
Interactive Imitation Learning

Announcement

This Thursday:

lecture will start at 9:50am

and office hour will end at 11:15am

Recap

Offline IL

Recap

Offline IL

Ground truth reward is unknown;

assume expert is a near optimal policy

r(s, a) ∈ [0,1]
π⋆

Recap

Offline IL

Ground truth reward is unknown;

assume expert is a near optimal policy

r(s, a) ∈ [0,1]
π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1, s⋆

i ∼ dπ⋆

μ , a⋆
i ∼ π⋆(⋅ |s⋆

i)

Recap

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π⋆(s⋆
i), a⋆

i)

Recap

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π⋆(s⋆
i), a⋆

i)

Pros:
Simple, flexible, and often just works reasonably well

Recap

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π⋆(s⋆
i), a⋆

i)

Pros:
Simple, flexible, and often just works reasonably well

Cons:
Distribution shift issue: does not know what to do outside expert’s stateŝπ

Question for today:

How to mitigate the distribution shift issue?

Solution:

Interactive Imitation Learning Setting

Solution:

Interactive Imitation Learning Setting

Key assumption:
we can query expert at any time and any state during trainingπ⋆

Solution:

Interactive Imitation Learning Setting

Key assumption:
we can query expert at any time and any state during trainingπ⋆

(Recall that previously we only had an offline dataset)𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

μ

Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: a quick intro to Online Learning

Recall the Main Problem from Behavior Cloning:

Expert’s trajectoryLearned Policy

No training data of
“recovery’’
behavior

Intuitive solution: Interaction

9

Use interaction to collect
data where learned policy
goes

General Idea: Iterative Interactive
Approach

Update Policy
Collect Data

through
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman

DAgger: Dataset Aggregation 
0th iteration

11

Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]

DAgger: Dataset Aggregation 
 1st iteration

12

Execute π1 and Query Expert

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation 
 1st iteration

13

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation 
 1st iteration

13

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

States from

the learned policy

DAgger: Dataset Aggregation 
 1st iteration

14

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation 
 1st iteration

15

Execute π1 and Query Expert
New Data

Supervised Learning

New policy
π2

All previous data

Aggregate
Dataset

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation 
 2nd iteration

16

Execute π2 and Query Expert
New Data

Supervised Learning

New policy
π3

All previous data

Aggregate
Dataset

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation 
 nth iteration

17

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

Success!

18

[Ross AISTATS 2011]

Success!

18

[Ross AISTATS 2011]

Success!

18

[Ross AISTATS 2011]

Better

19

[Ross AISTATS 2011]

Average Falls/Lap

More fun than Video Games…

21
[Ross ICRA 2013]

More fun than Video Games…

21
[Ross ICRA 2013]

More fun than Video Games…

21
[Ross ICRA 2013]

Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that

maps from data on cheap on-board
sensors (raw-pixel imagine) to low-level

control (steer and throttle)

Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that

maps from data on cheap on-board
sensors (raw-pixel imagine) to low-level

control (steer and throttle)

Steering + throttle

Forms of the Interactive Experts
Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Forms of the Interactive Experts
Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Their Setup:

At Training, we have expensive sensors for accurate state estimation

and we have computation resources for MPC (i.e., high-frequency replanning)

Forms of the Interactive Experts
Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Their Setup:

At Training, we have expensive sensors for accurate state estimation

and we have computation resources for MPC (i.e., high-frequency replanning)

The MPC is the expert in this case!

Forms of the Interactive Experts
Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Their Setup:

At Training, we have expensive sensors for accurate state estimation

and we have computation resources for MPC (i.e., high-frequency replanning)

The MPC is the expert in this case!

Distribution Shift: Example

Initial state

Distribution Shift: Example

Initial state

Distribution Shift: Example

Initial state

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Distribution Shift: Example

Initial state

r(s1) = 1

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

We will have good supervised learning error:

𝔼s∼dπ⋆
s0

𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

We will have good supervised learning error:

𝔼s∼dπ⋆
s0

𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

= Vπ⋆

s0
−

ϵγ
(1 − γ)2

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

 will visit , and we collect ̂π s2 π⋆(s2) = a1

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

 will visit , and we collect ̂π s2 π⋆(s2) = a1

By data aggregation, our new dataset

will contain pairs(s2, a1)

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

 will visit , and we collect ̂π s2 π⋆(s2) = a1

By data aggregation, our new dataset

will contain pairs(s2, a1)

Thus, our new learned policy will know what to do at s2

Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Quick intro on Online Learning

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ
…

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

…

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

…

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

…

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

Adversary picks a loss ℓ1 : Θ → ℝ

…

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

Adversary picks a loss ℓ1 : Θ → ℝ

…

Regret =
T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

3. Learner suffers loss ℓt(θt) = (θ⊤
t xt − yt)2

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

3. Learner suffers loss ℓt(θt) = (θ⊤
t xt − yt)2

Learner has to make decision based on history up to ,

while adversary could pick even after seeing

θt t − 1
(xt, yt) θt

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

3. Learner suffers loss ℓt(θt) = (θ⊤
t xt − yt)2

Learner has to make decision based on history up to ,

while adversary could pick even after seeing

θt t − 1
(xt, yt) θt

Adversary seems too powerful…

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration t :

1. Learner first picks that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration t :

1. Learner first picks that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration t :

1. Learner first picks that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

T−1

∑
i=0

ℓi(θi) − min
θ∈Ball

T−1

∑
i=0

ℓi(θ) = O (1/ T)

Generally, Follow-the-Regularized-Leader is no-regret

At time step learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

FTL: θt = min
θ∈Θ

t−1

∑
i=0

ℓi(θ) + λR(θ)

Generally, Follow-the-Regularized-Leader is no-regret

At time step learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

Theorem (FTL) (optional): if is convex, and is convex for all , and is strongly convex,

then for regret of FTL, we have:

Θ ℓt t R(θ)

1
T [

T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)] = O (1/ T)

FTL: θt = min
θ∈Θ

t−1

∑
i=0

ℓi(θ) + λR(θ)

Any questions about no-regret online learning?

Online learning is a very rich research area — details are out of scope

Key message:

Learner has to make a decision before Adversary picks a loss function,

yet it is possible to do as well as the best decision in hindsight if we had access to all

the loss functions beforehand

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t−1

∑
i=0

ℓi(π)

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t−1

∑
i=0

ℓi(π)

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t−1

∑
i=0

ℓi(π)πt = arg min
π

t−1

∑
i=0

ℓi(π) + λR(π)

DAgger Revisit 

New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

Data Aggregation = Follow-the-Regularized-Leader Online Learner

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t−1

∑
i=0

ℓi(π)πt = arg min
π

t−1

∑
i=0

ℓi(π) + λR(π)

Summary for Today

1. The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt 𝒟t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 𝒟 = 𝒟 + 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

Summary for Today

1. The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt 𝒟t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 𝒟 = 𝒟 + 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

2. We can see that DAgger is essentially an online-learning algorithm (FTRL)

