
Exploration in RL:  
Multi-armed Bandit 

(Continue)



Recap: MAB

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νIt
It

(# based on historical information)
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RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Learning metric:
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For : k = 1 → K

Pull arm-  N times, observe  k {ri}N
i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk =
N

∑
i=1

ri/N

(# Exploration phase)

For : t = NK → T − 1 (# Exploitation phase)

Pull the best empirical arm, i.e., It = arg max
i∈[K]

̂μi



Recap: MAB

[Theorem] Fix set , with 

probability at least , Explore and Commit has the following 
regret: 


δ ∈ (0,1), N = (
T ln(K/δ)

2K )
2/3

1 − δ

RegretT ≤ O (T2/3K1/3 ⋅ ln1/3(K/δ))



Question for Today:

Can we design an algorithm that achieves  regret? Õ ( T)



Outline:

1. The upper Confidence Bound Algorithm

2. Analysis of UCB algorithm
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At the beginning of iteration  for all , # of times we have tried arm ,t, i ∈ [K] i

i.e., Nt(i) =
t−1

∑
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1{Iτ = i}

We maintain the following statistics during the learning process:
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t−1

∑
τ=0
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Recall the Tool for Building Confidence Interval:
[Hoeffding ]Given a distribution , and N i.i.d 

samples , w/ probability at least , we have: 

μ ∈ Δ([0,1])

{ri}N
i=1 ∼ μ 1 − δ

N

∑
i=1

ri/N − μ ≤ O ( ln(1/δ)
N )

Thus, we know that for all iteration , we have the for all , w/ prob , 
t i ∈ [K] 1 − δ

| ̂μt(i) − μi | ≤
ln(KT/δ)

Nt(i)

(Note that I applied union bound over all  and all 
, but let’s not worry too much about  terms—details 

are in reading material in case you are interested)

t ∈ [T]
i ∈ [K] log



Summary so far:
W/ high prob, we have valid confidence intervals for all iteration  and all arm : t, i
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Set It = 2
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“Reward Bonus”: 
ln(KT/δ)

Nt(i)
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Case 2: it has low uncertainty, then it is simply a good arm, i.e., it’s 
true mean is high!

Intuitive Explanation of UCB



Explore and Exploration Tradeoff

Case 1:  has large conf-interval, which means that it has not 
been tried many times yet (high uncertainty)
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Thus, we do exploration in this case!



Explore and Exploration Tradeoff

Case 1:  has large conf-interval, which means that it has not 
been tried many times yet (high uncertainty)
It

Thus, we do exploration in this case!

Case 2:  has small conf-interval, then it is simply a good arm, i.e., 
it’s true mean is pretty high!

It

Thus, we do exploitation in this case!
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Let’s formalize the intuition
Denote the optimal arm ; recall I⋆ = arg max

i∈[K]
μi It = arg max

i∈[K]
̂μt(i) +

ln(KT/δ)
Nt(i)

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) +
ln(TK/δ)

Nt(It)
− μIt

≤ 2
ln(TK/δ)

Nt(It)

Case 1:  is small 

(i.e., uncertainty about  is large); 


We pay regret, BUT we explore here, 
as we just tried  at iter !
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Q: why?



Let’s formalize the intuition

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) +
ln(TK/δ)

Nt(It)
− μIt

≤ 2
ln(TK/δ)

Nt(It)

Case 2:  is large, i.e., conf-interval of 
 is small, 


Then we exploit here, as  is pretty good 
(the gap between  &  is small)!

Nt(It)
It

It
μ⋆ μIt

Denote the optimal arm ; recall I⋆ = arg max
i∈[K]

μi It = arg max
i∈[K]

̂μt(i) +
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Let’s formalize the intuition
Finally, let’s add all per-iter regret together:
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Let’s formalize the intuition
Finally, let’s add all per-iter regret together:

RegretT =
T−1

∑
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Lemma (optional):


 
T−1

∑
t=0

1
Nt(It)

≤ O ( KT)≤
T−1

∑
t=0

2
ln(TK/δ)

Nt(It)



UCB Regret:

[Theorem (informal)]  With high probability, UCB has the following regret:

RegretT = Õ ( KT)

(See reading material for more details)
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For :t = 0 → T − 1
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i∈[K]

̂μt(i) +
ln(KT/δ)
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UCB algorithm: Principle of Optimism in the face of Uncertainty

Analysis Intuition:

Case 1: the arm  has high uncertainty (we explore)

Case 2: the arm  has low uncertainty, then it must be a near-optimal arm (i.e., 

exploit)
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