Introduction to Imitation Learning & the Behavior Cloning Algorithm

Recap

Infinite horizon Discounted MDPs

- $\mathcal{M} = \{S$
- State visitation: $d^{\pi}_{\mu}(s)$

$$S, A, \gamma, r, P, \mu$$

$$f(x) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}(s; s_{0})$$

Recap

Infinite horizon Discounted MDPs

 $\mathcal{M} = \{S$

State visitation:
$$d^{\pi}_{\mu}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}^{\pi}_{h}(s; s_{0})$$

Performance Difference Lemma:

$$S, A, \gamma, r, P, \mu$$

Infinite horizon Discounted MDPs

 $\mathcal{M} = \{S$

State visitation:
$$d^{\pi}_{\mu}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}^{\pi}_{h}(s; s_{0})$$

Performance Difference Lemma:

$$V^{\pi}_{\mu} - V^{\pi'}_{\mu} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

Recap

$$S, A, \gamma, r, P, \mu$$

Infinite horizon Discounted MDPs

 $\mathcal{M} = \{S$

State visitation:
$$d^{\pi}_{\mu}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}^{\pi}_{h}(s; s_{0})$$

Performance Difference Lemma:

$$V^{\pi}_{\mu} - V^{\pi'}_{\mu} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

The adv against π' averaged over the state distribution of π

Recap

$$S, A, \gamma, r, P, \mu$$

Infinite horizon Discounted MDPs

State visitation:
$$d^{\pi}_{\mu}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}^{\pi}_{h}(s; s_{0})$$

Performance Difference Lemma:

$$V^{\pi}_{\mu} - V^{\pi'}_{\mu} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s, a) \right]$$

The adv against π' averaged over the state distribution of π

Recap

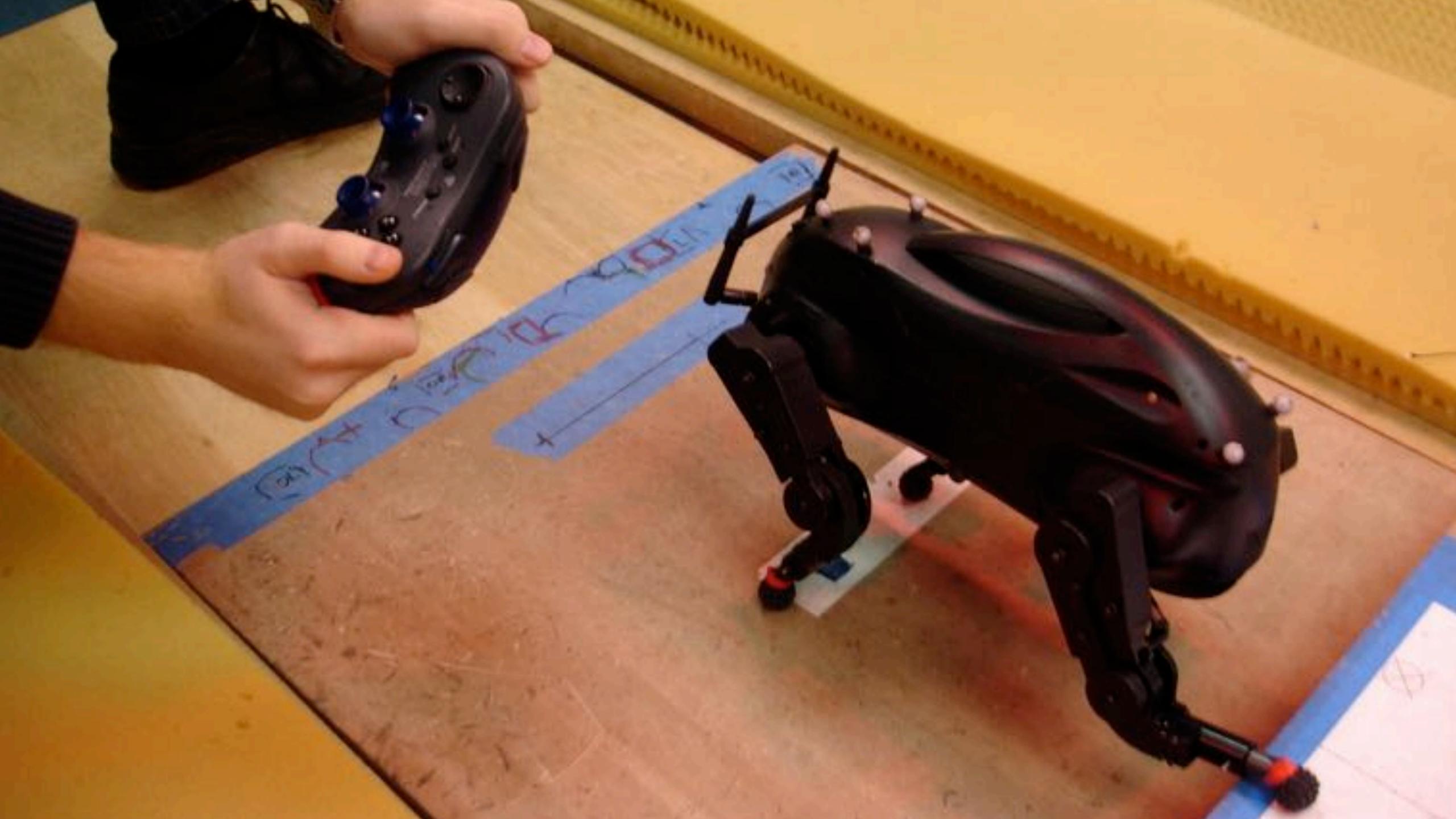
 $\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$ What if *r* is unknown

Outline for today:

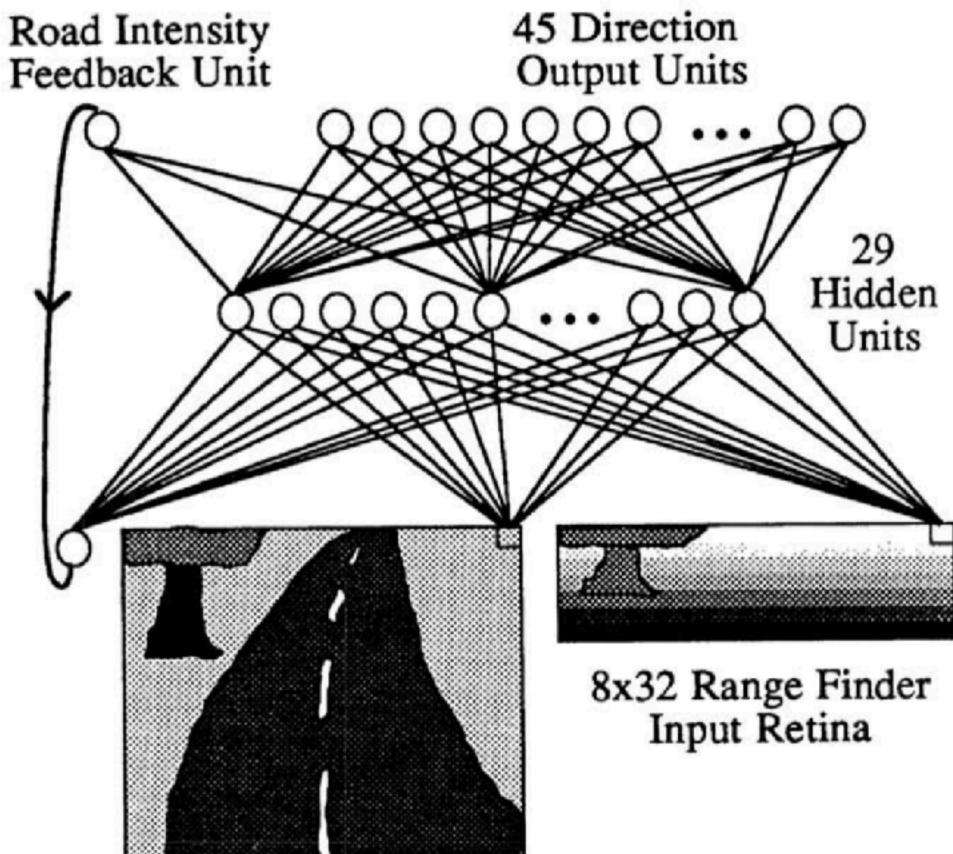
1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The distribution shift issue in BC



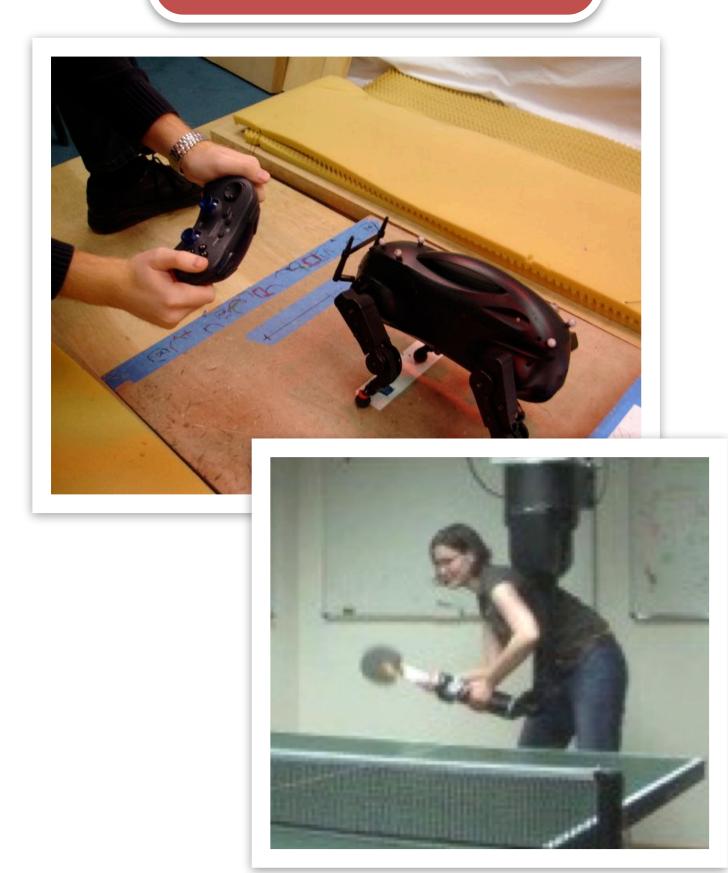
An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]



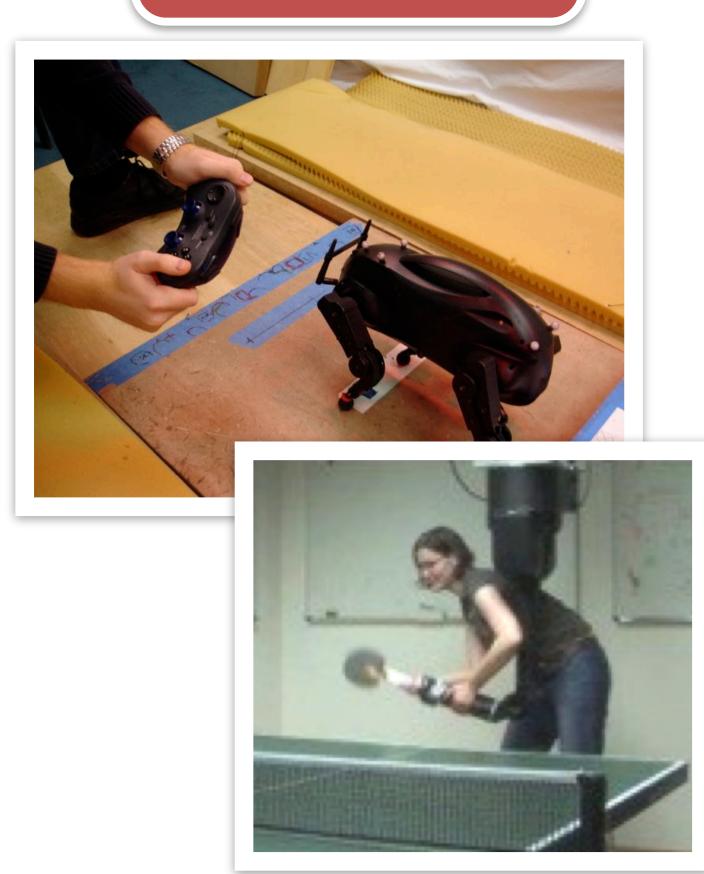
30x32 Video Input Retina

Figure 1: ALVINN Architecture

Expert Demonstrations



Expert Demonstrations

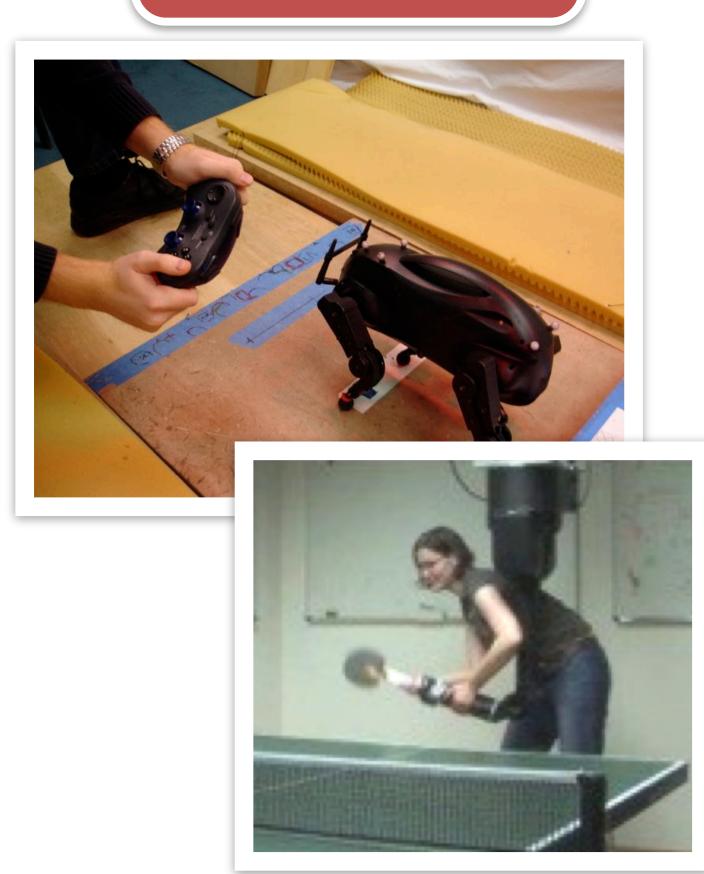


- SVM
- Gaussian Process Kernel Estimator • Deep Networks **Random Forests** LWR

. . .

Machine Learning Algorithm

Expert Demonstrations



- SVM

. . .

- LWR

 Gaussian Process Kernel Estimator • Deep Networks **Random Forests**

Maps states to <u>actions</u>

Learning to Drive by Imitation

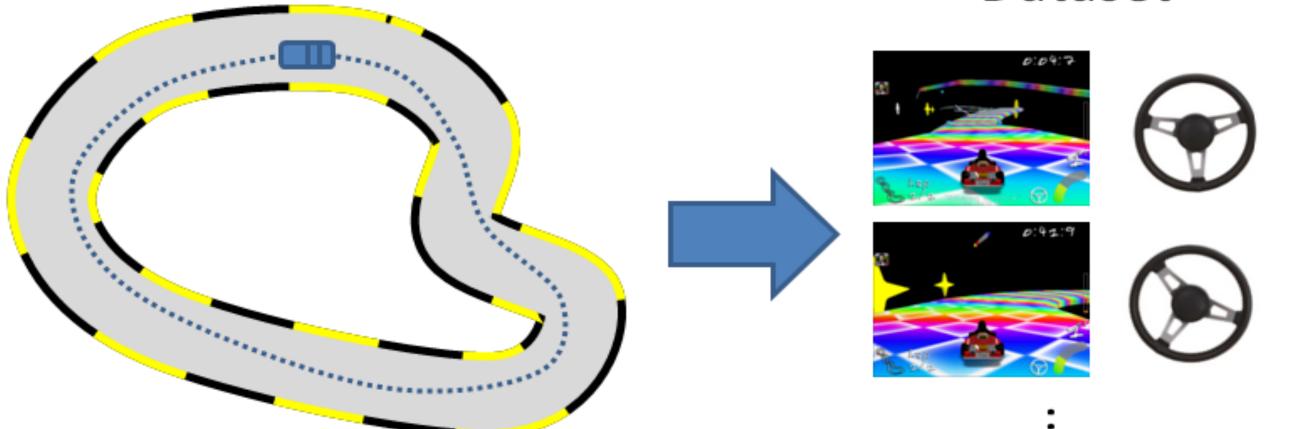
Input:

Camera Image

[Pomerleau89, Saxena05, Ross11a] Output:

Steering Angle in [-1, 1]

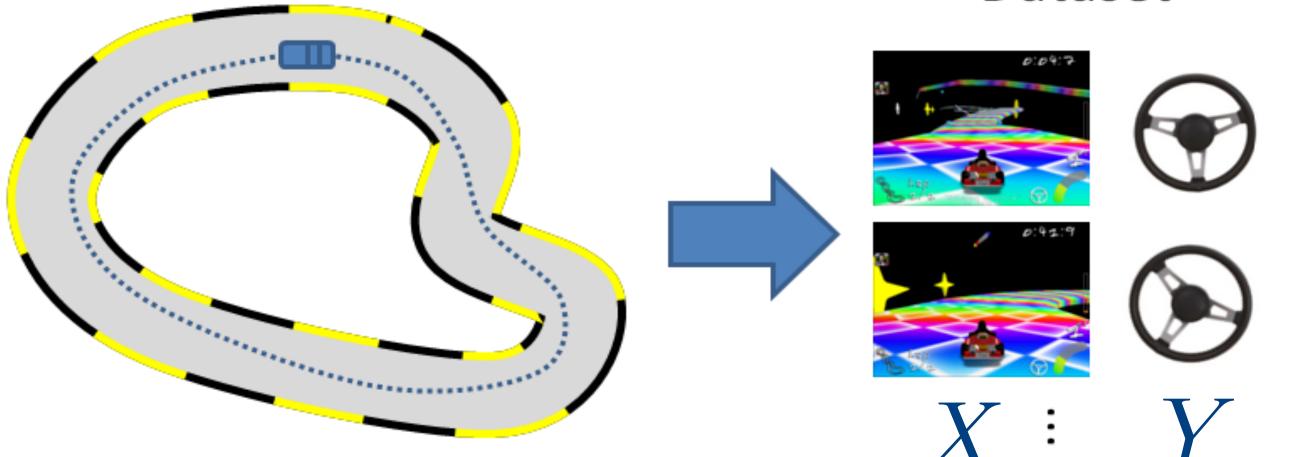
Expert Trajectories



[Widrow64,Pomerleau89]

Dataset

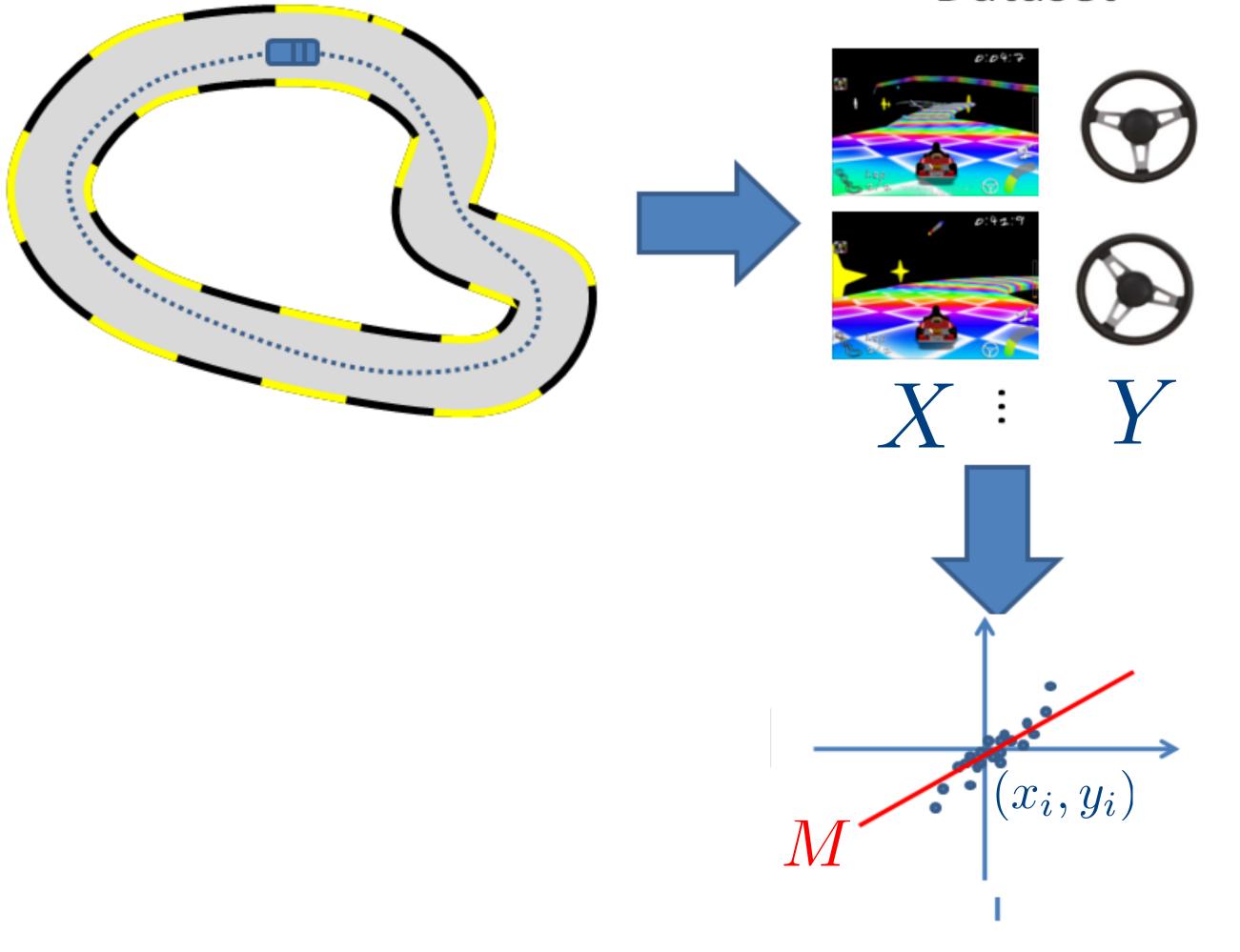
Expert Trajectories



[Widrow64,Pomerleau89]

Dataset

Expert Trajectories



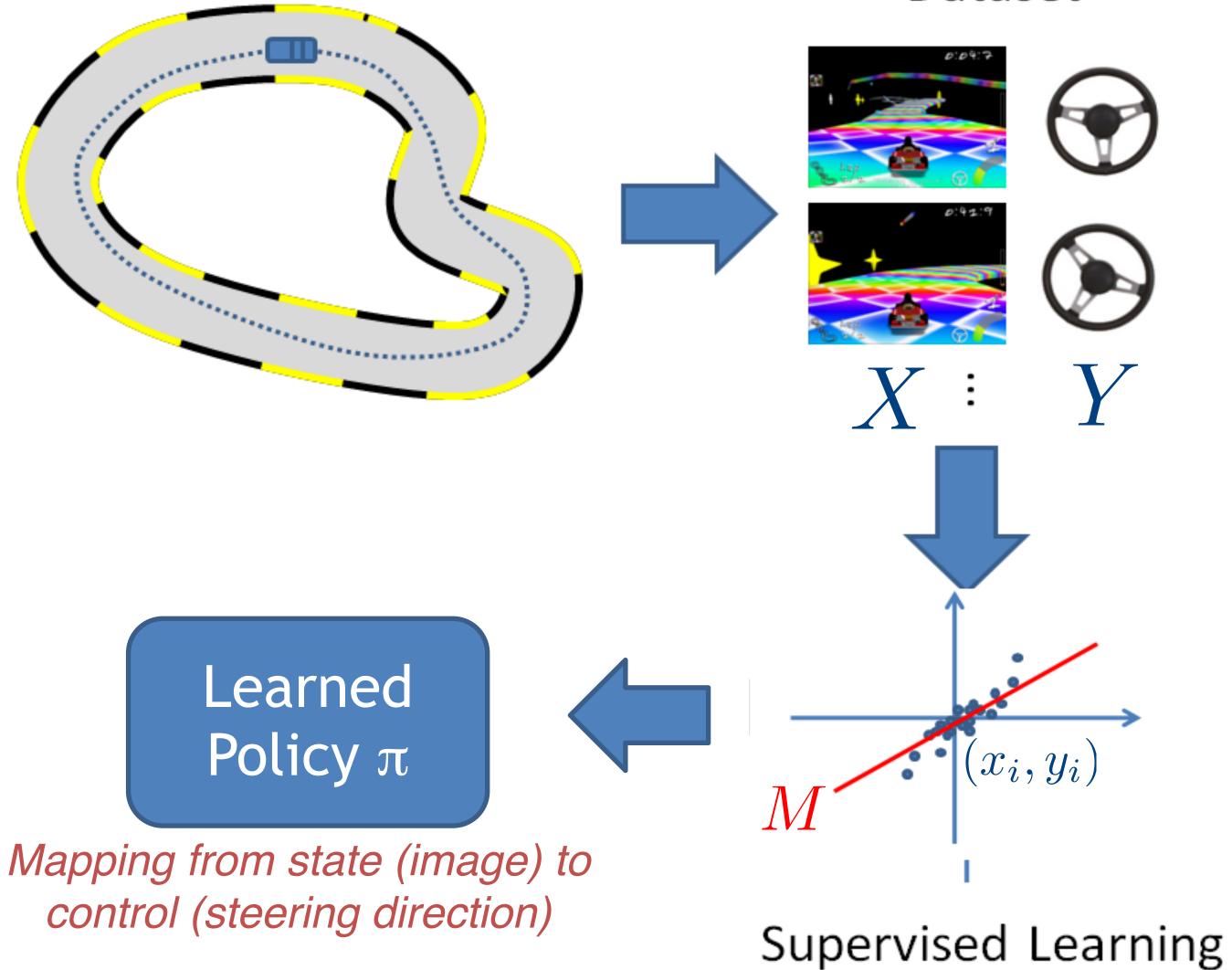
[Widrow64, Pomerleau89]

Dataset

Supervised Learning

10

Expert Trajectories



control (steering direction)

[Widrow64, Pomerleau89]

Dataset

10

3. The distribution shift issue in BC

Outline

2. Offline Imitation Learning: Behavior Cloning

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

- Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$
- Ground truth reward $r(s, a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

Discounted infinite horizon

We have a dataset

$$\mathsf{MDP}\,\mathscr{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$$

Ground truth reward $r(s, a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

$$\mathsf{t} \, \mathscr{D} = (s_i^\star, a_i^\star)_{i=1}^M \sim d^{\pi^\star}$$

Discounted infinite horizon

We have a dataset

$$\mathsf{MDP}\,\mathscr{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$$

Ground truth reward $r(s, a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

$$\mathsf{t} \, \mathscr{D} = (s_i^\star, a_i^\star)_{i=1}^M \sim d^{\pi^\star}$$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$
 - BC is a Reduction to Supervised Learning:

BC is a Reduction to Supervised Learning:

 $\hat{\pi} = \arg \min$ $\pi \in]$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

$$\ln_{\Pi} \sum_{i=1}^{M} \ell(\pi, s^{\star}, a^{\star})$$

BC is a Reduction to Supervised Learning:

 $\hat{\pi} = \arg \min$ $\pi \in]$

Many choices of loss functions:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

$$\inf_{\Pi} \sum_{i=1}^{M} \ell(\pi, s^{\star}, a^{\star})$$

BC is a Reduction to Supervised Learning:

 $\hat{\pi} = \arg \min$ $\pi \in]$

Many choices of loss functions:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

$$\prod_{\Pi} \sum_{i=1}^{M} \ell(\pi, s^{\star}, a^{\star})$$

1. Negative log-likelihood (NLL): $\ell(\pi, s, a^*) = -\ln \pi(a^* | s^*)$

BC is a Reduction to Supervised Learning:

 $\hat{\pi} = \arg \min$ $\pi \in]$

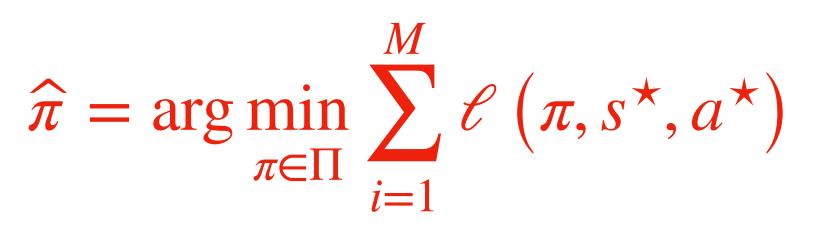
Many choices of loss functions:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

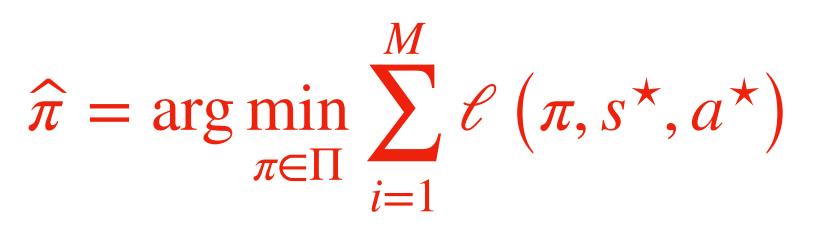
$$\prod_{\Pi} \sum_{i=1}^{M} \ell(\pi, s^{\star}, a^{\star})$$

1. Negative log-likelihood (NLL): $\ell(\pi, s, a^*) = -\ln \pi(a^* | s^*)$

2. square loss (i.e., regression for continuous action): $\ell(\pi, s, a^*) = \|\pi(s) - a^*\|_2^2$



Assumption: we are going to assume Supervised Learning succeeded

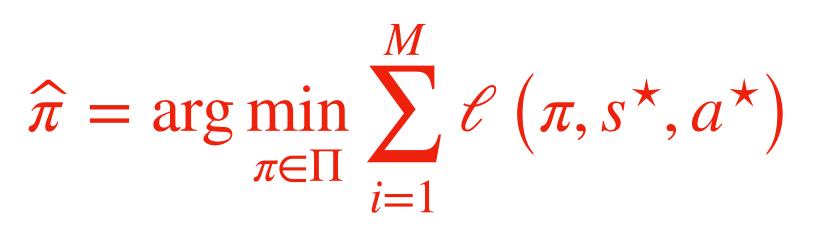


Assumption: we are going to assume Supervised Learning succeeded

$\mathbb{E}_{s \sim d_{u}^{\pi^{\star}}} \mathbf{1} \left[\widehat{\pi}(s) \neq \pi^{\star}(s) \right] \leq \epsilon \in \mathbb{R}^{+}$

$$\mathbb{E}_{s \sim d^{\pi^{\star}}_{\mu}} \mathbf{1} \left[\widehat{\pi}(s) \right]$$

Note that here training and testing mismatch at this stage!



Assumption: we are going to assume Supervised Learning succeeded

$\neq \pi^{\star}(s) \leq \epsilon \in \mathbb{R}^+$

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \epsilon$

Analysis

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\hat{\pi}} \le \frac{2}{(1-\gamma)^2} \epsilon$

 $(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right) = \mathbb{E}_{s\sim d^{\pi^{\star}}}A^{\widehat{\pi}}(s,\pi^{\star}(s))$

Analysis

$$(1 - \gamma) \left(V^{\star} - V^{\widehat{\pi}} \right) = \mathbb{E}_{s \sim d^{\pi}} A^{\widehat{\pi}}(s, \pi^{\star}(s))$$
$$= \mathbb{E}_{s \sim d^{\pi}} A^{\widehat{\pi}}(s, \pi^{\star}(s)) - \mathbb{E}_{s \sim d^{\pi}} A^{\widehat{\pi}}(s, \widehat{\pi}(s))$$

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \epsilon$

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right) = \mathbb{E}_{s\sim d^{\pi^{\star}}}A^{\widehat{\pi}}(s,\pi^{\star}(s))$$

$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \pi^{\star}(s)) - \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \widehat{\pi}(s))$$

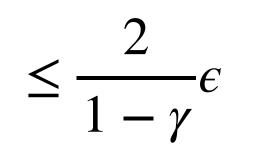
$$\leq \mathbb{E}_{s \sim d^{\pi^{\star}}} \frac{2}{1 - \gamma} \mathbf{1} \left\{ \widehat{\pi}(s) \neq \pi^{\star}(s) \right\}$$

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \epsilon$

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right)=\mathbb{E}_{s\sim d^{\pi^{\star}}}A^{\widehat{\pi}}(s,\pi^{\star}(s))$$

$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \pi^{\star}(s)) - \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \widehat{\pi}(s))$$

$$\leq \mathbb{E}_{s \sim d^{\pi^{\star}}} \frac{2}{1 - \gamma} \mathbf{1} \left\{ \widehat{\pi}(s) \neq \pi^{\star}(s) \right\}$$

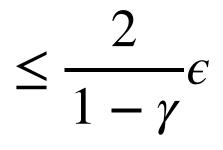


Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \epsilon$

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right)=\mathbb{E}_{s\sim d^{\pi^{\star}}}A^{\widehat{\pi}}(s,\pi^{\star}(s))$$

$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \pi^{\star}(s)) - \mathbb{E}_{s \sim d^{\pi^{\star}}} A^{\widehat{\pi}}(s, \widehat{\pi}(s))$$

$$\leq \mathbb{E}_{s \sim d^{\pi^{\star}}} \frac{2}{1 - \gamma} \mathbf{1} \left\{ \widehat{\pi}(s) \neq \pi^{\star}(s) \right\}$$



Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \varepsilon$

The quadratic amplification is annoying

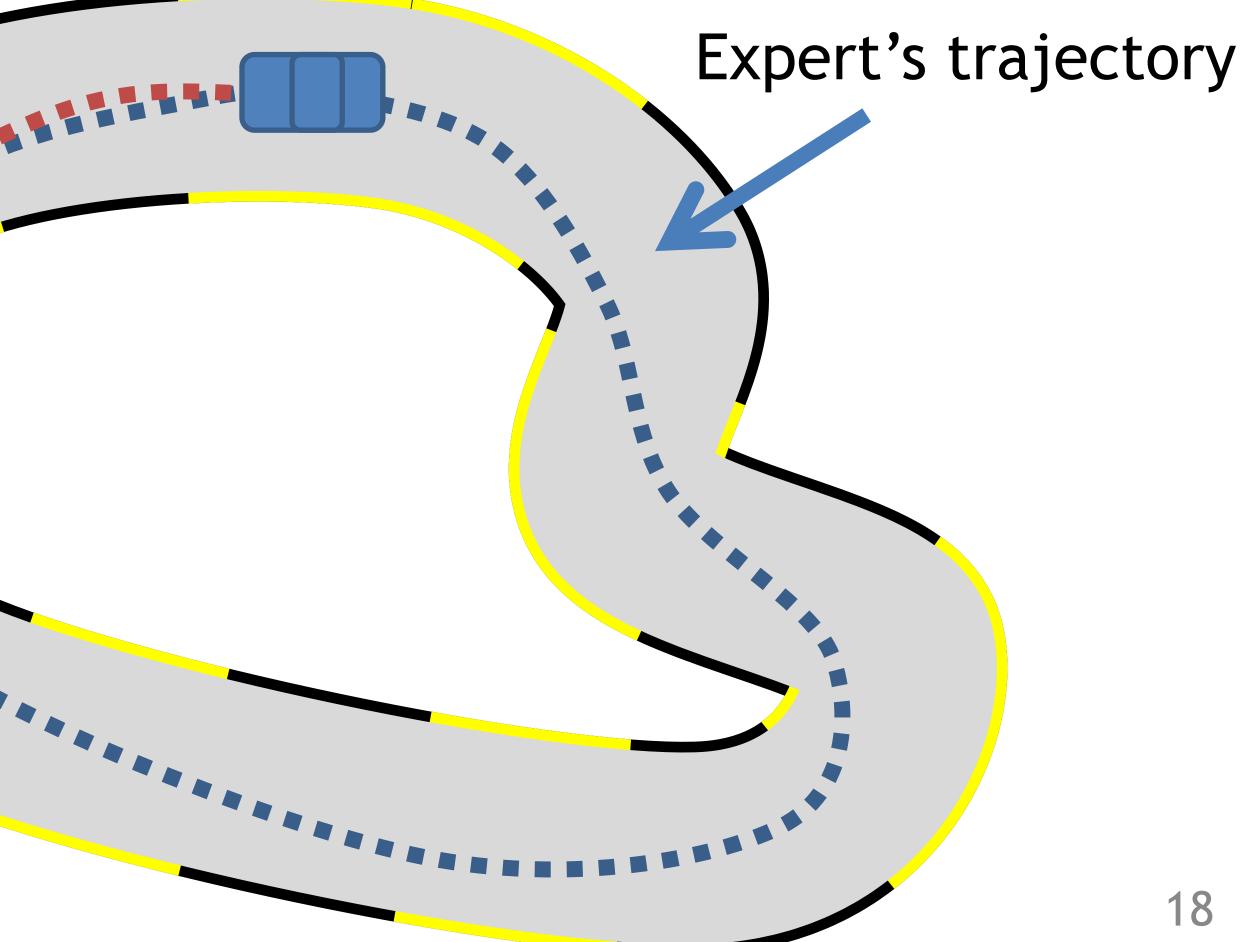
3. The distribution shift issue in BC

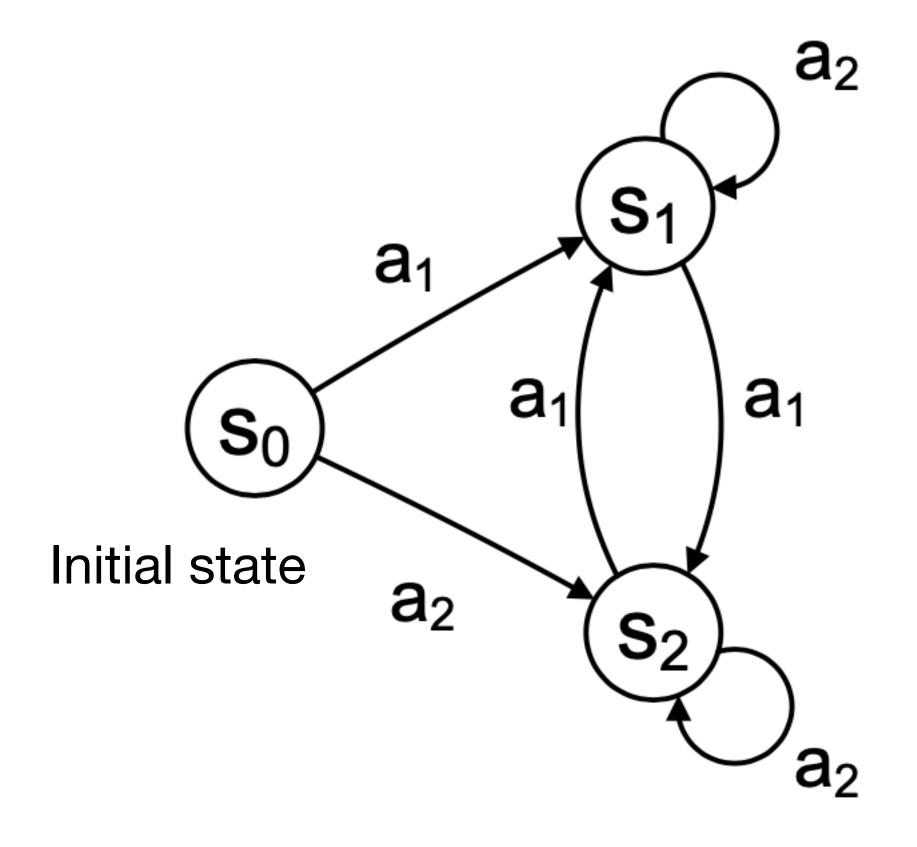
Outline

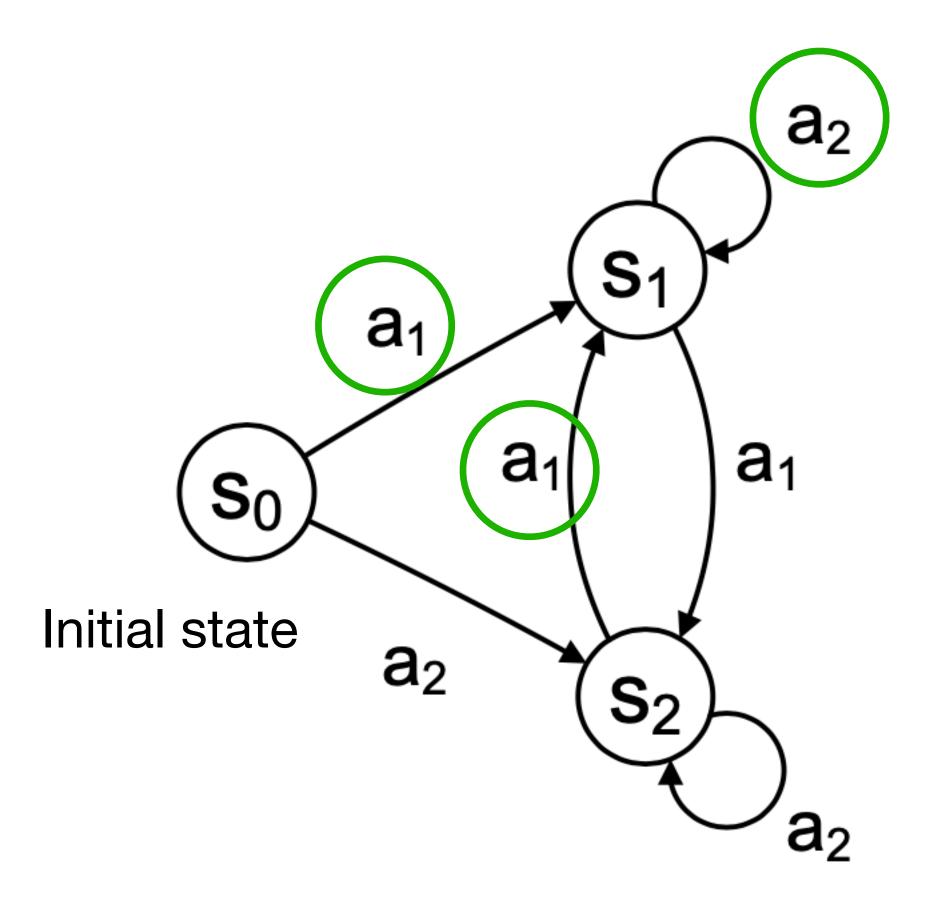
What could go wrong? [Pomerleau89,Daume09] Predictions affect future inputs/

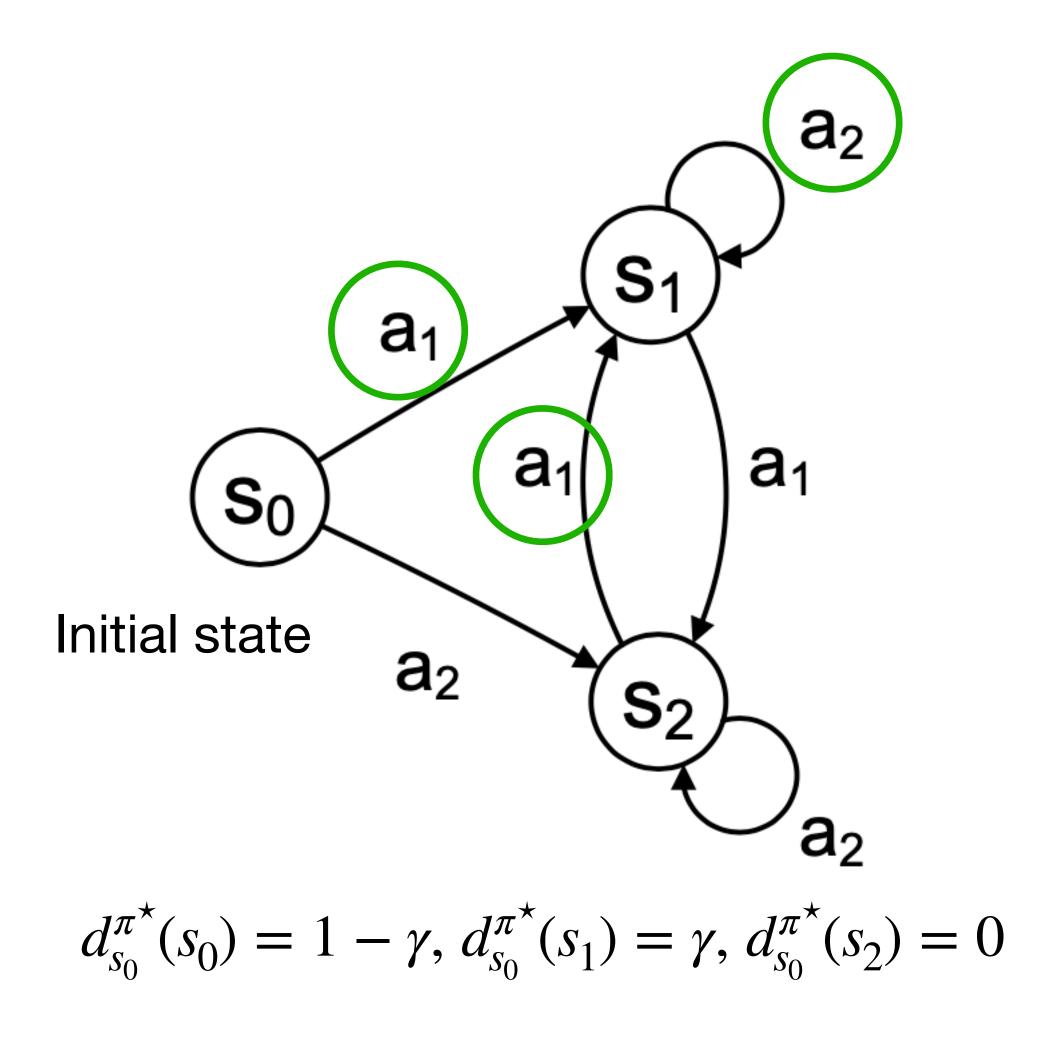
observations

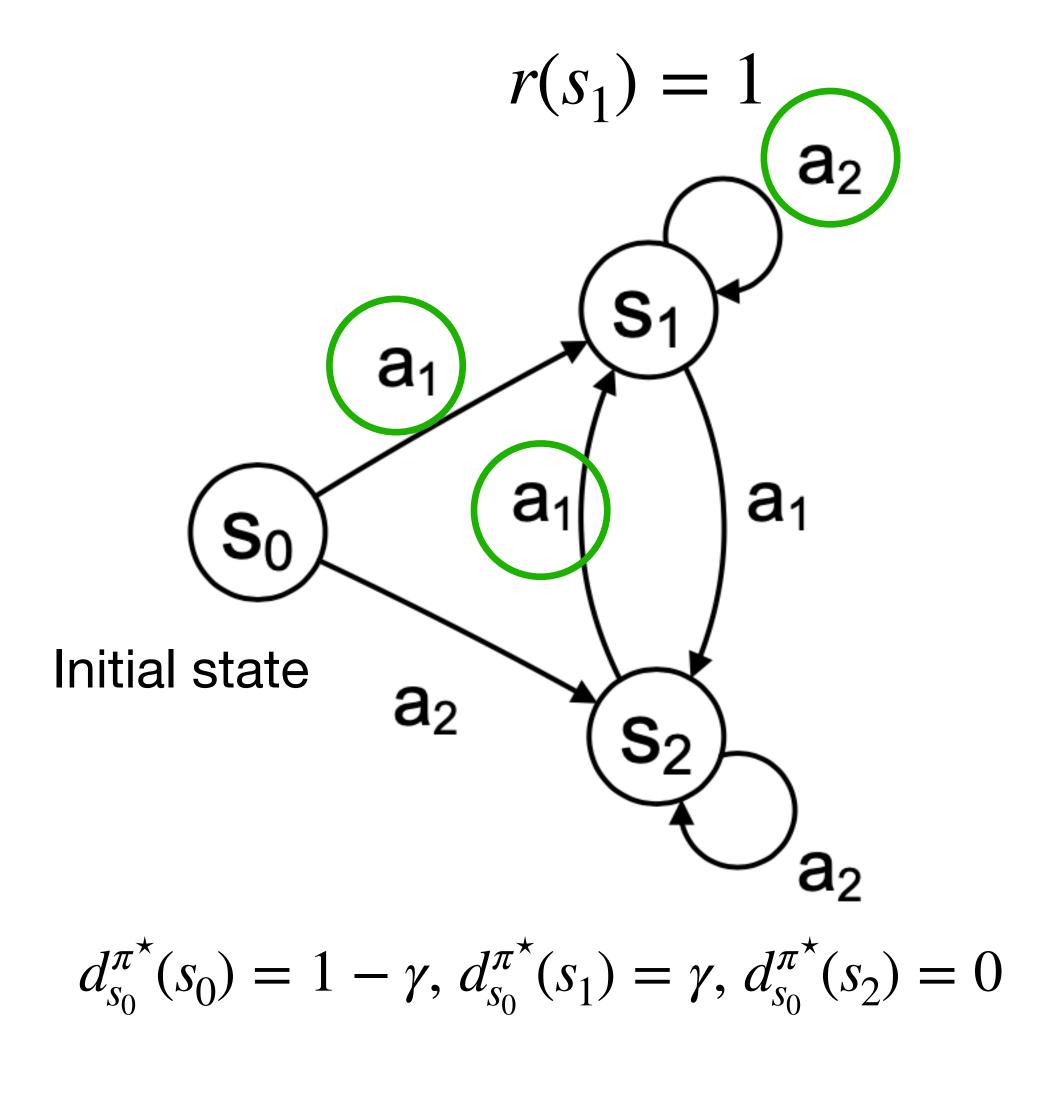
Learned Policy

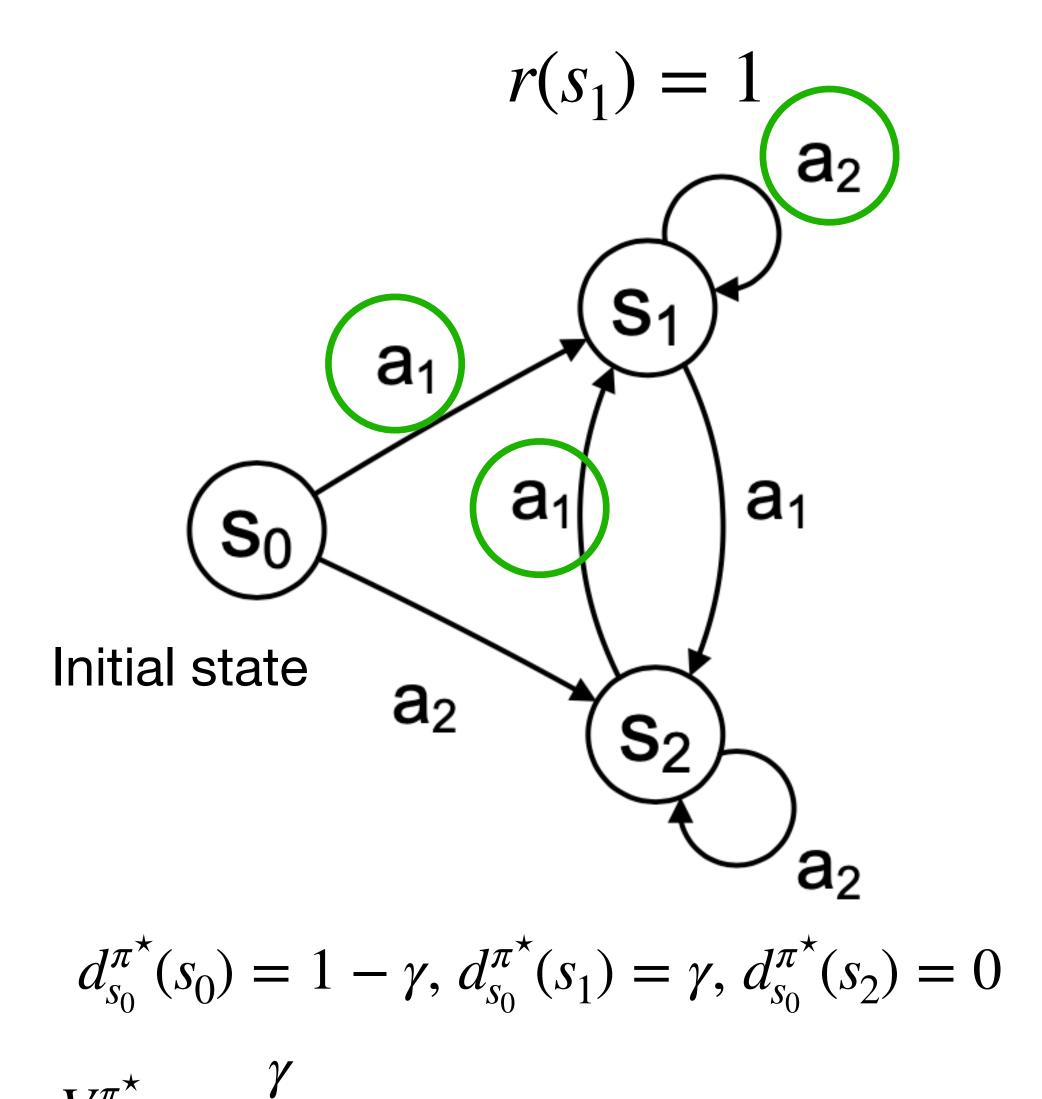












$$V_{s_0}^{\pi^\star} = \frac{\gamma}{1 - \gamma}$$



$$V_{s_0}^{\pi^\star} = \frac{\gamma}{1 - \gamma}$$

Assume SL returned such policy $\widehat{\pi}$

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - \epsilon/(1 - \gamma) \\ a_2 & \text{w/prob } \epsilon/(1 - \gamma) \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \end{cases}$$



$$V_{s_0}^{\pi^\star} = \frac{\gamma}{1 - \gamma}$$

Assume SL returned such policy $\widehat{\pi}$

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - \epsilon/(1 - \gamma) \\ a_2 & \text{w/prob } \epsilon/(1 - \gamma) \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \end{cases}$$

We will have good supervised learning error:

$$\mathbb{E}_{s \sim d_{s_0}^{\pi^*}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \mathbf{1} \left(a \neq \pi^*(s) \right) = \epsilon$$



$$V_{s_0}^{\pi^\star} = \frac{\gamma}{1 - \gamma}$$

Assume SL returned such policy $\widehat{\pi}$

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/ prob } 1 - \epsilon/(1 - \gamma) \\ a_2 & \text{w/ prob } \epsilon/(1 - \gamma) \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \end{cases}$$

We will have good supervised learning error:

$$\mathbb{E}_{s \sim d_{s_0}^{\pi^{\star}}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \mathbf{1} \left(a \neq \pi^{\star}(s) \right) = \epsilon$$

But we have quadratic error in performance:

$$V_{s_0}^{\hat{\pi}} = \frac{\gamma}{1-\gamma} - \frac{\epsilon\gamma}{(1-\gamma)^2} = V_{s_0}^{\pi^*} - \frac{\epsilon\gamma}{(1-\gamma)^2}$$



$$V_{s_0}^{\pi^\star} = \frac{\gamma}{1 - \gamma}$$

Assume SL returned such policy $\widehat{\pi}$

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/ prob } 1 - \epsilon/(1 - \gamma) \\ a_2 & \text{w/ prob } \epsilon/(1 - \gamma) \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \\ \widehat{\pi}(s_2) = a_2 \\$$

We will have good supervised learning error:

$$\mathbb{E}_{s \sim d_{s_0}^{\pi^{\star}}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \mathbf{1} \left(a \neq \pi^{\star}(s) \right) = \epsilon$$

But we have quadratic error in performance:

$$V_{s_0}^{\widehat{\pi}} = \frac{\gamma}{1-\gamma} - \frac{\epsilon\gamma}{(1-\gamma)^2} = V_{s_0}^{\pi^*} - \frac{\epsilon\gamma}{(1-\gamma)^2}$$

Issue: once we make a mistake at s_0 , we end up in s_2 which is not in the training data!

An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]

"If the network is not presented with sufficient variability in its training exemplars to cover the conditions it is likely to encounter...[it] will perform poorly"

An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]

"If the network is not presented with sufficient variability in its training exemplars to cover the conditions it is likely to encounter...[it] will perform poorly"

Summary for Today:

1. The most common imitation learning algorithm: BC

A reduction to supervised Learning, e.g., training classifier from $s^* \sim d_{\mu}^{\pi^*}$, $a^* = \pi^*(s^*)$

Summary for Today:

1. The most common imitation learning algorithm: BC

2. Distribution shift:

A reduction to supervised Learning, e.g., training classifier from $s^* \sim d_u^{\pi^*}$, $a^* = \pi^*(s^*)$

When execute the learned policy, we may deviate from the expert trajectories, causing compounding error

Summary for Today:

1. The most common imitation learning algorithm: BC

2. Distribution shift:

When execute the learned policy, we may deviate from the expert trajectories, causing compounding error

A reduction to supervised Learning, e.g., training classifier from $s^* \sim d_u^{\pi^*}$, $a^* = \pi^*(s^*)$

3. Again this demonstrates why RL/IL is harder than SL: we need to test our model on new data generated by our model