
Exploration in RL:  
Multi-armed Bandit
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However, PG lacks the ability to explore; 

and it will require much longer time to learn on Acrobot and 

MountainCar examples in openai Gym
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Failure mode of Policy Gradient

The mountainCar Example (i.e., the sparse reward problem)

We have reward zero 
everywhere except at 

the goal (flag)

The prob of a random 
policy hitting the goal is 

exponentially small 
≈ 2−H

PG := R(τ)
H−1

∑
h=0

∇θln πθ(ah |sh) ≈ 0

i.e., a random policy is a perfect 
locally optimal policy
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(2) Every black node, one of the two actions will lead the agent to the dead state (red) 
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Failure model of Policy Gradient

The Combination Lock Example (i.e., the sparse reward problem)

(1) We have reward zero everywhere except at the goal (the right end); 

(2) Every black node, one of the two actions will lead the agent to the dead state (red) 

s0 …

What is the probability of a random policy generating a trajectory that hits the goal?

Length: H

r = 1



Exploration!

We need to perform systematic exploration, 

i.e., remember where we visited, and purposely try to visit unexplored regions..



Exploration in RL is important, but hard…

Agent 
start location

Policy 1 Policy 4 Policy 5 Policy 11 Policy 12

Example: agent is systematically exploring a maze 

Exploration in RL is an active research area, will be treated deeply in CS6789



What we will do here:

Study Exploration in a very simple MDP:

ℳ = {s0, {a1, …, aK}, H = 1,R}

i.e., MDP with one state, one-step transition, and K actions

This is also called Multi-armed Bandits



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm (a bad algorithm)

3. Attempt 2: Explore and Commit
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Setting:

We have K many arms: a1, …, aK

Each arm has a unknown reward distribution, i.e., , 

w/ mean 

νi ∈ Δ([0,1])
μi = 𝔼r∼νi

[r]

Example:  has a Bernoulli distribution  w/ mean :ai νi μi := p

Every time we pull arm , we observe an i.i.d reward ai r = {1  w/ prob p
0 w/ prob 1 − p
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Intro to MAB
Applications on online advertisement:

Arms correspond to Ads
Each arm has click-through-rate 

(CTR): probability of getting clicked 
(unknown)

A learning system aims to 
maximize CTR in a long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked 
(see a zero-one reward)

3. Update: Decide what ad 
to recommend for next 

round



Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1



Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}



Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}
(# based on historical information)



Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νIt
It

(# based on historical information)



Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νIt
It

(# based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try
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Intro to MAB

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: no-regret, i.e., RegretT /T → 0, as T → ∞

μ⋆ = max
i∈[K]

μi
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Intro to MAB

Why the problem is hard?

Exploration and Exploitation Tradeoff:

Every round, we need to ask ourselves: 


Should we pull arms that are less frequently tried in the past (i.e., explore), 

Or should we commit to the current best arm (i.e., exploit)?



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm (a bad algorithm)

3. Attempt 2: Explore and Exploit
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Attempt 1: Greedy Algorithm

Alg: try each arm once, and then commit to the one that has 
the highest observed reward

Q: what could be wrong?

A bad arm (i.e., low ) may generate a high reward by chance!

(recall we have , i.i.d)

μi
r ∼ ν
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Attempt 1: Greedy Algorithm

More concretely, let’s say we have two arms :a1, a2

Reward dist for : w/ prob 60%, ; else  a1 r = 1 r = 0
Reward dist for : w/ prob 40%, ; else  a2 r = 1 r = 0

Clearly  is a better arm! a1

But try  once,  with probability 16%, we will observe reward pair  a1, a2 (0,1)

The greedy alg will pick —loosing expected reward 0.2 every time in the futurea2



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm 

(a bad algorithm: constant regret)

3. Attempt 2: Explore and Commit 

• Algorithm

• Analysis
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What lessons we learned from the Greedy Alg:

Due to randomness in the reward distribution, trying each arm once is not enough, 

i.e., observed single reward may be far away from the mean 

Q: what’s the fix here?

Yes, let’s (1) try each arm multiple times, (2) compute the empirical mean of each 
arm, (3) commit to the one that has the highest empirical mean
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Alg: Explore and Commit:
Algorithm hyper parameter  (we assume  >> )N < T/K T K

For : k = 1 → K

Pull arm-  N times, observe  k {ri}N
i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk =
N

∑
i=1

ri/N

(# Exploration phase)

For : t = NK → T − 1 (# Exploitation phase)

Pull the best empirical arm, i.e., It = arg max
i∈[K]

̂μi

Q: how to set ?N



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm 

(a bad algorithm: constant regret)

3. Attempt 2: Explore and Exploit 

• Algorithm

• Analysis
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Statistical Tools:
1. Hoeffding inequality (optional, no need to remember or understand it)

Given a distribution , and N i.i.d samples 
, w/ probability at least , we have: 


μ ∈ Δ([0,1])
{ri}N

i=1 ∼ μ 1 − δ
N

∑
i=1

ri/N − μ ≤ O ( ln(1/δ)
N )

i.e., this gives us a confidence interval: ̂μ

̂μ + ln(1/δ)/N

̂μ − ln(1/δ)/N

μ
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Statistical Tools:

2. Union Bound (optional):

ℙ (A or B) ≤ ℙ(A) + ℙ(B)

Combine Hoeffding and Union Bound (optional), we have:

After the Exploration phase, with probability at least 1- , for all 
arm , we have: 


δ
i ∈ [K]

N

∑
i=1

ri/N − μ ≤ O ( ln(K/δ)
N )
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In summary, we have valid confidence intervals:
After the Exploration phase, with probability at least 1- , for all 

arm , we have: 

δ
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In the rest, we will condition on the event that the 
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̂μ3 − ln(K/δ)/N

μ3

Recall the Alg in this case will pick , 

(but it will suffer regret )

It = 2, for all t ≥ NK
(T − NK)(μ3 − μ2)
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Calculate the final regret:
Denote empirical best arm ,  and THE best arm ̂I = arg max

i∈[K]
̂μi I⋆ = arg max

i∈[K]
μi

1. What’s the worst possible regret in the exploration phase:

Regretexplore ≤ N(K − 1) ≤ NK

2. What’s the regret in the exploitation phase:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I)
Let’s now bound Regretexploit
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Calculate the regret in the exploitation phase
Denote empirical best arm ,  and THE best arm ̂I = arg max

i∈[K]
̂μi I⋆ = arg max

i∈[K]
μi

What’s the regret in the exploitation phase:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I)

μI⋆ − μ ̂I ≤ [ ̂μI⋆ + ln(K/δ)/N] − [ ̂μ ̂I − ln(K/δ)/N]
= ̂μI⋆ − ̂μ ̂I + 2 ln(K/δ)/N

≤ 2 ln(K/δ)/N
Q: why?

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I) ≤ 2T
ln(K/δ)

N



Finally, combine two regret together:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I) ≤ T
ln(K/δ)

N

Regretexplore ≤ N(K − 1) ≤ NK

RegretT = Regretexplore + Regretexploit ≤ NK + 2T
ln(K/δ)

N

Minimize the upper bound via optimizing N:

Set , we have:N = (
T ln(K/δ)

2K )
2/3

RegretT ≤ O (T2/3K1/3 ⋅ ln1/3(K/δ))



To conclude:

[Theorem] Fix set , with 

probability at least , Explore and Commit has the following 
regret: 


δ ∈ (0,1), N = (
T ln(K/δ)

2K )
2/3

1 − δ

RegretT ≤ O (T2/3K1/3 ⋅ ln1/3(K/δ))

(See the MAB reading material for more details)
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̂μ3
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̂μ3 − ln(K/δ)/N
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Summary of the analysis:
(1) Using off-shelf statistical tools, we get the confidence intervals for all arms:

(2): in the example above, we will commit to arm 2, and pay per-iter regret (μ3 − μ2)
But from the picture, we see that (μ3 − μ2) ≤ length-of-Confidence-Interval


