
Interactive Imitation Learning



Announcement 

This Thursday: 

lecture will start at 9:50am

and office hour will end at 11:15am 
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Ground truth reward  is unknown; 

assume expert is a near optimal policy 

r(s, a) ∈ [0,1]
π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1, s⋆

i ∼ dπ⋆

μ , a⋆
i ∼ π⋆( ⋅ |s⋆

i )
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Recap 

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π⋆(s⋆
i ), a⋆

i )

Pros:  
Simple, flexible, and often just works reasonably well 

Cons:  
Distribution shift issue:  does not know what to do outside expert’s stateŝπ



Question for today: 

How to mitigate the distribution shift issue? 
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Solution:

Interactive Imitation Learning Setting

Key assumption:  
we can query expert  at any time and any state during trainingπ⋆

(Recall that previously we only had an offline dataset )𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

μ



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: a quick intro to Online Learning



Recall the Main Problem from Behavior Cloning:

Expert’s trajectoryLearned Policy

No training data of 
“recovery’’ 
behavior



Intuitive solution: Interaction

9

Use interaction to collect 
data where learned policy 
goes



General Idea: Iterative Interactive 
Approach

Update Policy
Collect Data 

through 
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman



DAgger: Dataset Aggregation 
0th iteration
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Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]
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Execute π1 and Query Expert
New Data

Supervised Learning

New policy 
π2

All previous data

Aggregate 
Dataset

[Ross11a]

Steering 
from 
expert



DAgger: Dataset Aggregation 
 2nd iteration
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Execute π2 and Query Expert
New Data

Supervised Learning

New policy 
π3

All previous data

Aggregate 
Dataset

Steering 
from 
expert

[Ross11a]



DAgger: Dataset Aggregation 
 nth iteration

17

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset



Success!

18

[Ross AISTATS 2011]



Success!

18

[Ross AISTATS 2011]



Success!

18

[Ross AISTATS 2011]



Better

19

[Ross AISTATS 2011]

Average Falls/Lap









More fun than Video Games…

21
[Ross ICRA 2013]



More fun than Video Games…

21
[Ross ICRA 2013]



More fun than Video Games…

21
[Ross ICRA 2013]



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving 
[Pan et al, RSS 18, Best System Paper]



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving 
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that 

maps from data on cheap on-board 
sensors (raw-pixel imagine) to low-level 

control (steer and throttle)
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Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving 
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that 

maps from data on cheap on-board 
sensors (raw-pixel imagine) to low-level 

control (steer and throttle)

Steering + throttle
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s0
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̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

We will have good supervised learning error:

𝔼s∼dπ⋆
s0

𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

= Vπ⋆

s0
−

ϵγ
(1 − γ)2
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r(s1) = 1

Vπ⋆
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=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

 will visit , and we collect ̂π s2 π⋆(s2) = a1

By data aggregation, our new dataset 

will contain  pairs(s2, a1)

Thus, our new learned policy will know what to do at s2



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Quick intro on Online Learning
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Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

Adversary picks a loss ℓ1 : Θ → ℝ

…

Regret =
T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)
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Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks  θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

3. Learner suffers loss ℓt(θt) = (θ⊤
t xt − yt)2

Learner has to make decision  based on history up to , 

while adversary could pick  even after seeing 

θt t − 1
(xt, yt) θt

Adversary seems too powerful…
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Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration t :

1. Learner first picks  that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

T−1

∑
i=0

ℓi(θi) − min
θ∈Ball

T−1

∑
i=0

ℓi(θ) = O (1/ T)



Generally, Follow-the-Regularized-Leader is no-regret
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Generally, Follow-the-Regularized-Leader is no-regret

At time step  learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

Theorem (FTL) (optional): if  is convex, and  is convex for all , and  is strongly convex, 

then for regret of FTL, we have: 


Θ ℓt t R(θ)

1
T [

T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)] = O (1/ T)

FTL: θt = min
θ∈Θ

t−1

∑
i=0

ℓi(θ) + λR(θ)



Any questions about no-regret online learning?

Online learning is a very rich research area — details are out of scope

Key message:  

Learner has to make a decision before Adversary picks a loss function, 

yet it is possible to do as well as the best decision in hindsight if we had access to all 

the loss functions beforehand
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DAgger Revisit 

New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset

At iteration t:

Data Aggregation = Follow-the-Regularized-Leader Online Learner

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t−1

∑
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ℓi(π)πt = arg min
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∑
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ℓi(π) + λR(π)
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Summary for Today

1. The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt 𝒟t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 𝒟 = 𝒟 + 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

2. We can see that DAgger is essentially an online-learning algorithm (FTRL)


