Case Study: AlphaGo
Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search
Setting: Two player Markov Games:

\[\mathcal{M} = \{S, A, f, r, H, s_0\} \quad S' = f(s, a) \]
Setting: Two player Markov Games:

\[\mathcal{M} = \{S, A, f, r, H, s_0\} \]

We have two players π_1 and π_2, they take turn to play:

\[
\begin{align*}
 s_0, \quad a_0 &\sim \pi_1(s_0), s_1 = f(s_0, a_0), \quad a_1 &\sim \pi_2(s_1), s_2 = f(s_1, a_1), \ldots, s_H
\end{align*}
\]
Setting: Two player Markov Games:

\[M = \{ S, A, f, r, H, s_0 \} \]

We have two players \(\pi_1 \) and \(\pi_2 \), they take turn to play:

\[s_0, \ a_0 \sim \pi_1(s_0), s_1 = f(s_0, a_0), \ a_1 \sim \pi_2(s_1), s_2 = f(s_1, a_1), \ldots, s_H \]

Sparse reward at the termination state: \(r(s_H) = 1 \) if wins, -1 otherwise
Setting: Two player Markov Games:

\[\mathcal{M} = \{ S, A, f, r, H, s_0 \} \]

We have two players \(\pi_1 \) and \(\pi_2 \), they take turn to play:

\[s_0, \quad a_0 \sim \pi_1(s_0), \quad s_1 = f(s_0, a_0), \quad a_1 \sim \pi_2(s_1), \quad s_2 = f(s_1, a_1), \ldots, s_H \]

Sparse reward at the termination state: \(r(s_H) = 1 \) if wins, -1 otherwise

Min-max formulation:

\[
\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]
\]
Setting: Two player Markov Games:

Denote optimal value function V^* as:

$$V^*(s) = \max_{\pi_1} \min_{\pi_2} \mathbb{E}[r(s_H) \mid s_0 = s, \pi_1, \pi_2]$$
Setting: Two player Markov Games:

Denote optimal value function V^* as:

$$V^*(s) = \max_{\pi_1} \min_{\pi_2} \mathbb{E}[r(s_H) \mid s_0 = s, \pi_1, \pi_2]$$

The optimal game value if we start at s, and both player plays optimally…
Setting: Two player Markov Games:

Denote optimal value function V^* as:

$$V^*(s) = \max_{\pi_1} \min_{\pi_2} \mathbb{E}[r(s_H) | s_0 = s, \pi_1, \pi_2]$$

The optimal game value if we start at s, and both player plays optimally…

It’s a zero-sum game, i.e., they cannot both win or both lose…
Setting: Two player Markov Games:

Denote optimal value function V^* as:

$$V^*(s) = \max_{\pi_1} \min_{\pi_2} \mathbb{E}[r(s_H) | s_0 = s, \pi_1, \pi_2]$$

The optimal game value if we start at s, and both player plays optimally...

It’s a zero-sum game, i.e., they cannot both win or both lose...

Player 2 tries to minimize the expected win rate of player 1, which is equivalent to maximizes its own win rate
Setting: Two player Markov Games:

Min-max formulation:

\[
\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]
\]
Setting: Two player Markov Games:

Min-max formulation:

$$\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]$$

Go has known and deterministic dynamic, i.e., $s' = f(s, a)$ is known and simple, in theory we can do **Dynamic Programming** to solve the max-min formulation.
Setting: Two player Markov Games:

Min-max formulation:

$$\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]$$

Go has known and deterministic dynamic, i.e., $s' = f(s, a)$ is known and simple, in theory we can do Dynamic Programming to solve the max-min formulation.

But…
Setting: Two player Markov Games:

Min-max formulation:

$$\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]$$

Go has known and deterministic dynamic, i.e., $s' = f(s, a)$ is known and simple, in theory we can do **Dynamic Programming** to solve the max-min formulation.

But...

For Go, $H \approx 150$, $|A| \approx 250$, and $|S| \approx |A|^H$
Setting: Two player Markov Games:

\[
\max_{\pi_1} \min_{\pi_2} \mathbb{E} \left[r(s_H) \mid \pi_1, \pi_2 \right]
\]

Go has known and deterministic dynamic, i.e., \(s' = f(s, a) \) is known and simple, in theory we can do Dynamic Programming to solve the max-min formulation.

But...

For Go, \(H \approx 150, \ |A| \approx 250, \) and \(|S| \approx |A|^H \)

Thus, we cannot enumerate, we must generalize via function approximation.
1. Policy Network $\approx \pi^*$

Setting: Function Approximation
Setting: Function Approximation

1. Policy Network \(\approx \pi^* \)

\[\pi(\cdot \mid s) \]

2. Value Network \(\approx V^*(s') \)

\[V(s') \]
Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search
Warm start our policy net via Imitation Learning
Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing 30m \((s, a)\) pairs from KGS Go Server…
Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing 30m \((s, a)\) pairs from KGS Go Server...

2. Form imitation learning loss function, e.g., Negative Log-likelihood

\[
\min_{\pi} \sum_{s,a} - \ln \pi(a | s)
\]
Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing $30m$ (s, a) pairs from KGS Go Server…

2. Form imitation learning loss function, e.g., Negative Log-likelihood

$$\min_{\pi} \sum_{s,a} - \ln \pi(a | s)$$

3. Optimize via Stochastic Gradient Descent:

$$\theta_{t+1} = \theta_t - \eta \sum_{(s,a) \in B} \nabla_{\theta} \left(- \ln \pi_{\theta_t}(a | s) \right) / |B|$$
Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing
 \(30m \, (s, a)\) pairs from KGS Go Server...

2. Form imitation learning loss function, e.g., Negative Log-likelihood

\[
\min_{\pi} \sum_{s,a} - \ln \pi(a \mid s)
\]

3. Optimize via Stochastic Gradient Descent:

\[
\theta_{t+1} = \theta_t - \eta \sum_{(s,a) \in B} \nabla_{\theta} \left(- \ln \pi_{\theta_t}(a \mid s) \right) / |B|
\]
How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset
How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?
How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)
How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

Win rate: 11%
Outline for Today:

1. Setting
2. The imitation learning component
3. The policy Gradient Component
4. The combination of policy, value, and tree search
Further Improving Policy via PG on Self-playing
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy...

2. We then iterate as follows:

\[\pi_{\theta_0} = \pi_{BC} \]

For \(t = 0 \rightarrow T - 1 \)
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

\[\pi_{\theta_0} = \pi_{BC} \]

For \(t = 0 \rightarrow T - 1 \)

Randomly select a previous policy \(\pi_{\theta_{\tau}}, \tau < t \)
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy...

2. We then iterate as follows:

\[\pi_{\theta_0} = \pi_{BC} \]

For \(t = 0 \rightarrow T - 1 \) (# fictitious play to avoid catastrophic forgetting..)

Randomly select a previous policy \(\pi_{\theta_\tau}, \tau < t \)
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy...

2. We then iterate as follows:

\[\pi_{\theta_0} = \pi_{BC} \]

For \(t = 0 \rightarrow T - 1 \) (# fictitious play to avoid catastrophic forgetting..)

Randomly select a previous policy \(\pi_{\theta_\tau}, \tau < t \)

Play \(\pi_{\theta_t} \) against \(\pi_{\theta_\tau} \), get a trajectory \((s_0, a_0, s_1, a'_1, s_2, a_2, s_3, a'_3 \ldots s_H) \)
Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

\[\pi_{\theta_0} = \pi_{BC} \]

For \(t = 0 \rightarrow T - 1 \) (# fictitious play to avoid catastrophic forgetting)

Randomly select a previous policy \(\pi_{\theta_\tau} \), \(\tau < t \)

Play \(\pi_{\theta_t} \) against \(\pi_{\theta_\tau} \), get a trajectory \((s_0, a_0, s_1, a_1', s_2, a_2, s_3, a_3' \ldots s_H)\)

PG update:
\[
\theta_{t+1} = \theta_t + \eta \sum_{h:a_h \sim \pi_{\theta_t}} \nabla_{\theta} \ln \pi_{\theta_t}(a_h | s_h) r(s_H)
\]
How does the performance improved after PG optimization?
How does the performance improved after PG optimization?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

RL policy has win rate 85%
Outline for Today:

1. Setting
2. The imitation learning component
3. The policy Gradient Component
4. The combination of policy, value, and tree search
Final stage of training: Learn a value function $\hat{V}(s) \approx V^*(s)$

Denote the PG policy as $\hat{\pi}$, we will approximate $V^{\hat{\pi}}$ instead:

$$V^{\hat{\pi}}(s) = \mathbb{E} \left[r(s_H) \mid s_0 = s, \hat{\pi}, \hat{\pi} \right]$$
Final stage of training: Learn a value function $\hat{V}(s) \approx V^*$

Denote the PG policy as $\hat{\pi}$, we will approximate $V^{\hat{\pi}}$ instead:

$$V^{\hat{\pi}}(s) = \mathbb{E} \left[r(s_H) \mid s_0 = s, \hat{\pi}, \hat{\pi} \right]$$

i.e., the value of the game when both players play $\hat{\pi}$, starting at s
Final stage of training: Learn a value function $\hat{V}(s) \approx V^*$

Denote the PG policy as π, we will approximate V^{π} instead:

$$V^{\hat{\pi}}(s) = \mathbb{E} \left[r(s_H) \mid s_0 = s, \hat{\pi}, \hat{\pi} \right]$$

i.e., the value of the game when both players play $\hat{\pi}$, starting at s

We use simple least square regression here:

$$\min_{\beta} \sum_{s,z} (V_{\beta}(s) - z)^2$$

\text{parameters of value network from the game}
Final stage of training: Learn a value function \(\hat{V}(s) \approx V^* \)

Denote the PG policy as \(\hat{\pi} \), we will approximate \(V^{\hat{\pi}} \) instead:

\[
V^{\hat{\pi}}(s) = \mathbb{E} \left[r(s_H) \mid s_0 = s, \hat{\pi}, \hat{\pi} \right]
\]

i.e., the value of the game when both players play \(\hat{\pi} \), starting at \(s \)

We use simple least square regression here:

\[
\min_{\beta} \sum_{s,z} (V_{\beta}(s) - z)^2
\]

Where \(s \) is a random state in one game play, and \(z \) is the outcome of the play.
Final stage of training: Learn a value function $\hat{V}(s) \approx V^*$

Denote the PG policy as $\hat{\pi}$, we will approximate $V^{\hat{\pi}}$ instead:

$$V^{\hat{\pi}}(s) = \mathbb{E} \left[r(s_H) \mid s_0 = s, \hat{\pi}, \hat{\pi} \right]$$

i.e., the value of the game when both players play $\hat{\pi}$, starting at s

We use simple least square regression here:

$$\min_{\beta} \sum_{s, z} (V_{\beta}(s) - z)^2$$

Where s is a random state in one game play, and z is the outcome of the play.. (We only keep one sample per game play, i.e., we are really sampling $s \sim d^{\hat{\pi}}$ i.i.d)
Final stage of training: Learn a value function $V(s) \approx V^*$

$\left(\hat{\alpha}, \hat{\beta} \right)$

Self-play 30m games, and get 30m (s, z) pairs
Final stage of training: Learn a value function $V(s) \approx V^*$

Self-play 30m games, and get 30m (s, z) pairs

Optimize least square via SGD again:

$$\beta_{t+1} = \beta_t - \eta \sum_{(s, z) \in B} (V_{\beta_t}(s) - z) \nabla_\beta V_{\beta}(s)$$

Randomly Sampled.
Summary so far

We have learned a policy $\hat{\pi} \ (BC+PG)$ and $\hat{V} \approx V^{\hat{\pi}}$

To make the program even more powerful, we combine them with a Search Tree
Combine with Tree Search (a naive version)
Imagine that we are at state s right now, let’s simulate all possible moves into the future
Combine with Tree Search (a naive version)

Imagine that we are at state s right now, let’s simulate all possible moves into the future
Combine with Tree Search (a naive version)

Imagine that we are at state s right now, let’s simulate all possible moves into the future
Combine with Tree Search (a naive version)

Imagine that we are at state \(s \) right now, let’s simulate all possible moves into the future

\[\hat{V}(s') \]: win rate of red player starting at \(s' \)
Combine with Tree Search (a naive version)

Imagine that we are at state s right now, let’s simulate all possible moves into the future

$$v_L = \min\{\hat{V}(s'), \hat{V}(s'')\}$$

$\hat{V}(s')$: win rate of red player starting at s'
Combine with Tree Search (a naive version)

Imagine that we are at state \(s \) right now, let’s simulate all possible moves into the future

\[
\begin{align*}
v_L &= \min\{\hat{V}(s'), \hat{V}(s'')\} \\
v_R &= \min\{\hat{V}(\tilde{s}'), \hat{V}(\tilde{s}'')\}
\end{align*}
\]

\(v_L = \min\{\hat{V}(s'), \hat{V}(s'')\} \): win rate of red player starting at \(s' \)

\(v_R = \min\{\hat{V}(\tilde{s}'), \hat{V}(\tilde{s}'')\} \): win rate of red player starting at \(\tilde{s}' \)
Combine with Tree Search (a naive version)

Imagine that we are at state s right now, let’s simulate all possible moves into the future

$$v_{root} = \max \{ v_L, v_R \}$$

$$v_L = \min \{ \hat{V}(s'), \hat{V}(s'') \}$$

$$v_R = \min \{ \hat{V}(\tilde{s'}), \hat{V}(\tilde{s}'') \}$$

$\hat{V}(s')$: win rate of red player starting at s'
AlphaGo uses Monte-Carlo Tree Search algorithm:

\[Q + u(P) \max \to Q + u(P) \]

\[Q + u(P) \max \to Q + u(P) \]

\[p_{Q}(s') \]

\[\hat{V}(s') + (1-\lambda) R \]
AlphaGo uses Monte-Carlo Tree Search algorithm:

Combination of value network output and a rollout value from policy
AlphaGo uses Monte-Carlo Tree Search algorithm:

Combination of value network output and a roll out value from policy
AlphaGo uses Monte-Carlo Tree Search algorithm:

i.e., we enumerate and plan for several steps into the future, and bottom up by a predicted outcome

Combination of value network output and a roll out value from policy
Summary of the AlphaGo Program

1. Behavior cloning on 30m expert data samples

2. Classic Policy gradient on self-play games

3. Train a value network \hat{V} to predict PG policy’s outcome (on 30m self-played games)

4. Build search tree and use \hat{V} to significantly reduce the search tree depth