
Approaches for
Nonlinear Control

Recap: The Linear Quadratic Regulator (LQR)

min
π0,…,πH−1

E [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh, uh = πh(xh) x0 ∼ μ0, wh ∼ N(0,σ2I) ,

Here, xh ∈ ℝd, uh ∈ ℝk,

the disturbance is multi-variate normal, with covariance ;  
 and are referred to as system (or transition) matrices;  
 and are psd matrices that parameterize the quadratic costs.

wt ∈ ℝd σ2I
A ∈ ℝd×d B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k

Recap: Optimal Control on LQR:

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We have shown that where: V⋆
h (x) = x⊤Phx + ph,

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A,
ph = tr (σ2Ph+1) + ph+1

Along the way, we also have shown that where: π⋆
h (x) = − K⋆

h x

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=K⋆
h

x

Optimal control has nothing to do with initial distribution, and the noise!

Today’s Question:
What about nonlinear and non-quadratic control?

Outline for today:

1. Local Linearization Approach

(We will implement in HW1 for CartPole simulation)

2. Iterative LQR

Setting for Local Linearization Approach:

minimize (π[
H−1

∑
h=0

c(xh, uh)]
such that xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

c(xh, uh) = d(u, u⋆) + d(xh, x⋆)

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

Setting for Local Linearization Approach:

minimize (π[
H−1

∑
h=0

c(xh, uh)]
such that xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

c(xh, uh) = d(u, u⋆) + d(xh, x⋆)

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c

Setting for Local Linearization Approach:

minimize (π[
H−1

∑
h=0

c(xh, uh)]
such that xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

c(xh, uh) = d(u, u⋆) + d(xh, x⋆)

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c
i.e., unknown analytical form,

but can reset to any ,

the black boxes outputs

where

(x, u)
x′ , c,

x′ = f(x, u), c = c(x, u)

Setting for Local Linearization Approach:

minimize (π[
H−1

∑
h=0

c(xh, uh)]
such that xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

c(xh, uh) = d(u, u⋆) + d(xh, x⋆)

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c
i.e., unknown analytical form,

but can reset to any ,

the black boxes outputs

where

(x, u)
x′ , c,

x′ = f(x, u), c = c(x, u)

2. is differentiable
and is double differentiable

f
c

Setting for Local Linearization Approach:

minimize (π[
H−1

∑
h=0

c(xh, uh)]
such that xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

c(xh, uh) = d(u, u⋆) + d(xh, x⋆)

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c
i.e., unknown analytical form,

but can reset to any ,

the black boxes outputs

where

(x, u)
x′ , c,

x′ = f(x, u), c = c(x, u)

2. is differentiable
and is double differentiable

f
c

∇x f(x, u), ∇u f(x, u), ∇xc(x, u), ∇uc(x, u),
∇2

xc(x, u), ∇2
uc(x, u), ∇2

x,uc(x, u)

Local Linearization Approach

Assume that all possible initial states are close to x0 (x⋆, u⋆)

Local Linearization Approach

Assume that all possible initial states are close to x0 (x⋆, u⋆)

We can approximate locally with First-order Taylor Expansion:f(x, u)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

Local Linearization Approach

Assume that all possible initial states are close to x0 (x⋆, u⋆)

We can approximate locally with First-order Taylor Expansion:f(x, u)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

where:

∇x f(x, u) ∈ ℝd×d, ∇x f(x, u)[i, j] = ∂f[i]
∂x[j] (x, u), ∇u f(x, u) ∈ ℝd×k, ∇u f(x, u)[i, j] = ∂f[i]

∂u[j] (x, u)

Local Linearization Approach

We can approximate locally at with second-order Taylor Expansion:c(x, u) (x⋆, u⋆)

Local Linearization Approach

We can approximate locally at with second-order Taylor Expansion:c(x, u) (x⋆, u⋆)

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+ 1
2 (x − x⋆)⊤ ∇2

xc(x⋆, u⋆)(x − x⋆) + 1
2 (u − u⋆)⊤ ∇2

uc(x⋆, u⋆)(u − u⋆) + (u − u⋆)⊤ ∇2
u,xc(x, u)(x − x⋆)

Local Linearization Approach

We can approximate locally at with second-order Taylor Expansion:c(x, u) (x⋆, u⋆)

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+ 1
2 (x − x⋆)⊤ ∇2

xc(x⋆, u⋆)(x − x⋆) + 1
2 (u − u⋆)⊤ ∇2

uc(x⋆, u⋆)(u − u⋆) + (u − u⋆)⊤ ∇2
u,xc(x, u)(x − x⋆)

∇xc(x, u) ∈ ℝd, ∇xc(x, u)[i] = ∂c
∂x[i] (x, u),

∇2
xc(x, u) ∈ ℝd×d, ∇2

xc(x, u)[i, j] = ∂2c
∂x[i]∂x[j] (x, u),

∇2
u,xc(x, u) ∈ ℝk×x, ∇2

u,xc(x, u)[i, j] = ∂2c
∂u[i]∂x[j] (x, u)

Local Linearization Approach

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+ 1
2 (x − x⋆)⊤ ∇2

xc(x⋆, u⋆)(x − x⋆) + 1
2 (u − u⋆)⊤ ∇2

uc(x⋆, u⋆)(u − u⋆) + (u − u⋆)⊤ ∇u,xc(x, u)(x − x⋆)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

Local Linearization Approach

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+ 1
2 (x − x⋆)⊤ ∇2

xc(x⋆, u⋆)(x − x⋆) + 1
2 (u − u⋆)⊤ ∇2

uc(x⋆, u⋆)(u − u⋆) + (u − u⋆)⊤ ∇u,xc(x, u)(x − x⋆)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

min
π0,…,πH−1

([
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v, uh = πh(xh) x0 ∼ μ0,

Re-arrange terms, we get back to the following formulation:

(HW1 problem)

Summary So far:

For tasks such as balancing on goal state :

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

Summary So far:

For tasks such as balancing on goal state :

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

min
π0,…,πH−1

([
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v, uh = πh(xh) x0 ∼ μ0

Summary So far:

For tasks such as balancing on goal state :

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

min
π0,…,πH−1

([
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v, uh = πh(xh) x0 ∼ μ0

Last step: compute the optimal policy of the above problem, and test on the real system!

Some practical concerns in Local Linearization Approach

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

Some practical concerns in Local Linearization Approach

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

In practice, we force them to be Positive definite:

Some practical concerns in Local Linearization Approach

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

In practice, we force them to be Positive definite:

Given a symmetric matrix :

we compute the eigen-decomposition ,

and we approximate it as

where

H ∈ ℝd×d

H =
d

∑
i=1

σiuiu⊤
i

H ≈
d

∑
i=1

1(σi > 0)σiuiu⊤
i + λI,

λ ∈ ℝ+

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Compute gradient using Finite differencing:

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Compute gradient using Finite differencing:

∂f [i]
∂x[j] (x, u) ≈

f(x + δj, u)[i] − f(x − δj, u)[i]
2δ

, where δj = [0,…,0, δ
⏟

j′ th entry
,0,…0]⊤

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Compute gradient using Finite differencing:

∂f [i]
∂x[j] (x, u) ≈

f(x + δj, u)[i] − f(x − δj, u)[i]
2δ

, where δj = [0,…,0, δ
⏟

j′ th entry
,0,…0]⊤

To compute second derivative, i.e.,
∂2c

∂u[i]∂x[j] (x, u)

Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs where (x, u) x′ , c,

x′ = f(x, u), c = c(x, u)

Compute gradient using Finite differencing:

∂f [i]
∂x[j] (x, u) ≈

f(x + δj, u)[i] − f(x − δj, u)[i]
2δ

, where δj = [0,…,0, δ
⏟

j′ th entry
,0,…0]⊤

To compute second derivative, i.e.,
∂2c

∂u[i]∂x[j] (x, u)

First implement FD procedure for ,

and then perform another FD wrt on top of the FD procedure for

∂c/∂u[i]
x[j] ∂c/∂u[i]

Summary for local linearization approach

1. we perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

f(x, u)
c(x, u) (x⋆, u⋆)

2. We force Hessians to be Positive Definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage Finite difference to approximate Gradients and Hessians

4. The approximation is an LQR from which we compute the optimal policy

Outline for today:

1. Local Linearization Approach

(We will implement it in HW1 for CartPole simulation)

2. Iterative LQR

Iterative LQR

Local Linearization approach could work if is very close to x0 (x⋆)

But when is far away from , first/second-order Taylor expansion is not accurate anymorex0 x⋆

Iterative LQR

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

For t = 0…,

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

For t = 0…,

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Linearize at : f(x, u) (x̄h, ūh), ∀h f(x, u) ≈ f(x̄h, ūh) + ∇x f(x̄h, ūh)(x − x̄h) + ∇u f(x̄h, ūh)(u − x̄h)

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

For t = 0…,

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Linearize at : f(x, u) (x̄h, ūh), ∀h f(x, u) ≈ f(x̄h, ūh) + ∇x f(x̄h, ūh)(x − x̄h) + ∇u f(x̄h, ūh)(u − x̄h)

Quadratize at : c(x, u) (x̄h, ūh), ∀h
c(x, u) ≈ 1

2 [x − x̄h
u − ūh]

⊤

[
∇2

xc(x̄h, ūh), ∇2
x,uc(x̄h, ūh)

∇2
u,xc(x̄h, ūh), ∇2

uc(x̄h, ūh)] [x − x̄h
u − ūh]

⊤
+ [x − x̄h

u − ūh]
⊤

[∇xc(x̄h, ūh)
∇uc(x̄h, ūh)] + c(x̄h, ūh)

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

For t = 0…,

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Linearize at : f(x, u) (x̄h, ūh), ∀h f(x, u) ≈ f(x̄h, ūh) + ∇x f(x̄h, ūh)(x − x̄h) + ∇u f(x̄h, ūh)(u − x̄h)

Quadratize at : c(x, u) (x̄h, ūh), ∀h
c(x, u) ≈ 1

2 [x − x̄h
u − ūh]

⊤

[
∇2

xc(x̄h, ūh), ∇2
x,uc(x̄h, ūh)

∇2
u,xc(x̄h, ūh), ∇2

uc(x̄h, ūh)] [x − x̄h
u − ūh]

⊤
+ [x − x̄h

u − ūh]
⊤

[∇xc(x̄h, ūh)
∇uc(x̄h, ūh)] + c(x̄h, ūh)

Formulate time-dependent LQR and compute its optimal control π0, …, πH−1

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

For t = 0…,

Initialize u0
0 , …, u0

H−1,
Generate nominal trajectory: x̄0, ūh, x̄h+1 = f(x̄h, ūh)…, x̄H−1, ūH−1

Linearize at : f(x, u) (x̄h, ūh), ∀h f(x, u) ≈ f(x̄h, ūh) + ∇x f(x̄h, ūh)(x − x̄h) + ∇u f(x̄h, ūh)(u − x̄h)

Quadratize at : c(x, u) (x̄h, ūh), ∀h
c(x, u) ≈ 1

2 [x − x̄h
u − ūh]

⊤

[
∇2

xc(x̄h, ūh), ∇2
x,uc(x̄h, ūh)

∇2
u,xc(x̄h, ūh), ∇2

uc(x̄h, ūh)] [x − x̄h
u − ūh]

⊤
+ [x − x̄h

u − ūh]
⊤

[∇xc(x̄h, ūh)
∇uc(x̄h, ūh)] + c(x̄h, ūh)

Formulate time-dependent LQR and compute its optimal control π0, …, πH−1

Set new nominal trajectory: ū0 = π0(x̄0), ūh = πh(x̄h), where x̄h+1 = f(x̄h, ūh)

Recall ; denote x0 ∼ μ0 (x0∼μ0
[x0] = x̄0

Iterative LQR

Consider iteration we have computed :t, πt
h, ∀h

Iterative LQR

After linearization and qudartization around H waypoints , re-arrange terms, we get:(x̄h, ūh), ∀h

min
π0,…,πH−1

E [
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh + vh uh = πh(xh) x0 ∼ μ0;

Consider iteration we have computed :t, πt
h, ∀h

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūt
0, …, ūt

H−1, ū0, …, ūH−1

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūt
0, …, ūt

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūt+1
h := αūt

h + (1 − α)ūh

Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūt
0, …, ūt

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūt+1
h := αūt

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūt+1
h),

s.t., xh+1 = f(xh, ūt+1
h), ūt+1

h = αūt
h + (1 − α)ūh, x0 = x̄0

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding w/ obstacles (red)

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position ;

and then solve the approximated LQR;
(x⋆, u⋆)

Iterative LQR
Iterate between (1) forming an LQR around the current nominal trajectory,

(2)compute a new nominal trajectory using the optimal policy of the LQR;

Starting from next week:

We will move on to data-driven approach for

computing approximately optimal policy

1. Model-based RL: certainty equivalence

2. Model-free RL: Fitted Value Iteration

