Introduction to Imitation Learning
& the Behavior Cloning Algorithm
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Recap

Infinite horizon Discounted MDPs

M = {S A @) ,“} What if 7 is unknown

State visitation: d”(s) = (1 — 7) Z y"P(s; 50)
h=0

Performance Difference Lemma:

What'’s the perf difference between 7 & 7?
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In A Neural Network rromerteau, nies s
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Figure 1: ALVINN Architecture
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Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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Let’s formalize the L Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S, A, y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy z*

We have a dataset 2 = (s*,a*)¥ | ~ dr

Goal: learn a policy from & that is as good as the expert 7*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class II = {7 : S = A(A)}

BC is a Reduction to Supervised Learning:

M
7 = arg min z 4 (ﬂ,s*,a*)
nell 4 |
=

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s,a™) = — In (a™ | s ™)

2. square loss (i.e., regression for continuous action): £(r, sfa*) = ||7r(s*) - a*ll%
Neo—~—
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= arg min Z f
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Analysis

Assumption: we are going to assume Supervised Learning succeeded

Egel [7(s) # 7%(s5)| < e € R

Note that here training and testing mismatch at this stage!
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Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
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returns a policy 7z
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Analysis

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:

~ ~ The quadratic amplification is annoying
A= (V* = VF) = E,guedP (5, 7(5)

=E,_ =A% (s, 7%(5)) — E,_ A" (s, Z(5))
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What could go wrong?

[Pomerleau89,Daume09]

Predictions affect future inputs/
observations

Learned Policy _- Expert’s trajectory
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Initial state

ar
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Distribution Shift: Example

Assume SL returned such policy 7

() a; w/prob1—e/(1-y) (s ()
= = 5 S~) = a
1% a, w/probe/(1-y) uﬂ 2 2
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Assume SL returned such policy 7

. a; w/prob1—e/(1-y)
(sy) =

a, w/probe/(1-y) w(s)) = ay, 1(s,) = a,

We will have good supervised learning error:
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Distribution Shift: Example

Initial state

ar

' (sp) =1 =7, d% (s)) =7, dF (5) = 0
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7(sy) =

Assume SL returned such policy 7

a, W/ probe/(l-y)

We will have good supervised learning error:

[Es~d§6*[Ea~ﬁ(~|s)1 (a # ﬂ*(S)) =€

But we have quadratic error in performance:
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Issue: once we make a mistake at s;, we
end up in s, which is not in the training data!
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Summary for Today:

1. The most common imitation learning algorithm: BC

A reduction to supervised Learning, e.g., training classifier from s* ~ d;f*, a* = 1*(s*)

2. Distribution shift:

When execute the learned policy,
we may deviate from the expert trajectories,
causing compounding error

3. Again this demonstrates why RL/IL is harder than SL:
we need to test our model on new data generated by our model



