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V⋆(s) = max
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min
π2

#[r(sH) |s0 = s, π1, π2]

The optimal game value if we start at , and both player plays optimally…s

It’s a zero-sum game, i.e., they cannot both win or both lose…

Player 2 tries to minimize the expected win rate of player 1, 
which is equivalent to maximizes its own win rate 
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Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

# [r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e.,  is known and simple, in 
theory we can do Dynamic Programming to solve the max-min formulation..

s′ = f(s, a)

But…

For Go,  , and H ≈ 150, |A | ≈ 250 |S | ≈ |A |H

Thus, we cannot enumerate, we must generalize via function approximation..



Setting: Function Approximation

1. Policy Network ≈ π⋆

π( ⋅ |s)
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1. Policy Network ≈ π⋆

π( ⋅ |s)
2. Value Network ≈ V⋆(s′ )

V(s′ )
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Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing 

30m  pairs from KGS Go Server…(s, a)

2. Form imitation learning loss function, e.g., Negative Log-likelihood 

min
π ∑

s,a
− ln π(a |s)

3. Optimize via Stochastic Gradient Descent: 

θt+1 = θt − η ∑
(s,a)∈B

∇θ(−ln πθt
(a |s))/ |B | Behavior Cloning!
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How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

Win rate: 11%
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Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Randomly select a previous policy πθτ
, τ < t

Play  against , get a trajectory πθt
πθτ

(s0, a0, s1, a′ 1, s2, a2, s3, a′ 3 . . . sH)

PG update: θt+1 = θt + η ∑
h:ah∼πθt

∇θln πθt
(ah |sh)r(sH)

(# fictitious play to avoid catastrophic forgetting..)
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How does the performance improved after PG optimization?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

RL policy has win rate 85%
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Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate  instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

We use simple least square regression here:

min
β ∑

s,z
(Vβ(s) − z)2

Where  is a random state in one game play, and  is the outcome of the play..s z
(We only keep one sample per game play, i.e., we are really sampling  i.i.d)s ∼ d ̂π
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Final stage of training: Learn a value function V(s) ≈ V⋆

Self-play 30m games, and get 30m  pairs(s, z)

βt+1 = βt − η ∑
(s,z)∈B

(Vβ(s) − z)∇βVβ(s)

Optimize least square via SGD again:



Summary so far

We have learned a policy  (BC+PG) and ̂π ̂V ≈ V ̂π

To make the program even more powerful, we combine them with a Search Tree
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Combine with Tree Search (a naive version)
Imagine that we are at state  right now, let’s simulate all possible moves into the 

future
s

̂V(s′ ) ̂V(s′ ′ )

vL = min{ ̂V(s′ ), ̂V(s′ ′ )} vR = min{ ̂V(s̃′ ), ̂V(s̃′ ′ )}

s′ s′ ′ s̃′ s̃′ ′ 

vroot = max{vL, vR}

: win rate of red 
player starting at 
̂V(s′ )

s′ 
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AlphaGo uses Monte-Carlo Tree Search algorithm:

i.e., we enumerate and plan for several steps into the 
future, and bottom up by a predicted outcome  

̂V

Combination of value network 
output and a roll out value 

from policy



Summary of the AlphaGo Program

1. Behavior cloning on 30m expert data samples

2. Classic Policy gradient on self-play games 

3. Train a value network  to predict PG policy’s outcome (on 30m self-played 
games)

̂V

4. Build search tree and use  to significantly reduce the search tree deptĥV


