
Case Study: AlphaGo

Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search

Setting: Two player Markov Games:

ℳ = {S, A, f, r, H, s0}

Setting: Two player Markov Games:

ℳ = {S, A, f, r, H, s0}

We have two players and , they take turn to play:π1 π2

s0, a0 ∼ π1(s0), s1 = f(s0, a0), a1 ∼ π2(s1), s2 = f(s1, a1), …, sH

Setting: Two player Markov Games:

ℳ = {S, A, f, r, H, s0}

We have two players and , they take turn to play:π1 π2

s0, a0 ∼ π1(s0), s1 = f(s0, a0), a1 ∼ π2(s1), s2 = f(s1, a1), …, sH

Sparse reward at the termination state: if wins, -1 otherwiser(sH) = 1

Setting: Two player Markov Games:

ℳ = {S, A, f, r, H, s0}

We have two players and , they take turn to play:π1 π2

s0, a0 ∼ π1(s0), s1 = f(s0, a0), a1 ∼ π2(s1), s2 = f(s1, a1), …, sH

Sparse reward at the termination state: if wins, -1 otherwiser(sH) = 1
Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Setting: Two player Markov Games:

Denote optimal value function as:V⋆

V⋆(s) = max
π1

min
π2

#[r(sH) |s0 = s, π1, π2]

Setting: Two player Markov Games:

Denote optimal value function as:V⋆

V⋆(s) = max
π1

min
π2

#[r(sH) |s0 = s, π1, π2]

The optimal game value if we start at , and both player plays optimally…s

Setting: Two player Markov Games:

Denote optimal value function as:V⋆

V⋆(s) = max
π1

min
π2

#[r(sH) |s0 = s, π1, π2]

The optimal game value if we start at , and both player plays optimally…s

It’s a zero-sum game, i.e., they cannot both win or both lose…

Setting: Two player Markov Games:

Denote optimal value function as:V⋆

V⋆(s) = max
π1

min
π2

#[r(sH) |s0 = s, π1, π2]

The optimal game value if we start at , and both player plays optimally…s

It’s a zero-sum game, i.e., they cannot both win or both lose…

Player 2 tries to minimize the expected win rate of player 1,
which is equivalent to maximizes its own win rate

Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e., is known and simple, in
theory we can do Dynamic Programming to solve the max-min formulation..

s′ = f(s, a)

Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e., is known and simple, in
theory we can do Dynamic Programming to solve the max-min formulation..

s′ = f(s, a)

But…

Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e., is known and simple, in
theory we can do Dynamic Programming to solve the max-min formulation..

s′ = f(s, a)

But…

For Go, , and H ≈ 150, |A | ≈ 250 |S | ≈ |A |H

Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

[r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e., is known and simple, in
theory we can do Dynamic Programming to solve the max-min formulation..

s′ = f(s, a)

But…

For Go, , and H ≈ 150, |A | ≈ 250 |S | ≈ |A |H

Thus, we cannot enumerate, we must generalize via function approximation..

Setting: Function Approximation

1. Policy Network ≈ π⋆

π(⋅ |s)

Setting: Function Approximation

1. Policy Network ≈ π⋆

π(⋅ |s)
2. Value Network ≈ V⋆(s′)

V(s′)

Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search

Warm start our policy net via Imitation Learning

Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing

30m pairs from KGS Go Server…(s, a)

Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing

30m pairs from KGS Go Server…(s, a)

2. Form imitation learning loss function, e.g., Negative Log-likelihood

min
π ∑

s,a
− ln π(a |s)

Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing

30m pairs from KGS Go Server…(s, a)

2. Form imitation learning loss function, e.g., Negative Log-likelihood

min
π ∑

s,a
− ln π(a |s)

3. Optimize via Stochastic Gradient Descent:

θt+1 = θt − η ∑
(s,a)∈B

∇θ(−ln πθt
(a |s))/ |B |

Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing

30m pairs from KGS Go Server…(s, a)

2. Form imitation learning loss function, e.g., Negative Log-likelihood

min
π ∑

s,a
− ln π(a |s)

3. Optimize via Stochastic Gradient Descent:

θt+1 = θt − η ∑
(s,a)∈B

∇θ(−ln πθt
(a |s))/ |B | Behavior Cloning!

How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

Win rate: 11%

Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search

Further Improving Policy via PG on Self-playing

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Randomly select a previous policy πθτ
, τ < t

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Randomly select a previous policy πθτ
, τ < t

(# fictitious play to avoid catastrophic forgetting..)

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Randomly select a previous policy πθτ
, τ < t

Play against , get a trajectory πθt
πθτ

(s0, a0, s1, a′ 1, s2, a2, s3, a′ 3 . . . sH)

(# fictitious play to avoid catastrophic forgetting..)

Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1
πθ0

= πBC

Randomly select a previous policy πθτ
, τ < t

Play against , get a trajectory πθt
πθτ

(s0, a0, s1, a′ 1, s2, a2, s3, a′ 3 . . . sH)

PG update: θt+1 = θt + η ∑
h:ah∼πθt

∇θln πθt
(ah |sh)r(sH)

(# fictitious play to avoid catastrophic forgetting..)

How does the performance improved after PG optimization?

How does the performance improved after PG optimization?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

RL policy has win rate 85%

Outline for Today:

1. Setting

2. The imitation learning component

3. The policy Gradient Component

4. The combination of policy, value, and tree search

Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]

Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

We use simple least square regression here:

min
β ∑

s,z
(Vβ(s) − z)2

Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

We use simple least square regression here:

min
β ∑

s,z
(Vβ(s) − z)2

Where is a random state in one game play, and is the outcome of the play..s z

Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate instead:̂π V ̂π

V ̂π(s) = # [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

We use simple least square regression here:

min
β ∑

s,z
(Vβ(s) − z)2

Where is a random state in one game play, and is the outcome of the play..s z
(We only keep one sample per game play, i.e., we are really sampling i.i.d)s ∼ d ̂π

Final stage of training: Learn a value function V(s) ≈ V⋆

Self-play 30m games, and get 30m pairs(s, z)

Final stage of training: Learn a value function V(s) ≈ V⋆

Self-play 30m games, and get 30m pairs(s, z)

βt+1 = βt − η ∑
(s,z)∈B

(Vβ(s) − z)∇βVβ(s)

Optimize least square via SGD again:

Summary so far

We have learned a policy (BC+PG) and ̂π ̂V ≈ V ̂π

To make the program even more powerful, we combine them with a Search Tree

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

s′ s′ ′ s̃′ s̃′ ′

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

̂V(s′) ̂V(s′ ′)
s′ s′ ′ s̃′ s̃′ ′

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

̂V(s′) ̂V(s′ ′)
s′ s′ ′ s̃′ s̃′ ′

: win rate of red
player starting at
̂V(s′)

s′

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

̂V(s′) ̂V(s′ ′)

vL = min{ ̂V(s′), ̂V(s′ ′)}

s′ s′ ′ s̃′ s̃′ ′

: win rate of red
player starting at
̂V(s′)

s′

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

̂V(s′) ̂V(s′ ′)

vL = min{ ̂V(s′), ̂V(s′ ′)} vR = min{ ̂V(s̃′), ̂V(s̃′ ′)}

s′ s′ ′ s̃′ s̃′ ′

: win rate of red
player starting at
̂V(s′)

s′

Combine with Tree Search (a naive version)
Imagine that we are at state right now, let’s simulate all possible moves into the

future
s

̂V(s′) ̂V(s′ ′)

vL = min{ ̂V(s′), ̂V(s′ ′)} vR = min{ ̂V(s̃′), ̂V(s̃′ ′)}

s′ s′ ′ s̃′ s̃′ ′

vroot = max{vL, vR}

: win rate of red
player starting at
̂V(s′)

s′

AlphaGo uses Monte-Carlo Tree Search algorithm:

AlphaGo uses Monte-Carlo Tree Search algorithm:

AlphaGo uses Monte-Carlo Tree Search algorithm:

AlphaGo uses Monte-Carlo Tree Search algorithm:

̂V

AlphaGo uses Monte-Carlo Tree Search algorithm:

̂V

Combination of value network
output and a roll out value

from policy

AlphaGo uses Monte-Carlo Tree Search algorithm:

̂V

Combination of value network
output and a roll out value

from policy

AlphaGo uses Monte-Carlo Tree Search algorithm:

i.e., we enumerate and plan for several steps into the
future, and bottom up by a predicted outcome

̂V

Combination of value network
output and a roll out value

from policy

Summary of the AlphaGo Program

1. Behavior cloning on 30m expert data samples

2. Classic Policy gradient on self-play games

3. Train a value network to predict PG policy’s outcome (on 30m self-played
games)

̂V

4. Build search tree and use to significantly reduce the search tree deptĥV

