
Approaches for  
Nonlinear Control



Recap: The Linear Quadratic Regulator (LQR)

min
π0,…,πH−1

E [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh, uh = πh(xh) x0 ∼ μ0, wh ∼ N(0,σ2I) ,

Here, xh ∈ ℝd, uh ∈ ℝk,

the disturbance  is multi-variate normal, with covariance ;  
 and  are referred to as system (or transition) matrices;  
 and  are psd matrices that parameterize the quadratic costs. 

wt ∈ ℝd σ2I
A ∈ ℝd×d B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k



Recap: Optimal Control on LQR:

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We have shown that  where: V⋆
h (x) = x⊤Phx + ph,

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A,
ph = tr (σ2Ph+1) + ph+1

Along the way, we also have shown that  where: π⋆
h (x) = − K⋆

h x

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=K⋆
h

x

Optimal control has nothing to do with initial distribution, and the noise! 



Today’s Question: 
What about nonlinear and non-quadratic control?



Outline for today:

1. Local Linearization Approach 

(We will implement in HW1 for CartPole simulation)

2. Iterative LQR
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+ 1
2 (x − x⋆)⊤ ∇2

xc(x⋆, u⋆)(x − x⋆) + 1
2 (u − u⋆)⊤ ∇2

uc(x⋆, u⋆)(u − u⋆) + (u − u⋆)⊤ ∇u,xc(x, u)(x − x⋆)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

min
π0,…,πH−1

( [
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v, uh = πh(xh) x0 ∼ μ0,

Re-arrange terms, we get back to the following formulation:

(HW1 problem)
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(x⊤
h Qxh + u⊤
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such that xh+1 = Axh + Buh + v, uh = πh(xh) x0 ∼ μ0

Last step: compute the optimal policy of the above problem, and test on the real system!



Some practical concerns in Local Linearization Approach

Note that  might not even be convex;c(x, u)

So,  may not be positive definite∇2
xc(x, u) & ∇2

uc(x, u)



Some practical concerns in Local Linearization Approach

Note that  might not even be convex;c(x, u)

So,  may not be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

In practice, we force them to be Positive definite:



Some practical concerns in Local Linearization Approach

Note that  might not even be convex;c(x, u)
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In practice, we force them to be Positive definite:

Given a symmetric matrix : 

we compute the eigen-decomposition , 

and we approximate it as  

where 

H ∈ ℝd×d

H =
d

∑
i=1

σiuiu⊤
i

H ≈
d

∑
i=1

1(σi > 0)σiuiu⊤
i + λI,

λ ∈ ℝ+
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Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs  where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Compute gradient using Finite differencing:

∂f [i]
∂x[ j] (x, u) ≈

f(x + δj, u)[i] − f(x − δj, u)[i]
2δ

, where δj = [0,…,0, δ
⏟

j′ th entry
,0,…0]⊤

To compute second derivative, i.e., 
∂2c

∂u[i]∂x[ j] (x, u)

First implement FD procedure for , 

and then perform another FD wrt  on top of the FD procedure for 

∂c/∂u[i]
x[ j] ∂c/∂u[i]



Summary for local linearization approach

1. we perform first order Taylor expansion on , 

and second order Taylor expansion on  around the balancing point 

f(x, u)
c(x, u) (x⋆, u⋆)

2. We force Hessians  to be Positive Definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage Finite difference to approximate Gradients and Hessians

4. The approximation is an LQR from which we compute the optimal policy
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Iterative LQR

Local Linearization approach could work if  is very close to x0 (x⋆)

But when  is far away from , first/second-order Taylor expansion is not accurate anymorex0 x⋆
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⊤
+ [x − x̄h

u − ūh]
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∇2
u,xc(x̄h, ūh), ∇2
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Iterative LQR

After linearization and qudartization around H waypoints , re-arrange terms, we get:(x̄h, ūh), ∀h

min
π0,…,πH−1

E [
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh + vh uh = πh(xh) x0 ∼ μ0;

Consider iteration  we have computed :t, πt
h, ∀h
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Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control  and the latest computed controls ūt
0, …, ūt

H−1, ū0, …, ūH−1

We want to find  such that  has the smallest cost, α ∈ [0,1] ūt+1
h := αūt

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūt+1
h ),

s.t., xh+1 = f(xh, ūt+1
h ), ūt+1

h = αūt
h + (1 − α)ūh, x0 = x̄0



Example: 

2-d car navigation


Cost function is designed such that it gets to the goal without colliding w/ obstacles (red)



Summary:

Local Linearization:  
Approximate an LQR at the balance (goal) position ;


and then solve the approximated LQR;
(x⋆, u⋆)

Iterative LQR 
Iterate between (1) forming an LQR around the current nominal trajectory, 

(2)compute a new nominal trajectory using the optimal policy of the LQR;



Starting from next week:

We will move on to data-driven approach for 

computing approximately optimal policy

1. Model-based RL: certainty equivalence

2. Model-free RL: Fitted Value Iteration


