Optimal Control for Linear Quadratic Regulators

Recap: Dynamic Programming

$$\pi^* = \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}$$

We use Dynamic Programming, and do DP backward in time; start at H-1

$$Q_{H-1}^{\star}(s, a) = r(s, a)$$
 $\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$

$$V_{H-1}^{\star}(s) = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

Recap: Dynamic Programming

$$\pi^* = \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}$$

We use Dynamic Programming, and do DP backward in time; start at H-1

$$Q_{H-1}^{\star}(s, a) = r(s, a)$$
 $\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$

$$V_{H-1}^{\star}(s) = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

Now assume that we have already computed V_{h+1}^{\star} , $h \leq H-2$ (i.e., we know how to perform optimally at h+1)

$$Q_h^{\star}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} V_{h+1}^{\star}(s')$$
$$\pi_h^{\star}(s) = \arg\max_{a} Q_h^{\star}(s, a)$$

Recap: The Linear Quadratic Regulator (LQR)

$$\min_{\pi_0, \dots, \pi_{H-1}} E \left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h) \right]$$
 such that
$$x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \, ,$$

Here, $x_h \in \mathbb{R}^d$, $u_h \in \mathbb{R}^k$,

the disturbance $w_t \in \mathbb{R}^d$ is Gaussian noise $A \in \mathbb{R}^{d \times d}$ and $B \in \mathbb{R}^{d \times k}$; $Q \in \mathbb{R}^{d \times d}$ and $R \in \mathbb{R}^{k \times k}$ are pd matrices

V/Q functions:

• Value function $V_h^\pi:\mathbb{R}^d \to \mathbb{R}$ as

$$V_h^{\pi}(x) = \mathbb{E}\left[x_H^{\mathsf{T}} Q x_H + \sum_{t=h}^{H-1} (x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t) \middle| \pi, x_h = x\right],$$

• And $Q_h^{\pi}: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}$ as:

$$Q_h^{\pi}(x, u) = \mathbb{E}\left[x_H^{\top}Qx_H + \sum_{t=h}^{H-1} (x_t^{\top}Qx_t + u_t^{\top}Ru_t) \middle| \pi, x_h = x, u_h = u\right],$$

Optimal Value functions:

$$V_h^{\star}(x) = \min_{\pi_h, \pi_{h+1}, \dots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{t=h}^{H-1} x_t^{\top} Q x_t + u_t^{\top} R u_t \middle| u_t = \pi_t(x_t), x_h = x \right]$$

Optimal Value functions:

$$V_h^{\star}(x) = \min_{\pi_h, \pi_{h+1}, \dots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{t=h}^{H-1} x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t \middle| u_t = \pi_t(x_t), x_h = x \right]$$

Theorem:

 V_h^{\star} is a quadratic function, i.e., $V_h^{\star}(x) = x^{\top}P_hx + p_h$, and optimal policy is linear:

$$\pi_h^{\star}(x) = -K_h^{\star}x,$$

and $P_h \& K_h^{\star}$ can be computed exactly

Optimal Value functions:

$$V_h^{\star}(x) = \min_{\pi_h, \pi_{h+1}, \dots, \pi_{H-1}} \mathbb{E} \left[x_H^T Q x_H + \sum_{t=h}^{H-1} x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t \middle| u_t = \pi_t(x_t), x_h = x \right]$$

Theorem:

 V_h^{\star} is a quadratic function, i.e., $V_h^{\star}(x) = x^{\top}P_hx + p_h$, and optimal policy is linear:

$$\pi_h^{\star}(x) = -K_h^{\star}x,$$

and $P_h \& K_h^{\star}$ can be computed exactly

Today: we prove the above theorem and derive optimal policies

Again, we will do dynamic programming backward in time, i.e., from H to 0

Again, we will do dynamic programming backward in time, i.e., from H to 0

1. Base case:

Show that $V_H^{\star}(x)$ is quadratic for all $x \in \mathbb{R}^d$

Again, we will do dynamic programming backward in time, i.e., from H to 0

1. Base case:

Show that $V_H^{\star}(x)$ is quadratic for all $x \in \mathbb{R}^d$

- 2. Inductive hypothesis: Assume $V_{h+1}^{\star}(x)$ is quadratic $\forall x$:
- show that $Q_h^*(x, u)$ is quadratic in both (x, u)
- Derive the optimal policy $\pi_h^{\star}(x) = \arg\min_u Q_h^{\star}(x,u)$, and show that it's linear

Again, we will do dynamic programming backward in time, i.e., from H to 0

1. Base case:

Show that $V_H^{\star}(x)$ is quadratic for all $x \in \mathbb{R}^d$

- 2. Inductive hypothesis: Assume $V_{h+1}^{\star}(x)$ is quadratic $\forall x$:
- show that $Q_h^*(x, u)$ is quadratic in both (x, u)
- Derive the optimal policy $\pi_h^{\star}(x) = \arg\min_u Q_h^{\star}(x,u)$, and show that it's linear

3. Conclusion:

show $V_h^*(x)$ is quadratic for all x;

Base case at H

Recall our cost functions:

$$\min_{\pi_0, ..., \pi_{H-1}} \mathbb{E} \left[x_H^{\top} Q x_H + \sum_{h=0}^{H-1} (x_h^{\top} Q x_h + u_h^{\top} R u_h) \right]$$

Base case at H

Recall our cost functions:

$$\min_{\pi_0, ..., \pi_{H-1}} \mathbb{E} \left[x_H^{\top} Q x_H + \sum_{h=0}^{H-1} (x_h^{\top} Q x_h + u_h^{\top} R u_h) \right]$$

So, at time step H, given x, the cost-to-go is $x^{T}Qx$ regardless..

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x, \ \forall x \in \mathbb{R}^d$$

Base case at H

Recall our cost functions:

$$\min_{\pi_0, ..., \pi_{H-1}} \mathbb{E} \left[x_H^{\top} Q x_H + \sum_{h=0}^{H-1} (x_h^{\top} Q x_h + u_h^{\top} R u_h) \right]$$

So, at time step H, given x, the cost-to-go is $x^{T}Qx$ regardless..

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x, \ \forall x \in \mathbb{R}^d$$

Denote
$$P_H:=Q, p_H=0,$$
 we write $V_H^{\star}(x)=x^{\top}P_Hx+p_H$ (Goal: derive recursive formulation of $P_h, \& p_h$)

$$\begin{split} & \min_{\pi_0,...,\pi_{H-1}} \ E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h) \right] \\ & \text{such that} \quad x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ , \end{split}$$

Assume $V_{h+1}^{\star}(x) = x^{\mathsf{T}} P_{h+1} x + p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$

$$\begin{split} & \min_{\pi_0, \dots, \pi_{H-1}} \ E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h) \right] \\ & \text{such that} \quad x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ , \end{split}$$

Assume
$$V_{h+1}^{\star}(x) = x^{\mathsf{T}} P_{h+1} x + p_{h+1}$$
, for all x , where $P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$

$$Q_h^*(x, u) = c(x, u) + \mathbb{E}_{x' \sim P(x, u)} V_{h+1}^*(x')$$

$$\begin{split} & \min_{\pi_0,...,\pi_{H-1}} \ E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h) \right] \\ & \text{such that} \quad x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \,, \end{split}$$

Assume
$$V_{h+1}^{\star}(x) = x^{\mathsf{T}} P_{h+1} x + p_{h+1}$$
, for all x , where $P_{h+1} \in \mathbb{R}^{d \times d}$, $p_{h+1} \in \mathbb{R}$

$$Q_h^*(x, u) = c(x, u) + \mathbb{E}_{x' \sim P(x, u)} V_{h+1}^*(x')$$

= $x^{\mathsf{T}} Q x + u^{\mathsf{T}} R u + \mathbb{E}_{x' \sim P(x, u)} V_{h+1}^*(x')$

$$\begin{split} & \min_{\pi_0, \dots, \pi_{H-1}} \ E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h) \right] \\ & \text{such that} \quad x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ , \end{split}$$

Assume $V_{h+1}^{\star}(x) = x^{\mathsf{T}} P_{h+1} x + p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$

$$Q_{h}^{\star}(x, u) = c(x, u) + \mathbb{E}_{x' \sim P(x, u)} V_{h+1}^{\star}(x')$$

$$= x^{\mathsf{T}} Q x + u^{\mathsf{T}} R u + \mathbb{E}_{x' \sim P(x, u)} V_{h+1}^{\star}(x')$$

$$= x^{\mathsf{T}} Q x + u^{\mathsf{T}} R u + \mathbb{E}_{w \sim \mathcal{N}(0, \sigma^{2}I)} \left[V_{h+1}^{\star} (A x + B u + w) \right]$$

$$\min_{\pi_0,\dots,\pi_{H-1}} E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h)\right]$$
 such that
$$x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I),$$
 Assume
$$V_{h+1}^\star(x) = x^\top P_{h+1} x + p_{h+1}, \text{ for all } x, \text{ where } P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$$

$$Q_h^\star(x,u) = c(x,u) + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^\star(x')$$

$$\begin{aligned} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^{\star}(x') \\ &= x^{\top} Q x + u^{\top} R u + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^{\star}(x') \\ &= x^{\top} Q x + u^{\top} R u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[V_{h+1}^{\star} \left(A x + B u + w \right) \right] \\ &= x^{\top} Q x + u^{\top} R u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[(A x + B u + w)^{\top} P_{h+1} (A x + B u + w) + p_{h+1} \right] \end{aligned}$$

$$\min_{\pi_0,\dots,\pi_{H-1}} E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h)\right]$$
 such that $x_{h+1} = A x_h + B u_h + w_h$, $u_h = \pi_h(x_h)$ $x_0 \sim \mu_0$, $w_h \sim N(0, \sigma^2 I)$,
$$\text{Assume } V_{h+1}^\star(x) = x^\top P_{h+1} x + p_{h+1}, \text{ for all } x, \text{ where } P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$$

$$Q_h^\star(x,u) = c(x,u) + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^\star(x')$$

$$= x^\top Q x + u^\top R u + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^\star(x')$$

$$= x^\top Q x + u^\top R u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[V_{h+1}^\star \left(A x + B u + w \right) \right]$$

$$= x^{\top} Q x + u^{\top} R u + \mathbb{E}_{w \sim \mathcal{N}(0, \sigma^{2}I)} \left[(A x + B u + w)^{\top} P_{h+1} (A x + B u + w) + p_{h+1} \right]$$

$$= x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \mathbb{E}_{w \sim \mathcal{N}(0, \sigma^{2}I)} \left[w^{\top} P_{h+1} w \right] + p_{h+1}$$

$$\min_{\pi_0,\dots,\pi_{H-1}} E\left[x_H^\top Q x_H + \sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h)\right]$$
 such that $x_{h+1} = A x_h + B u_h + w_h, \ u_h = \pi_h(x_h) \ x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I),$ Assume $V_{h+1}^\star(x) = x^\top P_{h+1} x + p_{h+1},$ for all x , where $P_{h+1} \in \mathbb{R}^{d \times d}, p_{h+1} \in \mathbb{R}$
$$Q_h^\star(x,u) = c(x,u) + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^\star(x')$$

$$= x^\top Q x + u^\top R u + \mathbb{E}_{x' \sim P(x,u)} V_{h+1}^\star(x')$$

$$= x^\top Q x + u^\top R u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[V_{h+1}^\star(A x + B u + w) \right]$$

$$= x^\top Q x + u^\top R u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[(A x + B u + w)^\top P_{h+1}(A x + B u + w) + p_{h+1} \right]$$

$$= x^\top \left(Q + A^\top P_{h+1} A \right) x + u^\top \left(R + B^\top P_{h+1} B \right) u + 2x^\top A^\top P_{h+1} B u + \mathbb{E}_{w \sim \mathcal{N}(0,\sigma^2 I)} \left[w^\top P_{h+1} w \right] + p_{h+1}$$

$$= x^\top \left(Q + A^\top P_{h+1} A \right) x + u^\top \left(R + B^\top P_{h+1} B \right) u + 2x^\top A^\top P_{h+1} B u + \text{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1}$$

$$\begin{split} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x' \sim P(x,u)} \left[V_{h+1}^{\star}(x') \right] \\ &= x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2 x^{\top} A^{\top} P_{h+1} B u + \text{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} u + q_{h+1} B u +$$

$$\begin{split} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x'\sim P(x,u)}\left[V_{h+1}^{\star}(x')\right] \\ &= x^{\top}\left(Q + A^{\top}P_{h+1}A\right)x + u^{\top}\left(R + B^{\top}P_{h+1}B\right)u + 2x^{\top}A^{\top}P_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr$$

$$\pi_h^{\star}(x) = \arg\min_{u} Q_h^{\star}(x, u)$$

$$\begin{split} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x'\sim P(x,u)}\left[V_{h+1}^{\star}(x')\right] \\ &= x^{\top}\left(Q + A^{\top}P_{h+1}A\right)x + u^{\top}\left(R + B^{\top}P_{h+1}B\right)u + 2x^{\top}A^{\top}P_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr}\left(\sigma^2P_{h$$

$$\pi_h^{\star}(x) = \arg\min_{u} Q_h^{\star}(x, u)$$

Set $\nabla_u Q_h^*(x, u) = 0$, and solve for u:

$$\begin{split} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x'\sim P(x,u)}\left[V_{h+1}^{\star}(x')\right] \\ &= x^{\top}\left(Q + A^{\top}P_{h+1}A\right)x + u^{\top}\left(R + B^{\top}P_{h+1}B\right)u + 2x^{\top}A^{\top}P_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr$$

$$\pi_h^{\star}(x) = \arg\min_{u} Q_h^{\star}(x, u)$$

Set $\nabla_u Q_h^*(x, u) = 0$, and solve for u:

$$\pi_h^*(x) = -(R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A x$$

$$:= K_h^*$$

$$\begin{split} Q_h^{\star}(x,u) &= c(x,u) + \mathbb{E}_{x'\sim P(x,u)}\left[V_{h+1}^{\star}(x')\right] \\ &= x^{\top}\left(Q + A^{\top}P_{h+1}A\right)x + u^{\top}\left(R + B^{\top}P_{h+1}B\right)u + 2x^{\top}A^{\top}P_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + p_{h+1}Bu + \operatorname{tr}\left(\sigma^2P_{h+1}\right) + \operatorname{tr}\left(\sigma^2P_{h$$

$$\pi_h^{\star}(x) = \arg\min_{u} Q_h^{\star}(x, u)$$

Set $\nabla_u Q_h^*(x, u) = 0$, and solve for u:

$$\pi_h^*(x) = -(R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A x$$

$$:= K_h^*$$

$$:= -K_h^* x$$

$$Q_h^{\star}(x,u) = x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1}$$

$$\pi_h^{\star}(x) = -\underbrace{\left(R + B^{\top} P_{h+1} B \right)^{-1} B^{\top} P_{h+1} A}_{:=K_h^{\star}} x$$

$$Q_h^{\star}(x,u) = x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1}$$

$$\pi_h^{\star}(x) = -\underbrace{\left(R + B^{\top} P_{h+1} B \right)^{-1} B^{\top} P_{h+1} A}_{:=K_h^{\star}} x$$

$$V_h^{\star}(x) = Q_h^{\star}(x, \pi_h^{\star}(x))$$

$$Q_h^{\star}(x,u) = x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1}$$

$$\pi_h^{\star}(x) = -\underbrace{\left(R + B^{\top} P_{h+1} B \right)^{-1} B^{\top} P_{h+1} A}_{:=K_h^{\star}} x$$

$$V_h^{\star}(x) = Q_h^{\star}(x, \pi_h^{\star}(x))$$

We can express $V_h^{\star}(x)$ as $V_h^{\star}(x) = x^{\top} P_h x + p_h$, where:

$$Q_h^{\star}(x,u) = x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} A x$$

$$= \underbrace{- \left(R + B^{\top} P_{h+1} B \right)^{-1} B^{\top} P_{h+1} A}_{:=K_h^{\star}} x$$

$$V_h^{\star}(x) = Q_h^{\star}(x, \pi_h^{\star}(x))$$

We can express $V_h^{\star}(x)$ as $V_h^{\star}(x) = x^{\top} P_h x + p_h$, where:

$$\begin{split} P_h &= Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}} P_{h+1} B (R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A, \\ p_h &= \mathsf{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

$$Q_h^{\star}(x,u) = x^{\top} \left(Q + A^{\top} P_{h+1} A \right) x + u^{\top} \left(R + B^{\top} P_{h+1} B \right) u + 2x^{\top} A^{\top} P_{h+1} B u + \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} A x$$

$$= \underbrace{- \left(R + B^{\top} P_{h+1} B \right)^{-1} B^{\top} P_{h+1} A}_{:=K_h^{\star}} x$$

$$V_h^{\star}(x) = Q_h^{\star}(x, \pi_h^{\star}(x))$$

We can express $V_h^{\star}(x)$ as $V_h^{\star}(x) = x^{\top} P_h x + p_h$, where:

$$\begin{split} P_h &= Q + A^\top P_{h+1} A - A^\top P_{h+1} B (R + B^\top P_{h+1} B)^{-1} B^\top P_{h+1} A, \quad \text{Ricatti Equation} \\ p_h &= \operatorname{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x, \text{ define } P_H = Q, p_H = 0,$$

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x$$
, define $P_H = Q, p_H = 0$,

We have shown that $V_h^*(x) = x^T P_h x + p_h$, where:

$$\begin{split} P_h &= Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}} P_{h+1} B (R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A, \\ p_h &= \mathsf{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x$$
, define $P_H = Q, p_H = 0$,

We have shown that $V_h^*(x) = x^T P_h x + p_h$, where:

$$\begin{split} P_h &= Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}} P_{h+1} B (R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A, \\ p_h &= \mathsf{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

Along the way, we also have shown that $\pi_h^*(x) = -K_h^*x$ where:

$$\pi_h^{\star}(x) = -(R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A x$$

$$:= K_h^{\star}$$

Summary:

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x$$
, define $P_H = Q, p_H = 0$,

We have shown that $V_h^*(x) = x^T P_h x + p_h$, where:

$$\begin{split} P_h &= Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}} P_{h+1} B (R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A, \\ p_h &= \mathsf{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

Along the way, we also have shown that $\pi_h^*(x) = -K_h^*x$ where:

$$\pi_h^{\star}(x) = -(R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A x$$

$$:= K_h^{\star}$$

Optimal control has nothing to do with initial distribution, and the noise!

Time dependent costs and transitions:

$$\begin{split} & \min_{\pi_0, \dots, \pi_{H-1}} \ E\left[x_H^\top Q_H x_H + \sum_{h=0}^{H-1} (x_h^\top Q_h x_h + u_h^\top R_h u_h) \right] \\ & \text{such that} \quad x_{h+1} = A_h x_h + B_h u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ , \end{split}$$

Time dependent costs and transitions:

$$\begin{split} & \min_{\pi_0, \dots, \pi_{H-1}} \ E\left[x_H^\top Q_H x_H + \sum_{h=0}^{H-1} (x_h^\top Q_h x_h + u_h^\top R_h u_h) \right] \\ & \text{such that} \quad x_{h+1} = A_h x_h + B_h u_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ , \end{split}$$

Same derivation, we will have the following Ricatti Equation:

$$\begin{split} P_h &= Q_h + A_h^{\mathsf{T}} P_{h+1} A_h - A_h^{\mathsf{T}} P_{h+1} B_h (R_h + B_h^{\mathsf{T}} P_{h+1} B_h)^{-1} B_h^{\mathsf{T}} P_{h+1} A_h, \\ p_h &= \mathsf{tr} \left(\sigma^2 P_{h+1} \right) + p_{h+1} \end{split}$$

More generally...

$$\min_{\pi_0,\dots,\pi_{H-1}} \ E\left[x_H^\top Q_H x_H + x_H^\top q_H + c_H + \sum_{h=0}^{H-1} (x_h^\top Q_h x_h + u_h^\top R_h u_h + u_h^\top M_h x_h + x_h^\top q_h + u_h^\top r_h + c_h) \right]$$
 such that
$$x_{h+1} = A_h x_h + B_h u_h + v_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0,\sigma^2 I) \ ,$$

More generally...

$$\min_{\pi_0,\dots,\pi_{H-1}} E\left[x_H^{\intercal} Q_H x_H + x_H^{\intercal} q_H + c_H + \sum_{h=0}^{H-1} (x_h^{\intercal} Q_h x_h + u_h^{\intercal} R_h u_h + u_h^{\intercal} M_h x_h + x_h^{\intercal} q_h + u_h^{\intercal} r_h + c_h) \right]$$
 such that
$$x_{h+1} = A_h x_h + B_h u_h + v_h + w_h, \ u_h = \pi_h(x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ ,$$

Same DP idea and similar derivation (HW1 question)

Tracking a pre-defined trajectory:

$$\min_{\pi_0, \dots, \pi_{H-1}} E \left[(x_H - x_H^{\star})^{\top} Q_H (x_H - x_H^{\star}) + \sum_{h=0}^{H-1} (x_h - x_h^{\star})^{\top} Q_h (x_h - x_h^{\star}) + (u_h - u_h^{\star})^{\top} R_h (u_h - u_h^{\star}) \right]$$
 such that
$$x_{h+1} = A_h x_h + B_h u_h + w_h, \ u_h = \pi_h (x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ ,$$

Tracking a pre-defined trajectory:

$$\min_{\pi_0, \dots, \pi_{H-1}} E \left[(x_H - x_H^{\star})^{\top} Q_H (x_H - x_H^{\star}) + \sum_{h=0}^{H-1} (x_h - x_h^{\star})^{\top} Q_h (x_h - x_h^{\star}) + (u_h - u_h^{\star})^{\top} R_h (u_h - u_h^{\star}) \right]$$
 such that
$$x_{h+1} = A_h x_h + B_h u_h + w_h, \ u_h = \pi_h (x_h) \quad x_0 \sim \mu_0, \ w_h \sim N(0, \sigma^2 I) \ ,$$

We can simply complete the square and we reduce back to the setting in the previous slide!

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach,

we have assumed that transition is **known**, i.e., $P(s'|s,a), \forall s,a,s'$ is known, or $A,B,\mathcal{N}(0,\sigma^2I)$ are known

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach,

we have assumed that transition is **known**, i.e., $P(s'|s,a), \forall s,a,s'$ is known, or $A,B,\mathcal{N}(0,\sigma^2I)$ are known

Starting from this Thursday, we start considering unknown transition:

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach,

we have assumed that transition is **known**, i.e., P(s'|s,a), $\forall s,a,s'$ is known, or $A,B,\mathcal{N}(0,\sigma^2I)$ are known

Starting from this Thursday, we start considering unknown transition:

We start w/ black-box access to P, or f(x, u, w):

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach,

we have assumed that transition is **known**, i.e., P(s'|s,a), $\forall s,a,s'$ is known, or $A,B,\mathcal{N}(0,\sigma^2I)$ are known

Starting from this Thursday, we start considering unknown transition:

We start w/ black-box access to P, or f(x, u, w):

We can reset the system to any (s, a), and observe $s' \sim P(\cdot \mid s, a)$,

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach,

we have assumed that transition is **known**, i.e., P(s'|s,a), $\forall s,a,s'$ is known, or $A,B,\mathcal{N}(0,\sigma^2I)$ are known

Starting from this Thursday, we start considering unknown transition:

We start w/ black-box access to P, or f(x, u, w):

We can reset the system to any (s, a), and observe $s' \sim P(\cdot \mid s, a)$,

Or we can reset to any (x, u), and observe x' = f(x, u, w) (w being some unknown noisy disturbance)

Summary today:

1. We use DP to derive the optimal control for LQR (Ricatti equation)!

2. Never try to remember the exact form!
Only need to understand the way we derive it (again DP!)

Next Lecture:

Control for Nonlinear system w/ black-box access to f(x, u) (In general, very hard, we will study approximate algorithm and only aim for locally optimal solutions)