
Introduction to Imitation Learning  
& the Behavior Cloning Algorithm
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What if  is unknown r



Outline for today:
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3. The distribution shift issue in BC











An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]
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Learning to Drive by Imitation

Policy

Steering Angle 
in [-1, 1]

Input: Output:

Camera Image
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[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)
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Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward  is unknown; 

For simplicity, let’s assume expert is a (nearly) optimal policy 

r(s, a) ∈ [0,1]
π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Goal: learn a policy from   that is as good as the expert 𝒟 π⋆
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions: 

1. Negative log-likelihood (NLL):  ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)

2. square loss (i.e., regression for continuous action):  ℓ(π, s, a⋆) = ∥π(s) − a⋆∥2
2
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Analysis

Assumption: we are going to assume Supervised Learning succeeded

𝔼s∼dπ⋆
μ

1 [ ̂π (s) ≠ π⋆(s)] ≤ ϵ ∈ ℝ+

Note that here training and testing mismatch at this stage!

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)
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Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤

2
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ϵ
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= 𝔼s∼dπ⋆A ̂π (s, π⋆(s)) − 𝔼s∼dπ⋆A ̂π (s, ̂π (s))

≤ 𝔼s∼dπ⋆
2

1 − γ
1 { ̂π (s) ≠ π⋆(s)}

≤
2

1 − γ
ϵ

The quadratic amplification is annoying
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What could go wrong?
• Predictions affect future inputs/

observations

18

[Pomerleau89,Daume09]

Expert’s trajectoryLearned Policy
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=
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−
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Issue: once we make a mistake at , we 
end up in  which is not in the training data!

s0
s2
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Summary for Today:

1. The most common imitation learning algorithm: BC

A reduction to supervised Learning, e.g., training classifier from s⋆ ∼ dπ⋆

μ , a⋆ = π⋆(s⋆)

2. Distribution shift: 

When execute the learned policy, 

we may deviate from the expert trajectories, 


causing compounding error

3. Again this demonstrates why RL/IL is harder than SL:  
we need to test our model on new data generated by our model


