Approaches for
Nonlinear Control

Recap: The Linear Quadratic Regulator (LQR)

TTys - - s T

H-1
min E | x,;Oxy + Z (x, Ox,, + u, Ruy,)

h=0
suchthat x,,, =Ax, +Bu, +w,, u, = m,(x,) Xg~ g w;, ~ N(0,6°I),

Here, x;, € RY, U, € R,

the disturbance w, & R4 is multi-variate normal, with covariance 021;
A € R and B € R are referred to as system (or transition) matrices:

0 R4 gnd R € R are psd matrices that parameterize the quadratic costs.

Recap: Optimal Control on LQR:

V;I((x) = x (Ox, define Py=0,py =0,

We have shown that V*(x) = x ' P,x + pj,, where:
P,=Q+A'P, ,A—A'P, .BR+B'P,, B"'B'P, A,
Py =1 (6°Ppy1) + Ppyi

Along the way, we also have shown that 7;"(x) = — K*x where:

ﬂ}‘lk(.X) —_— (R —+ BTPh_l_lB)_lBTPh_l_le

._v *
=K}

Optimal control has nothing to do with initial distribution, and the noise!

Today’s Question:
What about nonlinear and non-quadratic control?

Boston Dynamics

Outline for today:

1. Local Linearization Approach
(We will implement in HW1 for CartPole simulation)

2. lterative LQR

Setting for Local Linearization Approach:

—
| F 5

PP PTET I rTir 77l rrrrrrrrirlirirys

Goal: stabilizing around the
goal (x =x™,u = u™)

c(xp, u,) = d(u, u™) + d(x,, x™)

minimize

such that x, ., = f(x,, w,), u, = 7(x;,), x5 ~ py

T

_H-1

2 c(xy, uh):

 h=0

Assumptions:

Setting for Local Linearization Approach:

—
| F 5

PP PTPr TP T i7 i r7rirrrrrrrissry

Goal: stabilizing around the
goal (x =x™,u = u™)

c(xp,) = d(u, u™) + d(x,, x™)

minimize

such that x| = f(x,, w,), w, = 7(x;,), xo ~ Ky

T

_H-1

2 c(xy, uh):

 h=0

Assumptions:

1. We have black-box access to f & c:

Setting for Local Linearization Approach:

—
| F 5

PP PTET I rTir 77l rrrrrrrrirlirirys

Goal: stabilizing around the
goal (x = x*,u = u™)

c(xp, u,) = d(u, u™) + d(x,, x™)

minimize

such that x, ., = f(x,, w,), u, = 7(x;,), x5 ~ py

T

_H-1

2 c(xy, uh):

 h=0

Assumptions:

1. We have black-box access to f & c:

l.e., unknown analytical form,
but can reset to any (x, u),
the black boxes outputs X', c,
where x" = f(x, u), c = c(x, u)

Setting for Local Linearization Approach:

.—*
M | F 5

PP PTET I rTir 77l rrrrrrrrirlirirys

Goal: stabilizing around the
goal (x = x™,u = u*)
c(xp, u,) = d(u, u™) + d(x,, x™)
_H-1]
minimize E Z c(xy,, uy)
A~ _
such that x, ., = f(x,, w,), u, = 7(x;,), x5 ~ py

Assumptions:

1. We have black-box access to f & c:

l.e., unknown analytical form,
but can reset to any (x, u),
the black boxes outputs X', c,
where x" = f(x, u), c = c(x, u)

2. f is differentiable
and c i1s double differentiable

Setting for Local Linearization Approach:

.—*
M | F 5

PP PTET I rTir 77l rrrrrrrrirlirirys

Goal: stabilizing around the
goal (x = x™,u = u*)
C(xha uh) — d(u, l/t*) + d(.xh, x*)
_H-1]
minimize E Z c(xy,, uy)
S _
such that x, ., = f(x,, w,), u, = 7(x;,), x5 ~ py

Assumptions:

1. We have black-box access to f & c:

l.e., unknown analytical form,
but can reset to any (x, u),
the black boxes outputs X', c,
where x" = f(x, u), c = c(x, u)

2. f is differentiable
and c i1s double differentiable

V. .fx,u),V, f(x,u), V.clx,u), V, clx, n),

V%c(x, u), Vﬁc(x, u), Viuc(x, u)

Local Linearization Approach

Assume that all possible initial states x,, are close to (x*, u™)

Local Linearization Approach

Assume that all possible initial states x,, are close to (x*, u™)

We can approximate f(x, u) locally with First-order Taylor Expansion:

fl,u) = fx*,u™)+ V_f(x™, u™) (x — x*) +V, fx™, u™)(u—u™)

Local Linearization Approach

Assume that all possible initial states x,, are close to (x*, u™)

We can approximate f(x, u) locally with First-order Taylor Expansion:

fl,u) = fx*,u™)+ V_f(x™, u™) (x — x*) +V, fx™, u™)(u—u™)

where:
V. flx,u) € RV, fx, wli,j] = af[l.] (x,u), V,fx,u) € R™V, flx, u)i,j] = af[l.] (x, u)
ox|[j] dul j]

Local Linearization Approach

We can approximate c(x, u) locally at (x*, u™) with second-order Taylor Expansion:

Local Linearization Approach

We can approximate c(x, u) locally at (x*, u™) with second-order Taylor Expansion:

c(x,u) = c(x*,u*) + V. cx*,u*)' (x = x*)+ V c(x*, u*) (u — u*)

1 1
+5(x —x*) T Vie@x™, u™)(x — x*) + E(M —u*) Vie*, u®)w —u*) + (w—u*)' Vi, clx, u)(x — x*)

Local Linearization Approach

We can approximate c(x, u) locally at (x*, u™) with second-order Taylor Expansion:

c(x,u) = c(x*,u*) + V. cx*,u*)' (x = x*)+ V c(x*, u*) (u — u*)

1 1
+5(x —x*) T Vie@x™, u™)(x — x*) + E(Lt —u*) Vie*, u®)w —u*) + (w—u*)' Vi, clx, u)(x — x*)

p , ac
V.cx,u) € R% V. clx,u)li] = (x, 1),

ox|i]
Vae(x,u) € R4 Ve(x,u)i,jl = Oc (x, 1),
ox[i]ox]]
Vi clx,u) € R, Vi el)i, jl = 0 (x, u)

duli]ox[/]

Local Linearization Approach

c(x,u) = c(x*,u*) + V. cx*,u®) (x—x*)+ V, cx*, u*) (u — u*)

1 1
+5(x —x*) V2™, u™)(x — x*) + E(M —u*)" VieO*, u)w —u*) + (u—u*)"'V, clx, u)(x — x*)

fl,u) ~ f(x*,u™)+ V. _fix*, u™) (x — x*) + V™, u™)(u—u™)

Local Linearization Approach

c(x,u) = c(x*,u*) + V. cx*,u®) (x—x*)+ V, cx*, u*) (u — u*)

1
+5(x —x*)"Vie™*, u™)(x — x*) 5

(—u*)' Vie*,u*)u—u*)+ u—u*)'V, c(x,u)(x — x*)

fl,u) ~ f(x*,u™)+ V. _fix*, u™) (x — x*) + V™, u™)(u—u™)

Re-arrange terms, we get back to the following formulation:

H-1
min - Z(thQxh+uhTRuh+uhTMxh+thq+uhTr+c)
h=0

s« s M1

(HW1 problem)

Summary So far:

For tasks such as balancing on goal state (x™, u™):
we can perform first order Taylor expansion on f(x, 1),
and second order Taylor expansion on c¢(x, 1) around the balancing point (x*, u™)

Summary So far:

For tasks such as balancing on goal state (x™, u™):
we can perform first order Taylor expansion on f(x, u),
and second order Taylor expansion on c(x, #) around the balancing point (x*, u™)

H-1
min - Z(thQxh+uhTRuh+uhTMxh+thq+uhTr+c)
T0ys - s T 1 =0

SUCh that xh_|_1 — Axh + Buh + V, U, = ﬂh(xh) Xo ~ Ho

Summary So far:

For tasks such as balancing on goal state (x™, u™):
we can perform first order Taylor expansion on f(x, u),
and second order Taylor expansion on c(x, #) around the balancing point (x*, u™)

H-1
min - Z(thQxh+uhTRuh+uhTMxh+thq+uhTr+c)
Ty« + 5 7Try_1 h—0

SUCh that .xh_l_l — Axh + Buh + V, U, = ﬂh(xh) Xo ~ Ho

Last step: compute the optimal policy of the above problem, and test on the real system!

Some practical concerns in Local Linearization Approach

Note that c(x, u) might not even be convex;

So, V)%c(x, u) & Vftc(x, 1) may not be positive definite

Some practical concerns in Local Linearization Approach

Note that c(x, u) might not even be convex;

So, V%C(x, u) & Vﬁc(x, 1) may not be positive definite

In practice, we force them to be Positive definite:

Some practical concerns in Local Linearization Approach

Note that c(x, u) might not even be convex;

So, V%C(x, u) & Vftc(x, 1) may not be positive definite

In practice, we force them to be Positive definite:

Given a symmetric matrix H € R%¢:

we compute the eigen-decomposition H = Z Gulul ,
=1

and we approximate it as H ~ Z 1(c; > O)ou, u + Al

where A € R™

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, 1), the black boxes outputs x’, ¢, where
x'=f(x,u),c = c(x, u)

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, 1), the black boxes outputs x’, ¢, where
x'=f(x,u),c = c(x, u)

Compute gradient using Finite differencing:

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, 1), the black boxes outputs x’, ¢, where
x'=f(x,u),c = c(x, u)

Compute gradient using Finite differencing:

of [i] Jx + 0js w)li] — f(x — 0js u)li]
—(Xx,U) &

.where 6.=[0,....0, & .0,...01"
ox| j] 20 /

——

jth entry

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, 1), the black boxes outputs x’, ¢, where
x'=f(x,u),c = c(x, u)

Compute gradient using Finite differencing:

/ [l,] (X, u) ~ ! 4 ,where 5.=1[0,...,0, & ,0,...0]"
ox| j] 20 / ~
jth entry
P
To compute second derivative, i.e., (x, u)

ouli]ox| /]

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, 1), the black boxes outputs x’, ¢, where
x'=f(x,u),c = c(x, u)

Compute gradient using Finite differencing:

' x+ o0, u)li] —f(x— 0o, u)li]
af[’,] (X, u) ~ Joct o wlil =l = 00 ,where 5.=1[0,...,0, & ,0,...0]"
ox| j] 20 / ~
jth entry
L 0°c
To compute second derivative, i.e., . —(Xx, U)
ouli]ox|]

First implement FD procedure for dc/ou|i],
and then perform another FD wrt x| j| on top of the FD procedure for dc/ou|i]

Summary for local linearization approach

1. we perform first order Taylor expansion on f(x, u),
and second order Taylor expansion on c¢(x, 1) around the balancing point (x*, u™)

2. We force Hessians V)%C(X, u) & Vftc(x,) to be Positive Definite

3. Leverage Finite difference to approximate Gradients and Hessians

4. The approximation is an LQR from which we compute the optimal policy

Outline for today:

1. Local Linearization Approach
(We will implement it in HW1 for CartPole simulation)

2. lterative LQR

Iterative LQR

Local Linearization approach could work if x; is very close to (x™)

But when X, is far away from x*, first/second-order Taylor expansion is not accurate anymore

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

TEUNT 0 0
Initialize u,, ..., uy; 4,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

Initialize uy, ..., uy_;,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Fort =0...,

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

Initialize uy, ..., uy_;,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Fort =0...,

Linearize f(x, u) at (X, u,), Vh: f(x,u) = f(x,,u,) + V, f(X,, i) (x —X,) + V, f(X,, u,)(u — X))

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

Initialize uy, ..., uy_;,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Fort =0...,

Linearize f(x, u) at (X, u,), Vh: f(x,u) = f(x,,u,) + V, f(X,, i) (x —X,) + V, f(X,, u,)(u — X))

Quadratize c(x, u) at (X, i), Vh:

=TT - = 2 v =\l e =17 e =17 N
(x. 1) 1 |x—x, Vie(Xy, i), ViuCGp) | [x = X, X—Xh] [ch(xh, i)
c(x,u) = — _

2 [u—wp] | Vi xRy, Ve, i)

+ c(X), i)

U — Uy u— u, vV, c(X,, i)

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

Initialize uy, ..., uy_;,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Fort =0...,

Linearize f(x, u) at (X, u,), Vh: f(x,u) = f(x,,u,) + V, f(X,, i) (x —X,) + V, f(X,, u,)(u — X))

Quadratize c(x, u) at (X, i), Vh:

=TT - = 2 v =\l e =17 e =17 N
(x. 1) 1 |x—x, Vie(Xy, i), ViuCGp) | [x = X, X—Xh] [ch(xh, i)
c(x,u) = — _

2 [u—wp] | Vi xRy, Ve, i)

+ c(X), i)

u— U, u— u, vV, c(X,, i)

Formulate time-dependent LQR and compute its optimal control 7y, ..., 7y_4

Iterative LQR

Recall Xy ~ py; denote £, [xp] = X

Initialize uy, ..., uy_;,

Generate nominal trajectory: X, it;, X;,. | = (X, Up) ..., Xp_1, Up_

Fort =0...,

Linearize f(x, u) at (X, u,), Vh: f(x,u) = f(x,,u,) + V, f(X,, i) (x —X,) + V, f(X,, u,)(u — X))

Quadratize c(x, u) at (X, i), Vh:

1 [x=x,]1" | Vi@, i), Vi.ec@E,a)| [x-x1" [x=x]"[V.c&x,a)]
c(x,u) ~ — + c(X), i)

ey 2 (v 2 (% T
2 (U —u, Vu,xc(xh, u,), V;,c(x,,up,)

u— U, u— u, vV, c(X,, i)

Formulate time-dependent LQR and compute its optimal control 7y, ..., 7y_4

Set new nominal trajectory: ity = m(Xy), i), = m,(X;), where X, = f(X,, it},)

Iterative LQR

Consider iteration ¢, we have computed 7;, Vh:

Iterative LQR

Consider iteration 7, we have computed 71']2, Vh:

After linearization and qudartization around H waypoints (x,, it), V h, re-arrange terms, we get:

H-1
min E Z (x, Qpx, + uy Ryuy, +) Myx,, + x, q, + u, v, + ¢;)
h=0

Ty - - s T

SUCh that Xh+1 — Ah.xh + Bhuh + Vh l/lh — ﬂh(xh) x() ~ ﬂOa

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control L'tf), ens ﬂ;{_l, and the latest computed controls u,,, ..., Uy _;

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control L'tf), ens ﬂ;{_l, and the latest computed controls u,,, ..., Uy _;

We want to find a € [0,1] such that ﬁfjl = ait, + (1 — a)ii;, has the smallest cost,

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control L'tf), ens ﬁ%_l, and the latest computed controls u,,, ..., Uy _;

We want to find a € [0,1] such that ut“ = ait;, + (1 — a)ii;, has the smallest cost,

H-1

min Zc(x ut“)
ae[0,]1] =0
—t+1) ~1+1

s.t., x,. 1 = f(x,, U = ait;, + (1 — a)ity, xy = X,

Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding w/ obstacles (red)

Summary:

Local Linearization:

Approximate an LQR at the balance (goal) position (x*, u*);
and then solve the approximated LQR,;

Iterative LQR
lterate between (1) forming an LQR around the current nominal trajectory,
(2)compute a new nominal trajectory using the optimal policy of the LQR,;

Starting from next week:

We will move on to data-driven approach for
computing approximately optimal policy

1. Model-based RL.: certainty equivalence

2. Model-free RL: Fitted Value lteration

