it to Reward-Sensitive Classification:

r}Y,, x€2,r el0,1]¥ 1]
X (2]
S (/]
r
arg max Z r[z(x;)]

We will do reduction to RSC rell i=1
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Summary so far:

1. Importance Weighting: we “magically” get unbiased estimate for all actions!

r(x,a)lla = a/]

Assume a, ~ p (p € A(H)), Foralla € o, define #[a] = = ., we have:
pla;
0 [Eathf'[a] =r(x,a),Va € o
r:.= rt/})‘(.at)
0,
-
2. Reward-Sensitive Classification:
Y, x€Z,rel0,1] ril]
- X, r[2]
r[| 1]

N
arg max Ir.|m7T(X.:
g may 21, [7(x)]
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Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,

3. Use IW, form unbiased estimate t,[a] = r, [0 ]
e a=a, 0

f:=(r/pla,)
0’

L 0 .




Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,
3. Use IW, form unbiased estimate t,[a] = r, B [0 ]
a) 4% 0
= P = |nip@)
Call RSC oracle: 7 = argmax |} £;[n(x;)] 0,
¢ Yo+~ /J\ o

T 1 \ I
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Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x, ~ u

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

3. Use IW, form unbiased estimate t,[a] =

N-1

Call RSC oracle: # = argmax ) f*,[n()it)%
nell =0 N

Fort=N— T —1: (#exploitation phase)

0 a# a,

o0 ]

0

r,/p(a,)
0,

L 0 .




Put things together: Explore and Commit

Fort=0—> N—1: (# exploration phase)

1. Observe x;, ~ U

2. Uniform-randomly sample a, ~ Unif(<f), receive reward r, = r(x,, a,)

0 a# a,
3. Use IW, form unbiased estimate t,[a] = r, B [0 ]
a) 4% 0
N1 f:= |r/pla)
Call RSC oracle: # = argmax ). #[7(x)] o 0.
L5 T (ﬁcwj [ 0
N \>0

Fort=N— T —1: (#exploitation phase) _
N [T‘C& «%ﬂ

1. Observe x, ~ pu, and play a, = 7(x,) kg 4
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For simplicity, assume I1 is discrete (but could be exponential large)



Theory of the Explore and Commit Algorithm

For simplicity, assume I1 is discrete (but could be exponential large)

[Theorem—informal] W/ high probability, properly setting the hyper-parameter NV,
Explore-and-Commit has the following regret:

T—1
Regret,. = T[ExNﬂ[r(x, 7*(x))] — 2 [EXNM[F(X, 7'(x))] = O <T2/3K1/3 : E(LH\D]B)
=0 T

RQ@’MT _(; /,/b \/CAP"W\(@
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Practical Consideration

Instead of setting a hard threshold for explore and commit, we often interleave
explore and exploitation

e-greedy:
Every iteration :
S (8)z =7 = With probability 1 — ¢, we play a, = 7(x,),
and w/ probability €, we play a, ~ Unif(<f)

Q: What’s the action distribution induced by €-greedy at iteration t?
¢ o ExplreIis

a~PpPp P (1 B e)_(i(_xﬁ-r@Unif(ﬂ) Cor o e el
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Put things together: ¢—greedy

Fort=0 — oo (# interleve exploration & exploitation)

1. Observe x;, ~ u

2. Use e-greedy to form action distribution p, = (1 — €)é(x'(x,)) + eUnif(&)
3. Play a, ~ p,, and observe r, := r(x,, a,)

4. Via IW, form unbiased estimate r;
!

5. Update via RSC oracle: 7#'*! = arg max Z r;[7(x)]
nell i—1

(Additionally 6. Gradually decay €...)



CB algorithm is being used in real world application at Microsoft:

https://azure.microsoft.com/en-us/services/cognitive-services/personalizer/

= Microsoft Azure Contact Sales K search Q My account Portal Sign in

Overview  Solutions  Products ~ Documentation  Pricing ~  Training  Marketplace  Partners v Support ~  Blog  More ~

Personalizer - \

An award-winning Al service that delivers a personalized, relevant experience
for every user

Already using Azure? Try this service for free now >
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