Approaches for
Nonlinear Control



Recap: The Linear Quadratic Regulator (LQR)
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the disturbance w, € R4 is multi-variate nor [, with covariance 6°1;
A € R4 and B € R are referred to as system (or transition) matrices;
0 € R and R € R are psd matrices that parameterize the quadratic costs.




Recap: Optimal Control on LQR:  cxw«/-tp
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Optimal control has nothing to do with initial distribution, and the noise!



Today’s Question:
What about nonlinear and non-quadratic control?
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Outline for today:

1. Local Linearization Approach
(We will implement in HW1 for CartPole simulation)

2. lterative LQR



Setting for Local Linearization Approach:

Assumptions:
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Goal: stabilizing around the
goal (x = x*,u =u*)
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Setting for Local Linearization Approach:

Assumptions:

1. We have black-box access to f & c:
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Goal: stabilizing around the
goal (x = x*,u =u*)
c(x, uy) = d(u, u™) + d(x,, x*)
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Assumptions:

1. We have black-box access to f & c:

i.e., unknown analytical form,
but can reset to any (x, u),
the black boxes outputs x’, c,
where x" = f(x, u), c = c(x, u)
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Setting for Local Linearization Approach:

Assumptions:

1. We have black-box access to f & c:

i.e., unknown analytical form,
rrrrr T but can reset to any (x, u),
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Setting for Local Linearization Approach:
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Local Linearization Approach

Assume that all possible initial states X, are close to (x*, u™)
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Local Linearization Approach

Assume that all possible initial states X, are close to (x*, u™)

We can approximate f(x, u) locally with First-order Taylor Expansion:
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Assume that all possible initial states X, are close to (x*, u™)
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Local Linearization Approach

We can approximate c(x, ) locally at (x*, u*) with second-order Taylor Expansion:



Local Linearization Approach
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Local Linearization Approach

c(x,u) & c(x*, u*) + V. c*, u*)T(x — x*) + V,c(x*, u®) (u — u*)
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Local Linearization Approach
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Summary So far:

For tasks such as balancing on goal state (x*, u™):
we can perform first order Taylor expansion on f(x, u),
and second order Taylor expansion on c(x, ) around the balancing point (x*, u™)
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For tasks such as balancing on goal state (x*, u™):
we can perform first order Taylor expansion on f(x, u),
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Summary So far:
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For tasks such as pbalancing on goatstate (x*, u™):
der Taylor expansion on f(x, u),

and second order Taylor expansion’on c(x, ) around the balancing point (x*, u™*)
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SUCh that Xh_+_1 == Axh + BLt,l + v, I/lh — JZ'h(Xh) X() ~ ,Ll()

%ast step: compute the optimal policy of the above problem, and test on the real system!
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Some practical concerns in Local Linearization Approach
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Note that c(x, u) might not even be convex;

So, V2c(x, u) & V2c(x, ) may not be positive definite M
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In practice, we force them to be Positive definite:



Some practical concerns in Local Linearization Approach

Note that c(x, u) might not even be convex;

So, ijcc(x, u) & Vﬁc(x, 1) may not be positive definite

In practice, we force them to be Positive definite: -
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and we approximate it as H ~ Z 1(0; > O)ouu, + I,
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where A € R



Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes outputs x’, ¢, where
x' = f(x,u),c = c(x, u)
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Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes outputs x’, ¢, where
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Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes outputs x’, ¢, where

x' = f(x,u),c = c(x, u)
%Q’ ( ¥~ "“3

9 X/c\, WL 9 /&X&Q Compute gradient using Finite differencing:

+ 8, Wi — G — 5, wi
CiUrs u)’“@ C7 M here 5 = [0,....0, 5 .0..0"

o[jl " 26 Ki
| \ jth entry
) Z %V\ﬂ oh ‘EQ -Y/\A} w
\Q\WJL/VM‘ %




Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes outputs x’, ¢, where
x' = f(x,u),c = c(x, u)

Compute gradient using Finite differencing:
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jth entry
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To compute second derivative, i.e., ————(x, u)
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Some practical concerns in Local Linearization Approach

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes outputs x’, ¢, where
x' = f(x,u),c = c(x, u)

Compute gradient using Finite differencing:

ofli] S+ g wli] = fix = &, wli]

—(x, 1) .where §,=[0,....0, § .0,..0]"
ox[j] 20 =~
jth entry
o oc
To compute second derivative, i.e., ———(x, u)
ouli]ox|[j]

First implement FD procedure for oc/ou|]
and then perform another FD wrt x[ j] on top of the FD procedure for dc/ouli]



Summary for local linearization approach

1. we perform first order Taylor expansion on f(x, u),
and second order Taylor expansion on c¢(x, #) around the balancing point (x*, u™)

2. We force Hessians V%c(x, u) & Vic(x, u) to be Positive Definite

3. Leverage Finite difference to approximate Gradients and Hessians

4. The approximation is an LQR from which we compute the optimal policy



Outline for today:

1. Local Linearization Approach
(We will implement it in HW1 for CartPole simulation)

2. Iterative LQR



Iterative LQR

Local Linearization approach could work if x;, is very close to (x™)

But when X, is far away from x*, first/second-order Taylor expansion is not accurate anymore



Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X
Initialize ul, ..., u%,_,, Poe N (%, 2 )

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_
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Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X

Initialize ug, ees ”191—1’

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_

Fort=0...,



Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X
Initialize ug, cens ”191—1’

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_

Fort=0...,

Linearize f(x, u) at (X, it,), Vh: fix,u) = f(x,, i) + V f(X,, 4,)(x — X)) + V, (%, i) (u — X
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Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X

Initialize ug, ees ”191—1’

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_

Fort=0...,
Linearize f(x, u) at (X, it,), Vh: fix,u) = f(x,, i) + V f(X,, 4,)(x — X)) + V, (%, i) (u — X

Quadratize c(x, u) at (X, it;,), Vh:
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Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X

Initialize ug, ees ”191—1’

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_

Fort=0...,
Linearize f(x, u) at (X, it,), Vh: fix,u) = f(x,, i) + V f(X,, 4,)(x — X)) + V, (%, i) (u — X

Quadratize c(x, u) at (X, it;,), Vh:
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Formulate time-dependent LQR and compute its optimal control x, ..., 7y_;



Iterative LQR
Recall X ~ piy; denote £, _, [Xp] = X

Initialize ug, ees ”191—1’

Generate nominal trajectory: X, it;,, X, 1 = f(X}, 4p,). .., Xpy_1, Up_
Fort=0...,

Linearize f(x, u) at (X, it,), Vh: fix,u) = f(x,, i) + V f(X,, 4,)(x — X)) + V, (%, i) (u — X

Quadratize c(x, u) at (X, it;,), Vh:
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Formulate time-dependent LQR and compute its optimal control x, ..., 7y_;

—

Set new nominal trajectory: ity = my(X,), it;, = m,(X;,), where x| = f(X;, it},)
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Iterative LQR

Consider iteration ¢, we have computed JZ';l, Vh:
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Iterative LQR

Consider iteration #, we have computed JZ';l, Vh:

After linearization and qudartization around H waypoints (X, it;,), V h, re-arrange terms, we get:
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Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;
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Given the previous nominal control ﬁg, ey L_t;_l_l, and the latest computed controls i, ..., Ugy_;
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Some practical considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians;

2. We want to use linear-search to get monotonic improvement:

Given the previous nominal control ﬁg, ey L_t;_l_l, and the latest computed controls i, ..., Ugy_;

We want to find a € [0,1] such that IZZH := ail, + (1 — a)ii;, has the smallest cost,
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st X, = g, i), @t = aitl, + (1 — @iy, xy = X



Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding w/ obstacles (red)
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Summary:

Local Linearization:

Approximate an LQR at the balance (goal) position (x*, u*);
and then solve the approximated LQR,;

Iterative LQR
Iterate between (1) forming an LQR around the current nominal trajectory,
(2)compute a new nominal trajectory using the optimal policy of the LQR;
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Starting from next week:
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We will move on to data-driven approach for
computing approximately optimal policy
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1. Model-based RL: certainty equivalence

2. Model-free RL: Fitted Value lteration
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