Exploration in RL:

Multi-armed Bandit

(Continue)

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim
 u_{I_t}$ of arm I_t

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim
 u_{I_t}$ of arm I_t

Learning metric:

$$Regret_T = T\mu^* - \sum_{t=0}^{T-1} \mu_{I_t}$$

The Explore and Commit Algorithm:

The Explore and Commit Algorithm:

For
$$k = 1 \rightarrow K$$
: (# Exploration phase)

Pull arm-
$$k$$
 N times, observe $\{r_i\}_{i=1}^N \sim \nu_k$

Calculate arm k's empirical mean:
$$\hat{\mu}_k = \sum_{i=1}^{N} r_i / N$$

The Explore and Commit Algorithm:

For
$$k = 1 \rightarrow K$$
: (# Exploration phase)

Pull arm-k N times, observe $\{r_i\}_{i=1}^N \sim \nu_k$

Calculate arm k's empirical mean: $\hat{\mu}_k = \sum_{i=1}^{N} r_i/N$

For
$$t = NK \rightarrow T - 1$$
: (# Exploitation phase)

Pull the best empirical arm, i.e., $I_t = \arg \max_{i \in [K]} \hat{\mu}_i$

[Theorem] Fix
$$\delta \in (0,1)$$
, set $N = \left(\frac{T\sqrt{\ln(K/\delta)}}{2K}\right)^{2/3}$, with

probability at least $1-\delta$, **Explore and Commit** has the following regret:

$$\operatorname{Regret}_{T} \leq O\left(T^{2/3}K^{1/3} \cdot \ln^{1/3}(K/\delta)\right)$$

Question for Today:

Can we design an algorithm that achieves $\widetilde{O}(\sqrt{T})$ regret?

Outline:

1. The upper Confidence Bound Algorithm

UCB

2. Analysis of UCB algorithm

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e.,
$$N_t(i) = \sum_{\tau=0}^{t-1} \mathbf{1}\{I_{\tau} = i\}$$

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e.,
$$N_t(i) = \sum_{\tau=0}^{t-1} \mathbf{1}\{I_\tau = i\}$$

and its empirical mean $\hat{\mu}_t(i)$ so far;

We maintain the following statistics during the learning process:

At the beginning of iteration t, for all $i \in [K]$, # of times we have tried arm i,

i.e.,
$$N_t(i) = \sum_{\tau=0}^{t-1} \mathbf{1}\{I_\tau = i\}$$
 and its empirical mean $\hat{\mu}_t(i)$ so far;

i.e.,
$$\hat{\mu}_t(i) = \sum_{\tau=0}^{t-1} \mathbf{1}\{I_\tau = i\}r_\tau/N_t(i)$$

Recall the Tool for Building Confidence Interval:

[Hoeffding]Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1-\delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

$$\left| \sum_{i=1}^{N} r_i / N - \mu \right| \leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$$

Recall the Tool for Building Confidence Interval:

[Hoeffding] Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1-\delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

Thus, we know that for all iteration t, we have the for all $i \in [K]$, w/ prob $1 - \delta$,

$$|\hat{\mu}_t(i) - \mu_i| \le \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$$

Recall the Tool for Building Confidence Interval:

[Hoeffding] Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1-\delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

Thus, we know that for all iteration t, we have the for all $i \in [K]$, w/ prob $1 - \delta$,

$$|\hat{\mu}_t(i) - \mu_i| \le \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$$

(Note that I applied union bound over all $t \in [T]$ and all $i \in [K]$, but let's not worry too much about $\log \text{ terms} - \text{details}$ are in reading material in case you are interested)

Summary so far:

W/ high prob, we have valid confidence intervals for all iteration t, and all arm i:

Summary so far:

W/ high prob, we have valid confidence intervals for all iteration t, and all arm i:

$$\hat{\mu}_{t}(1) + \sqrt{\ln(KT/\delta)/N_{t}(2)}$$

$$\hat{\mu}_{t}(1) + \sqrt{\ln(KT/\delta)/N_{t}(1)}$$

$$\hat{\mu}_{t}(1) - \sqrt{\ln(KT/\delta)/N_{t}(1)}$$

$$\hat{\mu}_{t}(2) - \sqrt{\ln(KT/\delta)/N_{t}(2)}$$

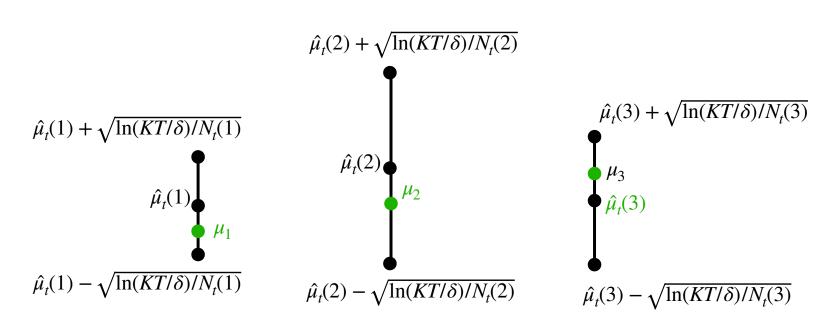
$$\hat{\mu}_{t}(3) + \sqrt{\ln(KT/\delta)}$$

UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

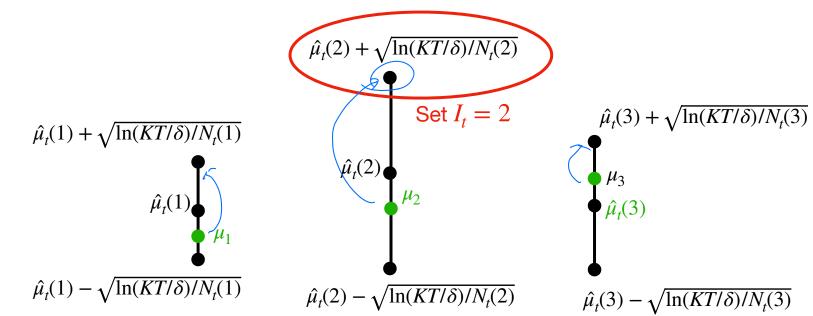
UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:



UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:



For
$$t = 0 \to T - 1$$
:

$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$$

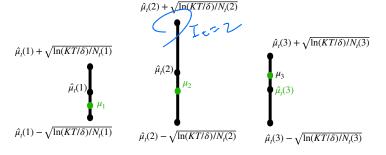
For
$$t = 0 \rightarrow T - 1$$
:
$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$$

(# Upper-conf-bound of arm i)

For
$$t = 0 \to T - 1$$
:

$$I_{t} = \arg\max_{i \in [K]} \left(\hat{\mu}_{t}(i) + \sqrt{\frac{\ln(KT/\delta)}{N_{t}(i)}} \right)$$

(# Upper-conf-bound of arm i)

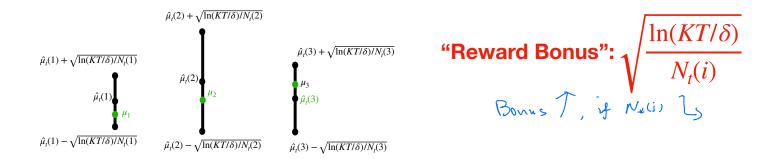


For
$$t=0 \to T-1$$
:

$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right) \quad \text{for the first kiteraths}$$

$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right) \quad \text{for the first kiteraths}$$

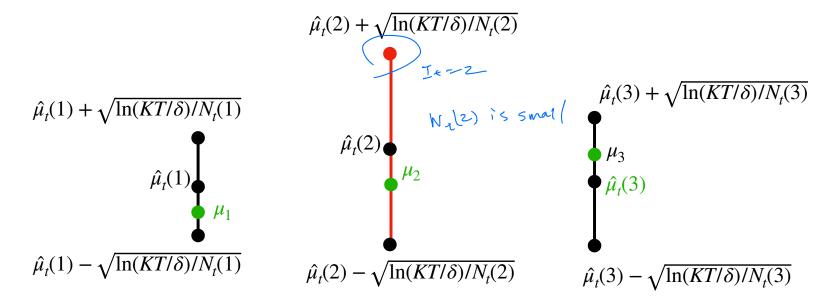
(# Upper-conf-bound of arm i)



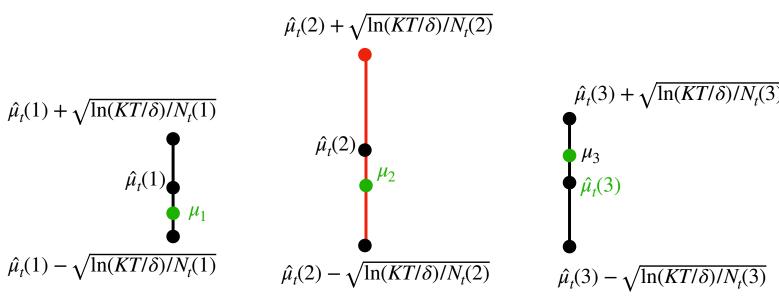
Outline:

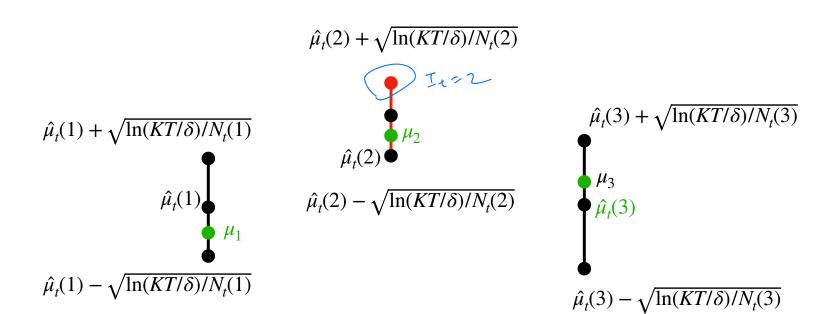
1. The upper Confidence Bound Algorithm

2. Analysis of UCB algorithm



Case 1: it has large conf-interval, which means that it has not been tried many times yet (high uncertainty)





Case 2: it has low uncertainty, then it is simply a good arm, i.e., it's true mean is high!

$$\hat{\mu}_{t}(1) + \sqrt{\ln(KT/\delta)/N_{t}(1)}$$

$$\hat{\mu}_{t}(1) + \sqrt{\ln(KT/\delta)/N_{t}(1)}$$

$$\hat{\mu}_{t}(1) - \sqrt{\ln(KT/\delta)/N_{t}(1)}$$

Explore and Exploration Tradeoff

Case 1: I_t has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

Thus, we do exploration in this case!

Explore and Exploration Tradeoff

h (/ s)

Case 1: I_t has large conf-interval, which means that it has not been tried many times yet (high uncertainty)

Thus, we do exploration in this case!

Case 2: I_t has small conf-interval, then it is simply a good arm, i.e., it's true mean is pretty high!

Thus, we do exploitation in this case!

Denote the optimal arm $I^{\star} = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

UCBEIT

Denote the optimal arm $I^* = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Regret-at-t =
$$\mu^* - \mu_{I_L}$$

Denote the optimal arm
$$I^{\star} = \arg\max_{i \in [K]} \mu_i$$
; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

$$\leq \hat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$$

$$\text{UCB[I_t] 7 UCB[I^{\star}] 2 } \mu^{\star}$$

Denote the optimal arm $I^{\star} = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Regret-at-t =
$$\mu^* - \mu_{I_t}$$

Q: why?
 $\leq \widehat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$

Denote the optimal arm $I^{\star} = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Denote the optimal arm
$$I^{\star} = \arg\max_{i \in [K]} \mu_i$$
; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{m(KT/\delta)}{N_t(i)}}$
Regret-at-t = $\mu^{\star} - \mu_{I_t}$
Q: why?
$$\sqrt{\ln(TK/\delta)}$$

Regret-at-t =
$$\mu^* - \mu_{I_t}$$

Q: why?

$$\leq \widehat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$$

$$\leq 2\sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}}$$

$$\leq 2\sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}}$$
Length of - Conf - Interval of I_t

Denote the optimal arm $I^* = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

Regret-at-t =
$$\mu^{\star} - \mu_{I_t}$$

Q: why?
 $\leq \widehat{\mu}_t(I_t) + \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} - \mu_{I_t}$
 $\leq 2\sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}}$

Case 1: $N_t(I_t)$ is small (i.e., uncertainty about I_t is large);

We pay regret, BUT we **explore** here, as we just tried I_t at iter t!

Denote the optimal arm $I^{\star} = \arg\max_{i \in [K]} \mu_i$; recall $I_t = \arg\max_{i \in [K]} \hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}}$

$$\text{Regret-at-t} = \mu^* - \mu_{I_t}$$

$$\text{Case 2: } N_t(I_t) \text{ is large, i.e., conf-interv}$$

Case 2: $N_t(I_t)$ is large, i.e., conf-interval of I_t is small,

Then we **exploit** here, as I_t is pretty good (the gap between μ^* & μ_{I_t} is small)!

Finally, let's add all per-iter regret together:

$$\operatorname{Regret}_{T} = \sum_{t=0}^{T-1} \left(\mu^{\star} - \mu_{I_{t}} \right)$$

$$\leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln(TK/\delta)}{N_{t}(I_{t})}}$$

$$\leq 2 \sqrt{\ln(TK/\delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_{t}(I_{t})}}$$

Finally, let's add all per-iter regret together:

$$\begin{aligned} \operatorname{Regret}_T &= \sum_{t=0}^{T-1} \left(\mu^\star - \mu_{I_t} \right) \\ &\leq \sum_{t=0}^{T-1} 2 \sqrt{\frac{\ln(TK/\delta)}{N_t(I_t)}} & \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t(I_t)}} \leq O\left(\sqrt{KT}\right) \\ &\leq 2 \sqrt{\ln(TK/\delta)} \cdot \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t(I_t)}} & \leq O\left(\sqrt{KT}\right) \end{aligned}$$

UCB Regret:

[Theorem (informal)] With high probability, UCB has the following regret:

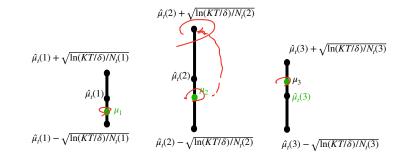
$$\operatorname{Regret}_T = \widetilde{O}\left(\sqrt{KT}\right)$$

(See reading material for more details)

Summary for Today:

UCB algorithm: Principle of Optimism in the face of Uncertainty

For
$$t=0 \rightarrow T-1$$
:
$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_t(i) + \sqrt{\frac{\ln(KT/\delta)}{N_t(i)}} \right)$$
 (# Upper-conf-bound of arm i)

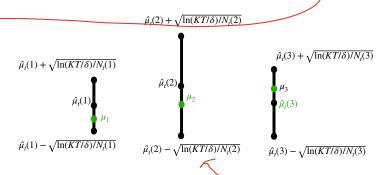


Summary for Today:

UCB algorithm: Principle of Optimism in the face of Uncertainty

For
$$t = 0 \to T - 1$$
:

$$I_{t} = \arg\max_{i \in [K]} \left(\hat{\mu}_{t}(i) + \sqrt{\frac{\ln(KT/\delta)}{N_{t}(i)}} \right)$$
(# Upper-conf-bound of arm *i*)



Analysis Intuition:

Case 1: the arm I_t has high uncertainty (we explore)

Case 2: the arm I_t has low uncertainty, then it must be a near-optimal arm (i.e.,

 χ_{ℓ} $\pi^{*}(\chi_{\ell}) \rightarrow I_{\ell} \quad \text{In} \in \{2, \dots | \ell \}$ A

b(s.a) -> [0,1]

b(s.e) is vieg if (s.a) is under exp(reel b (s.en) is small if (s.en) is explored many times

Sandy Voluto(a/s). [= r(Sh,an)+[\lambda b(Sh,an)]

discrete mountain (ar