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(i.e., we know how to perform optimally at )
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Recap: The Linear Quadratic Regulator (LQR)

min
π0,…,πH−1

E [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh, uh = πh(xh) x0 ∼ μ0, wh ∼ N(0,σ2I) ,

Here, xh ∈ ℝd, uh ∈ ℝk,

the disturbance  is Gaussian noise

 and ;

 and  are pd matrices

wt ∈ ℝd

A ∈ ℝd×d B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k
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• And  as: 

Vπ
h : ℝd → ℝ

Vπ
h (x) = $[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x],

Qπ
h : ℝd × ℝk → ℝ

Qπ
h (x, u) = $[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x, uh = u],
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V⋆
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H−1

∑
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x⊤
t Qxt + u⊤

t Rut ut = πt(xt), xh = x]
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Theorem: 
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Today: we prove the above theorem and derive optimal policies
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2. Inductive hypothesis: Assume  is quadratic :
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• Derive the optimal policy , and show that it’s linear

V⋆
h+1(x) ∀x

Q⋆
h (x, u) (x, u)

π⋆
h (x) = arg min

u
Q⋆
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3. Conclusion:  
show  is quadratic for all ;V⋆

h (x) x
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Denote  

we write  


(Goal: derive recursive formulation of )

PH := Q, pH = 0,
V⋆

H(x) = x⊤PHx + pH
Ph, & ph
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Optimal control has nothing to do with initial distribution, and the noise! 
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Same DP idea and similar derivation 

(HW1 question)
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Tracking a pre-defined trajectory:

We can simply complete the square 

and we reduce back to the setting in the previous slide!
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Known transition versus black-box access

So far, we studied Policy Evaluation, Policy Iteration, Value Iteration, and DP-based approach, 

we have assumed that transition is unknown, 

i.e.,  is known, or  are knownP(s′ |s, a), ∀s, a, s′ A, B, .(0,σ2I)

Starting from this Thursday, we start considering unknown transition:

We start w/ black-box access to , or :P f(x, u, w)
We can reset the system to any , and observe ,(s, a) s′ ∼ P( ⋅ |s, a)

Or we can reset to any  and observe  

(  being some unknown noisy disturbance)

(x, u), x′ = f(x, u, w)
w



Summary today:

1. We use DP to derive the optimal control for LQR (Ricatti equation)! 

2. Never try to remember the exact form!  

Only need to understand the way we derive it (again DP!)



Next Lecture:

Control for Nonlinear system w/ black-box access to 

(In general, very hard, we will study approximate algorithm 


and only aim for locally optimal solutions)

f(x, u)




