Exploration in RL: Multi-armed Bandit (Continue)

Interactive learning process:

For $t = 0 \rightarrow T - 1$

(# based on historical information) 1. Learner pulls arm $I_t \in \{1, ..., K\}$

2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

For $t = 0 \rightarrow T - 1$

1. Learner pulls arm $I_t \in \{1, \dots, K\}$

 $\operatorname{Regret}_{T} =$

- **Interactive learning process:**
 - (# based on historical information)
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

Learning metric:

$$= T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{I_t}$$

The Explore and Commit Algorithm:

The Explore and Commit Algorithm:

For
$$k = 1 \rightarrow K$$
: (# E

- Exploration phase)
- Pull arm-*k* N times, observe $\{r_i\}_{i=1}^N \sim \nu_k$
- Calculate arm k's empirical mean: $\hat{\mu}_k = \sum_{k=1}^{N} r_i / N$

i=1

The Explore and Commit Algorithm:

For
$$k = 1 \rightarrow K$$
: (# E

For $t = NK \rightarrow T - 1$: (# Exploitation phase)

- Exploration phase)
- Pull arm-*k* N times, observe $\{r_i\}_{i=1}^N \sim \nu_k$
- Calculate arm k's empirical mean: $\hat{\mu}_k = \sum_{k=1}^{N} r_i / N$ i=1
- Pull the best empirical arm, i.e., $I_t = \arg \max \hat{\mu}_i$ $i \in [K]$

[Theorem] Fix $\delta \in (0,1)$, so

probability at least $1 - \delta$, **Explore and Commit** has the following regret:

et
$$N = \left(\frac{T\sqrt{\ln(K/\delta)}}{2K}\right)^{2/3}$$
, with

Regret_T $\leq O(T^{2/3}K^{1/3} \cdot \ln^{1/3}(K/\delta))$

Question for Today:

Can we design an algorithm that achieves $\widetilde{O}(\sqrt{T})$ regret?

2. Analysis of UCB algorithm

Outline:

1. The upper Confidence Bound Algorithm

- We maintain the following statistics during the learning process:
- At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e., $N_t(i) =$

$$= \sum_{\tau=0}^{t-1} \mathbf{1} \{ I_{\tau} = i \}$$

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e., $N_t(i) =$

and its empirical mean $\hat{\mu}_t(i)$ so far;

$$= \sum_{\tau=0}^{t-1} \mathbf{1} \{ I_{\tau} = i \}$$

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e., $N_t(i) =$

and its empirical mean $\hat{\mu}_t(i)$ so far;

$$= \sum_{\tau=0}^{t-1} \mathbf{1} \{ I_{\tau} = i \}$$

i.e., $\hat{\mu}_t(i) = \sum_{\tau=1}^{t-1} \mathbf{1}\{I_{\tau} = i\}r_{\tau}/N_t(i)$ $\tau = 0$

Recall the Tool for Building Confidence Interval:

[Hoeffding] Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1 - \delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \le O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

$$\leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$$

Recall the Tool for Building Confidence Interval:

[Hoeffding] Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1 - \delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \le O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

Thus, we know that for all iteration t, we have the for all $i \in [K]$, w/ prob $1 - \delta$, $|\hat{\mu}_t(i) - \mu_i| \le \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

$$\leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$$

Recall the Tool for Building Confidence Interval:

[Hoeffding] Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1 - \delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \le O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

Thus, we know that for all iteration t, we have the for all $i \in [K]$, w/ prob $1 - \delta$, $|\hat{\mu}_t(i) - \mu_i| \le \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

(Note that I applied union bound over all $t \in [T]$ and all $i \in [K]$, but let's not worry too much about log terms—details are in reading material in case you are interested)

$$\leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$$

Summary so far:

W/ high prob, we have valid confidence intervals for all iteration t, and all arm i:

Summary so far:

W/ high prob, we have valid confidence intervals for all iteration t, and all arm i:

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

 $\hat{\mu}_t(2) + \sqrt{\ln(KT/\delta)/N_t(2)}$ Set $I_t = 2$ $\hat{\mu}_t(3) + \sqrt{\ln(KT/\delta)}/N_t(3)$ $\hat{\mu}_t(2)$ μ_3 $\hat{\mu}_t(3)$ $\hat{\mu}_t(2) - \sqrt{\ln(KT/\delta)}/N_t(2)$ $\hat{\mu}_t(3) - \sqrt{\ln(KT/\delta)/N_t(3)}$

For $t = 0 \rightarrow T - 1$:

 $I_t = \arg \max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$

For $t = 0 \rightarrow T - 1$:

 $I_t = \arg \max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$

(# Upper-conf-bound of arm *i*)

For $t = 0 \rightarrow T - 1$:

 $I_t = \arg \max_{i \in [K]} \left| \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right|$

(# Upper-conf-bound of arm i)

For $t = 0 \rightarrow T - 1$:

 $I_t = \arg \max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

(# Upper-conf-bound of arm i)

2. Analysis of UCB algorithm

Outline:

 $\hat{\mu}_t(2)$

Case 1: it has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

 $\hat{\mu}_t(2)$

 $\hat{\mu}_t(2) + \sqrt{\ln(KT/\delta)/N_t(2)}$

 $\ln(KT/\delta)/N_t(2)$

 $\hat{\mu}_t(3) + \sqrt{\ln(KT/\delta)/N_t(3)}$ μ_3 $\hat{\mu}_t(3)$ $\hat{\mu}_t(3) - \sqrt{\ln(KT/\delta)/N_t(3)}$

Case 2: it has low uncertainty, then it is simply a good arm, i.e., it's true mean is high!

$\hat{\mu}_t(2) + \sqrt{\ln(KT/\delta)/N_t(2)}$

 $\hat{\mu}_t(3) + \sqrt{\ln(KT/\delta)/I}$ μ_3 $\hat{\mu}_t(3) - \sqrt{\ln(KT/\delta)/N_t(3)}$

Explore and Exploration Tradeoff

- **Case 1**: I_{f} has large conf-interval, which means that it has not been tried many times yet (high uncertainty)
 - Thus, we do exploration in this case!

Explore and Exploration Tradeoff

- **Case 1**: I_t has large conf-interval, which means that it has not been tried many times yet (high uncertainty) Thus, we do exploration in this case!
- Case 2: I_t has small conf-interval, then it is simply a good arm, i.e., it's true mean is pretty high! Thus, we do exploitation in this case!

Regret-at-t = $\mu^{\star} - \mu_{I_t}$

Regret-at-t =
$$\mu^{\star} - \mu_{I_t}$$

 $\leq \hat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$

Regret-at-t =
$$\mu^{\star} - \mu_{I_t}$$

Q: why?
 $\leq \hat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$

Regret-at-t = $\mu^{\star} - \mu_{L}$ Q: why? $\leq \hat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$ $\leq 2_1 / \frac{\ln(TK/\delta)}{1}$ $N_t(I_t)$

Denote the optimal arm $I^{\star} = \arg \max_{i \in [K]} \mu_i$; recall $I_t = \arg \max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Regret-at-t = $\mu^{\star} - \mu_{I_t}$ Q: why? $\leq \hat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$ $\leq 21/\frac{\ln(TK/\delta)}{1}$ $N_t(I_t)$

Case 1: $N_t(I_t)$ is small (i.e., uncertainty about I_t is large);

We pay regret, BUT we explore here, as we just tried I_t at iter t!

$$\begin{aligned} \text{Regret-at-t} &= \mu^{\star} - \mu_{I_t} \\ &\leq \widehat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t} \\ &\leq 2\sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} \end{aligned}$$

Denote the optimal arm $I^{\star} = \arg \max_{i \in [K]} \mu_i$; recall $I_t = \arg \max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Case 2: $N_t(I_t)$ is large, i.e., conf-interval of I_t is small,

Then we **exploit** here, as I_t is pretty good (the gap between μ^{\star} & μ_{I_t} is small)!

Finally, let's add all per-iter regret together:

$$\begin{aligned} \operatorname{Regret}_{T} &= \sum_{t=0}^{T-1} \left(\mu^{\star} - \mu_{I_{t}} \right) \\ &\leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln(TK/\delta)}{N_{t}(I_{t})}} \\ &\leq 2 \sqrt{\ln(TK/\delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}(I_{t})}} \end{aligned}$$

Finally, let's add all per-iter regret together:

$$\operatorname{Regret}_{T} = \sum_{t=0}^{T-1} \left(\mu^{\star} - \mu_{I_{t}} \right)$$
$$\leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln(TK/\delta)}{N_{t}(I_{t})}}$$
$$\leq 2 \sqrt{\ln(TK/\delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}(I_{t})}}$$

Lemma (optional): $\sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t(I_t)}} \le O\left(\sqrt{KT}\right)$

Regret

(See reading material for more details)

UCB Regret:

[Theorem (informal)] With high probability, UCB has the following regret:

$$t_T = \widetilde{O}\left(\sqrt{KT}\right)$$

Summary for Today:

UCB algorithm: Principle of Optimism in the face of Uncertainty

For
$$t = 0 \rightarrow T - 1$$
:
 $I_t = \arg \max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$
(# Upper-conf-bound of arm *i*)

Summary for Today:

UCB algorithm: Principle of Optimism in the face of Uncertainty

For
$$t = 0 \rightarrow T - 1$$
:
 $I_t = \arg \max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$
(# Upper-conf-bound of arm *i*)

Analysis Intuition:

Case 1: the arm I_{f} has high uncertainty (we explore) Case 2: the arm I_{f} has low uncertainty, then it must be a near-optimal arm (i.e., exploit)

