Optimal Control Theory and
Linear Quadratic Regulators



Recap:
Finite horizon Markov Decision Process

M — {S,A,}”,P,H,//lo},
r:SXxAme [0,1,HENT,P:SXA P A(S), sy ~ K

We need to consider time-dependent policies, I.e.,
.= {71'0, 71, ...,ﬂ'H_l}, T, . S A, Vh

Policy interacts with the MDP as follows:

T = {So, ao, Sl,al, ...,SH_l,CZH_l,SH},SO ~ //to, aO — ﬂO(SO)’ Sl ~ P( . ‘So, ao), al _— ﬂl(Sl),



Recap: V/Q functions in Finite horizon MDP

H-1
VthT(S) — L l Z r(ST’ af) ‘ Sp = 8, d, = ]TT(ST)9 Sz'+1 ~ P( ) ‘Sz-a af)]

=h

H-1
Q/(s,a) = l Z r(s,a)| (s, a,) = (s,a),a, = n(s,), P]

T=h

Bellman Equation:

0;i(s, @) = r(s, @) + Ey_pjsa) [Viia (8]




Example: Compute Optimal Policy



Example (Continue)



Recap: Formalizing the process

*

T* = {71'8(,72' : ...,71';;_1}

We use Dynamic Programming, and do DP backward in time; start at  — 1

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;;_I(S) = Inax Q;](_l(sa a) = Qﬁ_l(& ﬂﬁ_l(S))



Recap: Formalizing the process

=\, ,...,ﬂg_l}

We use Dynamic Programming, and do DP backward in time; start at  — 1

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_I(S) = Inax Q;;_l(sa a) = Q[;(_l(sa ﬂﬁ_l(S))

Now assume that we have already computed V), ., h < H — 2
(i.e., we know how to perform optimally at & + 1)

Q}T(S9 a) — r(S9 a) + _S/NP(ls,a)V]:lk—l—l(S,)

7 (s) = arg mjx Q. (s,a)



State-action Distributions

Given 7w 1= {7y, ..., Tyy_1 |
Define [P/ (s, a; j4): the probability of reaching (s, a) at time step / following 7 from p,
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State-action Distributions

Given w := {my, ..., Tpy_1 }
Define [P/ (s, a; j4): the probability of reaching (s, a) at time step / following 7 from p,

We define average state-action distribution as:

| H=l
d*(s,a) = — P*(s, a;
(s, a) thg %(5, a3 Ho)

Writing Expected total reward using d”(s, a):
= S0™~Ho [VijzZ (SO)] = HIEg g [r (s, a)]




Robotics and Controls

Dexterous Robotic Hand Manipulation
OpenAl, 2019




Example: CartPole

State: position and velocity of the cart,
angle and angular velocity of the pole

Control: force on the cart
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Example: CartPole

Goal: stabilizing around the point (x = x*, u = 0)

M | F C()Ch, I/lh) — I/l}_erl/lh -+ (Xh — -x*)TQ(xh T X*)
FTTTTTTTT I 777777771 7T 7T 777777

State: position and velocity of the cart,
angle and angular velocity of the pole

Control: force on the cart




Example: CartPole

Goal: stabilizing around the point (x = x*, u = 0)

M _F C‘()Ch, I/lh) — I/l}_erl/lh -+ (Xh — -x*)TQ(xh T X*)

LI PTEPT I T I i i rrrrrrrriirsry

State: position and velocity of the cart,
angle and angular velocity of the pole

Control: force on the cart Optimal control:

H-1
min [E [ Z C(xh, l/th)] . St, Xh+1 :f(xh, I/th),xO ~ Ho

X
. X—->U =0




More Generally: Optimal Control

* adynamical system is described as
Xpa1 = Jn(Xns Uy W)
where f, maps a state x, € R%, a control (the action) 1, € R¥, and a disturbance w,,
to the next state x; . | & R, starting from an initial state Xg ~ Ho-



More Generally: Optimal Control

 adynamical system is described as

Xpa1 = Jn(Xns Uy W)
where f, maps a state x;, € R4, a control (the action) U, R¥, and a disturbance Wy,
to the next state x; . | & R, starting from an initial state Xg ~ Ho-

 The objective is to find the control policy 7 which minimizes the long term cost,

H-1
minimize —ﬂch(xH) + Z ch(xh, Mh)]
h=0

such that x; . = f, (X, Uy, W), uy, = (X)), X9 ~ Ko
where H is the time horizon and where w; is either statistical (e.g., Gaussian noise)
or deterministic (e.g., constant deviation)



Reduce Continuous control to Discrete MDP?

x€e R4y e R



Reduce Continuous control to Discrete MDP?

x€e R4y e R

Curse of dimensionality:
the number of discretized points are approximately (1/€)? + (1/¢)*



lToday:
The LQR Model



The Linear Quadratic Regulator (LQR)

H-1
min E | x;Oxy + Z (x, Ox,, + u, Ruy,)
h=0

TTys - - s TT_ 1

such that Apt1 — Axh + Bl/th + Wy, Up = ﬂh(xh) Xo ~ Hos Wy ™ N(O,Uzl) .

Here, Xx; € Rd, U, & Rk,



The Linear Quadratic Regulator (LQR)

H-1
min E | x;Oxy + Z (x, Ox,, + u, Ruy,)
h=0

TTys - - s TT_ 1

such that Apt1 — Axh + Bl/th + Wy, Up = ﬂh(xh) Xo ~ Hos Wy ™ N(O,Uzl) .

Here, Xx; € Rd, U, & Rk,

Studied often in theory, but less relevant in practice (?)
(largely due to that time homogenous, globally linear models are rarely good approximations)



Example: 1-d Vehicle

State x = (p, v), i.e., 1-d position and its velocity

[Example credit: Stanford EE 103]
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Example: 1-d Vehicle

State x = (p, v), i.e., 1-d position and its velocity

Control u, 1-d force, Friction force —nv, Vehicle mass m,

Consider discrete time t = 0, 26, 30, ...,, for small 6, we have:

th+1 ~—Vn P Pnv1 —Pn
ny - h, ny/
0 0

Vi

[Example credit: Stanford EE 103]



V/Q functions:

+ Define the value function V7 : R? — R as

H-1
Vi(x) =L [x;QxH + Z (x'Ox,+u'Ru) | m,x, = x],
t=h
» and the state-action value Q; : RYx R* - R as:

H-1
Qy(x,u) =L [x;QXH + Z (x'Ox,+u'Ru) | ,x, = x,u, = u] :
t=h




Optimal Value functions:

U, = m(x,),x, =x

H-1
Vx)= min E X5 0xy + Z x'Ox, + u'Ru,
t=h

ﬂh’ﬂh+1" . .,ﬂ'H_l




Optimal Value functions:

H-1
V;(X) — min n ngxH + Z xtTth + utTRut u, = ][t(xt),xh — X
TpsTtpg15- - s H—1 —
Theorem:

V}f Is a quadratic function, i.e., V;(x) = xTPhx + Dy
and optimal policy is linear:
T (x) = — Kx,

and P, & K;* can be computed exactly



Optimal Value functions:

H-1
V;(X) — min n ngxH + Z XtTQXt + utTRut u, = ][t(xt),xh — X
TpsTtpg15- - s H—1 —
Theorem:

V* is a quadratic function, i.e., V*(x) = x ' Pyx + p,,
and optimal policy is linear:
T (x) = — Kx,

and P, & K;* can be computed exactly

(Derivation? We will do it together next Tuesday)



Next Lecture:

How to compute the optimal policy in closed-form solution



