Introduction to Imitation Learning
& the Behavior Cloning Algorithm
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Figure 1: ALVINN Architecture
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Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let's assume expert is a (nearly) optimal policy 7*

We have a dataset I = (Sl-*, ai* ?il ~d”

Goal: learn a policy from & that is as good as the expert T*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

BC is a Reduction to Supervised Learning:

= arg min Z f

mell

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s,a™) = — Inz(a™ | s™)

2. square loss (i.e., regression for continuous action): Z(x, s, a™) = ||z(s) — a*H%
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= arg min Z f

rell
Analysis

Assumption: we are going to assume Supervised Learning succeeded

a1 | 7(s) # 77(s)| < e €RY

Note that here training and testing mismatch at this stage!
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Analysis

Theorem [BC Performance] With probability atleast 1 — , BC returns a policy 7:

vV — V7

The quadratic amplification is annoying

(1 — y)(V* _yR ) — E._ A% (s, 7*(s))
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3. The distribution shift issue in BC



What could go wrong?

[Pomerleau89,Daume(09]

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

18
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Distribution Shift: Example
r(s;) = Assume SL returned such policy 7
~ . ) w/prob1—¢e/(1-vy) P
’ 7 (%) = {a2 w/ probe/(1—y) m(8) = ap 7s) = 4

We will have good supervised learning error:

a
1 —s~dz Famiciol (a # 77(s)) =€

Initial state

do But we have quadratic error in performance:
VZE — A _ €7
ao 01 — y (1 —7y)? 0 (1 —1y)?
A (s)) = 1 —y, d¥ (s) =y, d¥ (s) =0
Issue: once we make a mistake at s, we
V;f)* =7 end up in $, which is not in the training data!

1 —y
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Summary for Today:

1. The most common imitation learning algorithm: BC

A reduction to supervised Learning, e.g., training classifier from s* ~ d/’f*, a* = 7*(s™)

2. Distribution shift:

When execute the learned policy,
we may deviate from the expert trajectories,
causing compounding error

3. Again this demonstrates why RL/IL is harder than SL.:
we need to test our model on new data generated by our model



