Optimal Control Theory and Linear Quadratic Regulators
Recap:
Finite horizon Markov Decision Process

\[\mathcal{M} = \{S, A, r, P, H, \mu_0\}, \]
\[r : S \times A \mapsto [0, 1], H \in \mathbb{N}^+, P : S \times A \mapsto \Delta(S), s_0 \sim \mu_0 \]

We need to consider time-dependent policies, i.e.,
\[\pi := \{\pi_0, \pi_1, \ldots, \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h \]

Policy interacts with the MDP as follows:
\[\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}, s_H\}, s_0 \sim \mu_0, a_0 = \pi_0(s_0), s_1 \sim P(\cdot | s_0, a_0), a_1 = \pi_1(s_1), \ldots \]
Recap: V/Q functions in Finite horizon MDP

\[V_{\pi}^h(s) = \mathbb{E} \left[\sum_{\tau=h}^{H-1} r(s_\tau, a_\tau) \mid s_h = s, a_\tau = \pi_\tau(s_\tau), s_{\tau+1} \sim P(\cdot \mid s_\tau, a_\tau) \right] \]

\[Q_{\pi}^h(s, a) = \mathbb{E} \left[\sum_{\tau=h}^{H-1} r(s_\tau, a_\tau) \mid (s_h, a_h) = (s, a), a_\tau = \pi_\tau(s_\tau), P \right] \]

Bellman Equation:

\[Q_{\pi}^h(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[V_{\pi}^{h+1}(s') \right] \]
Example: Compute Optimal Policy
Example (Continue)
Recap: Formalizing the process

$$\pi^* = \{\pi_0^*, \pi_1^*, \ldots, \pi_{H-1}^*\}$$

We use Dynamic Programming, and do DP backward in time; start at $H - 1$

$$Q_{H-1}^*(s, a) = r(s, a) \quad \pi_{H-1}^*(s) = \arg\max_a Q_{H-1}^*(s, a)$$

$$V_{H-1}^*(s) = \max_a Q_{H-1}^*(s, a) = Q_{H-1}^*(s, \pi_{H-1}^*(s))$$
Recap: Formalizing the process

\[\pi^* = \{\pi^*_0, \pi^*_1, \ldots, \pi^*_{H-1}\} \]

We use Dynamic Programming, and do DP backward in time; start at \(H - 1 \)

\[Q^*_{H-1}(s, a) = r(s, a) \quad \pi^*_{H-1}(s) = \arg\max_a Q^*_{H-1}(s, a) \]

\[V^*_{H-1}(s) = \max_a Q^*_{H-1}(s, a) = Q^*_{H-1}(s, \pi^*_{H-1}(s)) \]

Now assume that we have already computed \(V^*_{h+1}, h \leq H - 2 \) (i.e., we know how to perform optimally at \(h + 1 \))

\[Q^*_h(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} V^*_{h+1}(s') \]

\[\pi^*_h(s) = \arg\max_a Q^*_h(s, a) \]
State-action Distributions

Given $\pi := \{\pi_0, \ldots, \pi_{H-1}\}$

Define $\mathbb{P}^\pi_h(s, a; \mu_0)$: the probability of reaching (s, a) at time step h following π from μ_0
State-action Distributions

Given \(\pi := \{ \pi_0, \ldots, \pi_{H-1} \} \)
Define \(\mathbb{P}_{h}^{\pi}(s, a; \mu_0) \): the probability of reaching \((s, a)\) at time step \(h\) following \(\pi\) from \(\mu_0\)

We define average state-action distribution as:

\[
d^{\pi}(s, a) = \frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}_{h}^{\pi}(s, a; \mu_0)
\]
State-action Distributions

Given \(\pi := \{\pi_0, \ldots, \pi_{H-1}\} \)

Define \(\mathbb{P}^\pi_h(s, a; \mu_0) \): the probability of reaching \((s, a)\) at time step \(h \) following \(\pi \) from \(\mu_0 \)

We define average state-action distribution as:

\[
d^\pi(s, a) = \frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}^\pi_h(s, a; \mu_0)
\]

Writing Expected total reward using \(d^\pi(s, a) \):

\[
\mathbb{E}_{s_0 \sim \mu_0} \left[V^\pi_h(s_0) \right] = H\mathbb{E}_{s, a \sim d^\pi} \left[r(s, a) \right]
\]
Robotics and Controls

Dexterous Robotic Hand Manipulation
OpenAI, 2019
Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control: force on the cart
Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control: force on the cart
Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control: force on the cart

Goal: stabilizing around the point \((x = x^*, u = 0)\)

\[
c(x_h, u_h) = u_h^T R u_h + (x_h - x^*)^T Q (x_h - x^*)
\]
Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control: force on the cart

Goal: stabilizing around the point \((x = x^*, u = 0)\)

\[
c(x_h, u_h) = u_h^\top Ru_h + (x_h - x^*)^\top Q(x_h - x^*)
\]

Optimal control:

\[
\min_{\pi:X \to U} \mathbb{E} \left[\sum_{h=0}^{H-1} c(x_h, u_h) \right], \text{ s.t., } x_{h+1} = f(x_h, u_h), x_0 \sim \mu_0
\]
More Generally: Optimal Control

- A dynamical system is described as
 \[x_{h+1} = f_h(x_h, u_h, w_h) \]
 where \(f_h \) maps a state \(x_h \in \mathbb{R}^d \), a control (the action) \(u_h \in \mathbb{R}^k \), and a disturbance \(w_h \), to the next state \(x_{h+1} \in \mathbb{R}^d \), starting from an initial state \(x_0 \sim \mu_0 \).
More Generally: Optimal Control

- a dynamical system is described as
 \[x_{h+1} = f_h(x_h, u_h, w_h) \]
 where \(f_h \) maps a state \(x_h \in \mathbb{R}^d \), a control (the action) \(u_h \in \mathbb{R}^k \), and a disturbance \(w_h \),
 to the next state \(x_{h+1} \in \mathbb{R}^d \), starting from an initial state \(x_0 \sim \mu_0 \).

- The objective is to find the control policy \(\pi \) which minimizes the long term cost,
 \[
 \text{minimize } \mathbb{E}_\pi \left[c_H(x_H) + \sum_{h=0}^{H-1} c_h(x_h, u_h) \right]
 \]
 such that \(x_{h+1} = f_h(x_h, u_h, w_h), u_h = \pi(x_h), x_0 \sim \mu_0 \)
 where \(H \) is the time horizon and where \(w_h \) is either statistical (e.g., Gaussian noise) or deterministic (e.g., constant deviation)
Reduce Continuous control to Discrete MDP?

\[x \in \mathbb{R}^d, u \in \mathbb{R}^k \]
Reduce Continuous control to Discrete MDP?

\[x \in \mathbb{R}^d, u \in \mathbb{R}^k \]

Curse of dimensionality:
the number of discretized points are approximately \((1/\epsilon)^d + (1/\epsilon)^k\)
Today:
The LQR Model
The Linear Quadratic Regulator (LQR)

\[
\min_{\pi_0, \ldots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{h=0}^{H-1} (x_h^T Q x_h + u_h^T R u_h) \right]
\]

such that \(x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h), \ x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I), \)

Here, \(x_h \in \mathbb{R}^d, u_h \in \mathbb{R}^k, \)
The Linear Quadratic Regulator (LQR)

\[
\min_{\pi_0, \ldots, \pi_{H-1}} E \left[x_H^T Q x_H + \sum_{h=0}^{H-1} (x_h^T Q x_h + u_h^T R u_h) \right]
\]

such that \(x_{h+1} = A x_h + B u_h + w_h \), \(u_h = \pi_h(x_h) \), \(x_0 \sim \mu_0 \), \(w_h \sim N(0, \sigma^2 I) \).

Here, \(x_h \in \mathbb{R}^d \), \(u_h \in \mathbb{R}^k \).

Studied often in theory, but less relevant in practice (largely due to that time homogenous, globally linear models are rarely good approximations)
Example: 1-d Vehicle

State $x = (p, v)$, i.e., 1-d position and its velocity

[Example credit: Stanford EE 103]
Example: 1-d Vehicle

State $x = (p, v)$, i.e., 1-d position and its velocity

Control u, 1-d force, Friction force $-\eta v$, Vehicle mass m,
Example: 1-d Vehicle

State $x = (p, v)$, i.e., 1-d position and its velocity

Control u, 1-d force, Friction force $-\eta v$, Vehicle mass m,

Consider discrete time $t = 0, 2\delta, 3\delta, \ldots$, for small δ, we have:
Example: 1-d Vehicle

State \(x = (p, v) \), i.e., 1-d position and its velocity

Control \(u \), 1-d force, Friction force \(-\eta v\), Vehicle mass \(m\),

Consider discrete time \(t = 0, 2\delta, 3\delta, \ldots, \), for small \(\delta \), we have:

\[
m \frac{v_{h+1} - v_h}{\delta} \approx u - \eta v_h, \quad \frac{p_{h+1} - p_h}{\delta} \approx v_h
\]

[Example credit: Stanford EE 103]
V/Q functions:

- Define the value function $V_\pi^h : \mathbb{R}^d \rightarrow \mathbb{R}$ as
 $$V_\pi^h(x) = \mathbb{E}\left[x_H^\top Q x_H + \sum_{t=h}^{H-1} (x_t^\top Q x_t + u_t^\top R u_t) \mid \pi, x_h = x\right],$$

- and the state-action value $Q_\pi^h : \mathbb{R}^d \times \mathbb{R}^k \rightarrow \mathbb{R}$ as:
 $$Q_\pi^h(x, u) = \mathbb{E}\left[x_H^\top Q x_H + \sum_{t=h}^{H-1} (x_t^\top Q x_t + u_t^\top R u_t) \mid \pi, x_h = x, u_h = u\right],$$
Optimal Value functions:

$$V_h^*(x) = \min_{\pi_h, \pi_{h+1}, \ldots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{i=h}^{H-1} x_i^T Q x_i + u_i^T R u_i \mid u_t = \pi_t(x_t), x_h = x \right]$$
Optimal Value functions:

\[V_h^*(x) = \min_{\pi_h, \pi_{h+1}, \ldots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{i=h}^{H-1} x_i^T Q x_i + u_t^T R u_t \bigg| u_t = \pi_t(x_t), x_h = x \right] \]

Theorem:

\(V_h^* \) is a quadratic function, i.e., \(V_h^*(x) = x^T P_h x + p_h \),

and optimal policy is linear:

\(\pi_h^*(x) = -K_h^* x, \)

and \(P_h \) & \(K_h^* \) can be computed exactly
Optimal Value functions:

\[V^*_h(x) = \min_{\pi_h, \pi_{h+1}, \ldots, \pi_{H-1}} \mathbb{E} \left[x^T H Q x_H + \sum_{i=h}^{H-1} x_i^T Q x_i + u_i^T R u_i \mid u_i = \pi_i(x_i), x_h = x \right] \]

Theorem:

\(V^*_h \) is a quadratic function, i.e., \(V^*_h(x) = x^T P_h x + p_h \),
and optimal policy is linear:
\[\pi^*_h(x) = -K^*_h x, \]
and \(P_h \) & \(K_h^* \) can be computed exactly

(Derivation? We will do it together next Tuesday)
Next Lecture:

How to compute the optimal policy in closed-form solution