
Optimal Control Theory and  
Linear Quadratic Regulators



, 

, 

ℳ = {S, A, r, P, H, μ0}
r : S × A ↦ [0,1], H ∈ ℕ+, P : S × A ↦ Δ(S) s0 ∼ μ0

Recap: 

Finite horizon Markov Decision Process

We need to consider time-dependent policies, i.e.,

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h

τ = {s0, a0, s1, a1, …, sH−1, aH−1, sH}, s0 ∼ μ0, a0 = π0(s0), s1 ∼ P( ⋅ |s0, a0), a1 = π1(s1), …

Policy interacts with the MDP as follows:



Recap: V/Q functions in Finite horizon MDP

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) |sh = s, aτ = πτ(sτ), sτ+1 ∼ P( ⋅ |sτ, aτ)]
Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) | (sh, ah) = (s, a), aτ = πτ(sτ), P]

Qπ
h (s, a) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [Vπ

h+1(s′￼)]

Bellman Equation:



Example: Compute Optimal Policy



Example (Continue)



Recap: Formalizing the process
π⋆ = {π⋆

0 , π⋆
1 , …, π⋆

H−1}

π⋆
H−1(s) = arg max

a
Q⋆

H−1(s, a)

We use Dynamic Programming, and do DP backward in time; start at H − 1

Q⋆
H−1(s, a) = r(s, a)

V⋆
H−1(s) = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))



Recap: Formalizing the process
π⋆ = {π⋆

0 , π⋆
1 , …, π⋆

H−1}

π⋆
H−1(s) = arg max

a
Q⋆

H−1(s, a)

We use Dynamic Programming, and do DP backward in time; start at H − 1

Q⋆
H−1(s, a) = r(s, a)

V⋆
H−1(s) = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

Now assume that we have already computed  

(i.e., we know how to perform optimally at )

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′￼∼P(⋅|s,a)V⋆

h+1(s′￼)

π⋆
h (s) = arg max

a
Q⋆

h (s, a)



State-action Distributions

Given 

Define : the probability of reaching  at time step  following  from 

π := {π0, …, πH−1}
ℙπ

h(s, a; μ0) (s, a) h π μ0
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State-action Distributions

Given 

Define : the probability of reaching  at time step  following  from 

π := {π0, …, πH−1}
ℙπ

h(s, a; μ0) (s, a) h π μ0

We define average state-action distribution as: 


dπ(s, a) =
1
H

H−1

∑
h=0

ℙπ
h(s, a; μ0)

Writing Expected total reward using : 
dπ(s, a)
𝔼s0∼μ0 [Vπ

h (s0)] = H𝔼s,a∼dπ [r(s, a)]



Robotics and Controls
Dexterous Robotic Hand Manipulation


OpenAI, 2019 



Example: CartPole

State: position and velocity of the cart, 

angle and angular velocity of the pole

Control: force on the cart
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Example: CartPole

c(xh, uh) = u⊤
h Ruh + (xh − x⋆)⊤Q(xh − x⋆)

Goal: stabilizing around the point (x = x⋆, u = 0)

State: position and velocity of the cart, 

angle and angular velocity of the pole

Control: force on the cart



Example: CartPole

c(xh, uh) = u⊤
h Ruh + (xh − x⋆)⊤Q(xh − x⋆)

Goal: stabilizing around the point (x = x⋆, u = 0)

State: position and velocity of the cart, 

angle and angular velocity of the pole

Control: force on the cart

min
π:X→U

𝔼 [
H−1

∑
h=0

c(xh, uh)], s.t., xh+1 = f(xh, uh), x0 ∼ μ0

Optimal control:



More Generally: Optimal Control
• a dynamical system is described as  

 
where  maps a state , a control (the action) , and a disturbance ,  
to the next state , starting from an initial state .  

xh+1 = fh(xh, uh, wh)
fh xh ∈ Rd uh ∈ Rk wh

xh+1 ∈ Rd x0 ∼ μ0



More Generally: Optimal Control
• a dynamical system is described as  

 
where  maps a state , a control (the action) , and a disturbance ,  
to the next state , starting from an initial state .  

xh+1 = fh(xh, uh, wh)
fh xh ∈ Rd uh ∈ Rk wh

xh+1 ∈ Rd x0 ∼ μ0

• The objective is to find the control policy  which minimizes the long term cost,    

 

where  is the time horizon and where  is either statistical (e.g., Gaussian noise) 
or deterministic (e.g., constant deviation)

π

minimize 𝔼π[cH(xH) +
H−1

∑
h=0

ch(xh, uh)]
such that xh+1 = fh(xh, uh, wh), uh = π(xh), x0 ∼ μ0

H wh



Reduce Continuous control to Discrete MDP?

x ∈ ℝd, u ∈ ℝk



Reduce Continuous control to Discrete MDP?

x ∈ ℝd, u ∈ ℝk

Curse of dimensionality:  

the number of discretized points are approximately (1/ϵ)d + (1/ϵ)k



Today: 

The LQR Model



The Linear Quadratic Regulator (LQR)

min
π0,…,πH−1

E [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh, uh = πh(xh) x0 ∼ μ0, wh ∼ N(0,σ2I) ,

Here, xh ∈ ℝd, uh ∈ ℝk,



The Linear Quadratic Regulator (LQR)

min
π0,…,πH−1

E [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh, uh = πh(xh) x0 ∼ μ0, wh ∼ N(0,σ2I) ,

Here, xh ∈ ℝd, uh ∈ ℝk,

Studied often in theory, but less relevant in practice (?) 
(largely due to that time homogenous, globally linear models are rarely good approximations)




Example: 1-d Vehicle 
State , i.e., 1-d position and its velocityx = (p, v)

[Example credit: Stanford EE 103]
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Example: 1-d Vehicle 
State , i.e., 1-d position and its velocityx = (p, v)

Control , 1-d force,u Friction force , −ηv Vehicle mass , m

Consider discrete time , for small  we have: t = 0, 2δ, 3δ, …, δ,

m
vh+1 − vh

δ
≈ u − ηvh,

ph+1 − ph

δ
≈ vh

[Example credit: Stanford EE 103]



V/Q functions:

• Define the value function  as 




• and the state-action value  as: 

Vπ
h : ℝd → ℝ

Vπ
h (x) = 𝔼[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x],

Qπ
h : ℝd × ℝk → ℝ

Qπ
h (x, u) = 𝔼[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x, uh = u],



Optimal Value functions:

V⋆
h (x) = min

πh,πh+1,…,πH−1

𝔼 [xT
HQxH +

H−1

∑
t=h

x⊤
t Qxt + u⊤

t Rut ut = πt(xt), xh = x]



Optimal Value functions:

V⋆
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𝔼 [xT
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H−1

∑
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Theorem: 

 is a quadratic function, i.e., , 


and optimal policy is linear: 

, 


and  can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph
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h (x) = − K⋆

h x
Ph & K⋆

h



Optimal Value functions:

V⋆
h (x) = min

πh,πh+1,…,πH−1

𝔼 [xT
HQxH +

H−1

∑
t=h

x⊤
t Qxt + u⊤

t Rut ut = πt(xt), xh = x]

Theorem: 

 is a quadratic function, i.e., , 


and optimal policy is linear: 

, 


and  can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph

π⋆
h (x) = − K⋆

h x
Ph & K⋆

h

(Derivation? We will do it together next Tuesday)



Next Lecture:
How to compute the optimal policy in closed-form solution



