
Note on Iterative Linear Quadratic Regulator

Wen Sun1

1Department of Computer Science, Cornell University

March 2, 2021

1 Setting

Consider the following finite horizon nonlinear control problem:

min
π

H−1∑
t=0

c(xt, at) + g(xH),

s.t., xt+1 = f(xt, ut), ut = π(xt),∀t = 0, . . . H − 1

where assume x0 is given. Here we are going to assume that the transition f(x, u) is differentiable with respect to
x, u, and the cost functions c are twice differentiable with respect to both x and u, and g is twice differential with
respect to x.

Note we will use subscript t instead of h to represent time step in this note.

2 Time inhomogeneous LQR

In class and HWs, we covered time homogeneous LQR. Here we study the time inhomogeneous setting.

min
π
x>HQHxH + x>HqH + cH +

H−1∑
t=0

(
x>t Qtxt + u>t Rtut + x>t Mtut + x>t qt + u>t rt + ct

)
,

s.t., xt+1 = Atxt +Btut +mt, ut = π(xt),∀t = 0, . . . ,H − 1, x0 ∼ N (x̄0,Σ).

We will assume that Qt ∈ Rdx×dx and Rt ∈ Rdu×du are positive definite matrices, and qt ∈ Rdx and rt ∈ Rdu , and
ct,mt ∈ R. Note that our cost function not only contains the second order term, but now also contains the first order
term and the zero-th order term as well.

To compute the optimal policy, we again will just use Dynamic Programming.
At the last time step H , we have that V ?

H(x) just being the cost function at time step H . Let us define V ?
H(x) as:

V ?
H(x) = xTPHx+ x>pH + zH ,

where PH = QH , pH = qH , zH = cH .
Our goal is to use Dynamic programming to show that V ?

H−1(x) also has this quadratic formulation that contains
second order term, first order term, and the zero-th order term:

V ?
H−1(x) = xTPH−1x+ x>pH−1 + zH−1,

1



wherePH−1, pH−1, zH−1 are variables that depend onPH , pH , zH andAH−1, BH−1,mH−1,QH−1, qH−1, RH−1, rH−1, cH−1.
In the HW problem, we will work out the detailed recursion update. Given V ?

h and Q?h, we can derive the optimal
policy as:

π?h(x) = argmin
u

Q?h(x, u).

We will see in HW problem that this optimal policy again is a linear function of x.

Oracle For the purpose of notation simplicity for iterative LQR on nonlinear control, Let us summarize the above
DP procedure as the following black-box procedure:{

π?0, . . . , π
?
H−1

}
← GeneralLQR

(
QH , qH , cH , {Qt, qt, ct, Rt, rt,Mt, At, Bt,mt}H−1t=0

)
.

Namely, the general LQR black box takes the problem parameters (e.g., parameters of the cost functions, and
parameters of the transitions) as input, outputs the optimal policy π?h for h ∈ [H].

As you will see in the HW problems, the optimal policy takes the following linear form:

π?h(x) = −K?
hx+ k?h,

where K?
h ∈ Rdu×dx , and k?h ∈ Rdu .

3 Iterative Linear Quadratic Regulator

Now we consider the general nonlinear control problem that we posed at the beginning of this lecture note. We are
going to use an iterative procedure to compute a locally optimal policy for the general nonlinear control problem. In
high level, at each iteration, given the current trajectory, what we will do is that we are going to perform second-order
taylor expansion on the cost functions c at the current trajectory state-action pairs; we are going to perform first order
taylor expansion on the nonlinear dynamics at the current trajectory state-action pairs. With taylor expansion, we get
quadratic cost functions—one for each time step, and we get linear dynamical systems—one for each time step.

3.1 Taylor Expansion

Let us consider the Talyor expansion procedure here which is used to get a quadratic cost function and a linear
dynamical system.

Assume that we are given a nominal trajectory {x̄0, ū0, x̄1, ū1, . . . , x̄H−1, ūH−1, x̄H}. We first perform first-
order Taylor expansion on the nonlinear dynamical system. Linearize f at x̄t, ūt, we get:

f(x, u) ≈ f(x̄t, ūt) +∇xf(x̄t, ūt) (x− x̄t) +∇uf(x̄t, ūt) (u− ūt) ,

where ∇xf(x, u) ∈ Rdx×dx is the partial gradient of f with respect to x (it is also called Jacobian), i.e.,
∇xf(x, u)[i, j] = ∂f [i]

∂x[j](x, u), and ∇uf(x, u) ∈ Rdx×du is the partial gradient of f with respect to u, i.e.,

∇uf(x, u)[i, j] = ∂f [i]
u[j] (x, u).

Perform linearization for all t, we get a sequence of time-inhomogeneous linear dynamical systems, where:

At := ∇xf(x̄t, ūt), Bt := ∇uf(x̄t, ūt), mt := f(x̄t, ūt)−Atx̄t −Btūt, ∀t = 0, . . . ,H − 1. (1)

2



We can perform similar operation on the non-linear cost functions, but we will perform second-order taylor
expansion instead (recall that in LQR formulation, we can handle quadratic cost functions). For all t, perform
second-order Taylor expansion at (x̄t, ūt), we get:

c(x, u) ≈ c(x̄t, ūt) +∇xc(x̄t, ūt)>(x− x̄t) +∇uc(x̄t, ūt)>(u− ūt) (2)

+
1

2
(x− x̄t)>∇2

xc(x̄t, ūt)(x− x̄t) +
1

2
(u− ūt)>∇2

uc(x̄t, ūt)(u− ūt) + (x− x̄t)>∇x,uc(x̄t, ūt)(u− ūt),
(3)

where ∇xc(x, u) ∈ Rdx is the gradient of c(x, u) with respect to x, i.e., ∇xc(x, u)[i] = ∂c
∂x[i](x, u) (similarly for

∇uc(x, u) ∈ Rdu), and ∇2
xc(x, u) ∈ Rdx×dx is the Hessian with respect to x, i.e., ∇2

xc(x, u)[i, j] = ∂2c
∂x[i]∂x[j](x, u)

(similarly for∇2
uc(x, u)), and∇x,uc(x, u)[i, j] = ∂2c

∂x[i]∂u[j] , and∇x,uc(x, u) ∈ Rdx×du .
This gives us a sequence of quadratic cost functions,

QH = ∇2
xg(x̄H)/2, qH = ∇xg(x̄H)−∇2

xg(x̄H)x̄H , cH = g(x̄H)− q>H x̄H +
1

2
x̄>H∇2

xg(x̄H)x̄H , (4)

∀t = 0, . . . ,H − 1 : (5)

Qt = ∇2
xc(x̄t, ūt)/2, Rt = ∇2

uc(x̄t, ūt)/2, (6)

Mt = ∇x,uc(x̄t, ūt) (7)

qt = ∇xc(x̄t, ūt)−∇2
xc(x̄t, ūt)x̄t −∇x,uc(x̄t, ūt)ūt, (8)

rt = ∇uc(x̄t, ūt)−∇2
uc(x̄t, ūt)ūt −∇x,uc(x̄t, ūt)>x̄t, (9)

ct = c(x̄t, ūt)−∇xc(x̄t, ūt)>x̄t −∇uc(x̄t, ūt)>ūt +
1

2
x̄>t Qtx̄t +

1

2
ū>t Rtūt + x̄>t Mtūt; (10)

So after this procedure, we are almost there to call the general LQR black box oracle to compute π?0, . . . π
?
H−1,

using At, Bt,mt, Qt, qt, Rt,Mt, rt, ct for t ∈ [H]. But we need one more step to process Qt, Rt for all t.
Note that while the above derivation looks tedious, all we did is basically Taylor expansion and re-arrange terms

to get the form that we want.

3.2 Making Quadratized cost function convex

Now that our original nonlinear cost function might not even be convex. So after performing second order taylor
expansion at some (x̄t, ūt), Qt and Rt might not be PSD. To use LQR, we need to use PSD Qt and Rt. We can
perform the following approximation on Qt and Rt to force them to be PSD.

Denote the eigen-decomposition of Qt as follow: Qt =
∑dx

i=1 σiviv
>
i , where σi is the i-th eigevalue and vi is

the corresponding eigenvector. For any negative eigenvalues, we simply set them to zero, i.e., we construct a PSD
matrix to approximate Qt as follows:

Qt ⇐
dx∑
i=1

σiviv
>
i 1{σi ≥ 0}+ λI, ∀t = 0, . . . ,H, (11)

where λ ∈ R+ is the regularization to make Qt truly positive definite.
Similarly, denote the eigendecomposition of Rt as Rt =

∑du
i=1 ξiuiu

>
i , and we construct a PSD matrix by

throwing aways negative eigenvalues to approximate Rt as follows:

Rt ⇐
du∑
i=1

ξiuiu
>
i 1{ξi ≥ 0}+ λI, ∀t = 0, . . . ,H − 1 (12)

With the above approximation procedures on Qt and Rt, we must have both Qt and Rt being positive definite
matrices.

3



3.3 The Iterative Procedure

We start from the following iterative procedure. Let us initialize a sequence of nominal controls, i.e., initial-
ize ū00, ū

0
1, . . . , ū

0
H−1 (i.e., maybe we can just set ū0t = 0 for all t as one kind of initialization). We execute

ū00, ū
0
1, . . . , ū

0
H−1 and get a sequence of corresponding states x̄00, . . . , x̄

0
H , where x̄0t+1 = f(x̄0t , ū

0
t ).

Repeat the following procedure for k = 0→∞:

1. Define c̃t(x, u) := c(x, u) + λ‖u− ūkt ‖22 where λ ∈ R+, ∀t = 0, H − 1, and define c̃H(x) = g(x).

2. Following Eq 4, we quadratic c̃t around (x̄kt , ū
k
t ) to get Qt, Rt,Mt, qt, rt, ct for t = 0, . . . H − 1, and

quadratize c̃H at x̄kH to get QH , qH , cH .

3. Following Eq. 1, we linearize f(x, u) at (x̄kt , ū
k
t ) to get At, Bt,mt, for all t = 0, . . . ,H − 1.

4. Following Eq. 11 and 12, make Q0, . . . , QH and R0, . . . , RH−1 positive definite matrices.

5. π0, . . . , πH−1 ← GeneralLQR
(
QH , qH , cH , {Qt, qt, ct, Rt, rt,Mt, At, Bt,mt}H−1t=0

)
6. Starting at x̄k+1

0 = x̄0, we compute ūk+1
t = πt(x̄

k+1
t ), x̄k+1

t+1 = f(x̄k+1
t , ūk+1

t ) for t = 0, . . . ,H − 1

Basically, we iteratively linearize and quadratize around the current state-action trajectory; we then call our
general LQR oracle to compute a sequence of new policies, and re-generate the new state-action trajectory stating at
x0, and repeat.

Control Damping In the class, we talked about using the line search trick to ensure stable convergence. Here, we
present a another popular approach. Note that in Item 1 we add a regularization term λ‖u− ūkt ‖22 to c(x, u) with
λ ∈ R+. This term ensures that we penalize the deviation from the current control ūkt . This forces that our new
state-action trajectory is not that far away from the current one. This regularization is necessary since the taylor
expansion is only valid in the region that is near the expansion point (x̄kt , ū

k
t ). In the extreme case, setting λ =∞,

we will never move away from the current trajectory (x̄kt , ū
k
t ). In practice, we need to tune λ to get the best empirical

performance (we want to make fast improvement, but we also want to be cautious as linearization and quadratization
induces approximation errors). This regularization trick is often called control damping.

4


	Setting
	 Time inhomogeneous LQR
	Iterative Linear Quadratic Regulator
	Taylor Expansion
	Making Quadratized cost function convex
	The Iterative Procedure


