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1 Preliminaries

1.1 Problem Definition

Multi-armed bandit (MAB) problem is formally defined as follows:
We consider a MAB with K ∈ N+ many arms (i.e., actions), where each arm i ∈ {1, 2, . . . ,K} has its own

reward distribution νi. Denote µi as the mean of νi, and define

µ? = max
i∈[K]

µi, i? = arg max
i∈[K]

µi.

Note that the reward distributions and the means of reward distributions are all unknown. Instead, at any time step,
after pulling an arm i, we only receive a reward r sampled from νi. One can imagine that if we pull an arm i enough
times, then the average reward can serve as a good estimation of the expectation, i.e., µi.

At each time step t ∈ {1, . . . , T}, the learner chooses some arm It ∈ {1, . . . ,K}. We are interested in the
learner’s regret, defined below:

Regret = Tµ? −
T∑
t=1

µIt ,

where µIt is the expected reward of the chosen arm indexed by It. The goal is to design the learner such that it
achieves sub-linear regret, e.g.,

√
T .

1.2 Explore-Exploit Dilemma

Note that only information the learner knows beforehand is just the number of total arms, i.e., K here. Every round,
the learner needs to make a decision in terms of just pulling the best arm so far (i.e., exploitation), or trying some
other arms that have not been tried not enough times yet (i.e., exploration).

1.3 Statistical tools: Concentration Inequalities

The only concentration inequality we are going to use in this note is the Hoeffding’s inequality. Hoeffding’s
inequality gives us a sense of how the empirical mean can deviate from the true mean in terms of the number of
samples.
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Algorithm 1 Explore and Exploit (N)
1: for k = 1 to K do
2: for i = 1 to N do
3: Pull arm k.
4: Receive reward ri ∼ νk.
5: end for
6: Compute arm k’s average reward µ̂k = 1

N

∑N
i=1 ri

7: end for
8: for t > KN do
9: Pull the best empirical arm î = argmaxi∈{1,...,K} µ̂i.

10: end for

Theorem 1 (Hoeffding’s Inequality). Consider a one-dimension distribution ν with expectation µ, where any sample
from µ is bounded, i.e., r ∼ µ must have |r| ≤ a ∈ R+. Given N many i.i.d scalars {ri}Ni=1

iid∼ ν sampled from ν,
we have that:

P

(∣∣∣∣∣
N∑
i=1

ri/N − µ

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2Nε2

a2

)
.

In other words, with probability at least 1− δ, we have:∣∣∣∣∣
N∑
i=1

ri/N − µ

∣∣∣∣∣ ≤
√
a2 log(2/δ)

2N
= O

(√
log(1/δ)/N

)
.

Namely, from Hoeffding’s inequality, we know that with high probability, our empirical mean estimation∑N
i=1 ri/N is approaching to the true mean µ in the rate of 1/

√
N .

Remark Proving the Hoeffding’s inequality is out of the scope of this class. Here all we need to know is that
Hoeffding’s inequality is an off-shelf statistical tool that builds confidence interval for our mean estimate.

Union bound Another statistical tool that we will leverage is the union bound, i.e., given N eventsA1,A2, . . . , AN ,
we have that P(A1 or A2 . . . or AN ) ≤

∑N
i=1 P(Ai). The inequality can be extended to any number of events. Again

we are not going to prove that. The intuition behind this is that think about Ai as a set in R2. P(A1 or A2 . . . or AN )
represents the area covered by the set A1 ∪A2 · · · ∪AK . Since there might be overlapping between these sets, we
have that area(A1 ∪A2 · · · ∪AK) ≤

∑N
i=1 area(Ai).

2 Algorithm 1: Explore and Exploit

In this section, we study perhaps the simplest MAB algorithm called Explore and Exploit. In high level, as the name
of the algorithm suggested, we will first perform enough rounds of exploration, till we have a good estimation of the
expectation µi for all i ∈ {1, . . . ,K}. Then we will exploit: afterwards, we simply are going to keep pulling the
arm that has the highest estimated expectation.

Alg. 1 summarizes the algorithm. Alg. 1 takes an integer N as input, for the first KN many rounds, it simply
tries every arm for N many rounds, and uses the sampled rewards to estimate the expectation µi for all i ∈ [K].
After NK rounds, the algorithm picks the best empirical arm so far, i.e., î = argmaxi∈[K] µ̂i. Afterwards, the
algorithm just performs exploitation, i.e., playing î forever. Intuitively, if N is large, i.e., if we play each arm enough
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many times, we will have µ̂i ≈ µi for all i. Then there may be a high chance that î = i?. Below, we are going to
tune the parameter N , so that the Explore and Exploit algorithm guarantees a sub-linear regret.

Theorem 2 (Regret of Exploit-Explore). Fix any δ ∈ (0, 1/K). Assume reward sampled from νi is bounded in [0, 1]
for any i ∈ [K]. After T many rounds where we assume T is bigger than KN , we have that with probability at least
1−Kδ,

Regret = Õ(K1/3T 2/3).

.

Note here Õ ignores all constants that does not depend on K or T , and all the log term log(1/δ).

Proof. For each arm k, from Hoeffding’s inequality, we know that with probability at least 1− δ:

|µ̂k − µk| ≤
√

log(2/δ)

2N
.

In other words, with probability at most δ, the confidence interval above will fail to capture µk.

Now we ask ourselves, what’s the probability that |µ̂i − µi| ≤
√

log(2/δ)
2N holds for all k ∈ [K]. We can ask the

negation question, i.e., what is the probability where there exists a k ∈ [K] such that |µ̂i − µi| ≥
√

log(2/δ)
2N (i.e., the

confidence interval for k is not valid)? We can apply union bound here:

P

(
∃i ∈ [K], |µ̂i − µi| ≥

√
log(2/δ)

2N

)
≤

K∑
i=1

P

(
|µ̂i − µi| ≥

√
log(2/δ)

2N

)
≤ Kδ,

since Hoeffding’s inequality tells us that the probability of the confidence interval of arm i failing is at most δ.
This immediately means that:

P

(
∀i ∈ [K], |µ̂i − µi| ≤

√
log(2/δ)

2N

)
= 1− P

(
∃i ∈ [K], |µ̂i − µi| ≥

√
log(2/δ)

2N

)
≥ 1−Kδ.

In other words, with probability at least 1−Kδ, for ALL i ∈ [K], we must have:

|µ̂i − µi| ≤
√

log(2/δ)

2N
.

Below we bound regret by conditioning on the event that all confidence intervals are valid.
Note that since we are performing pure exploration in the first KN many rounds, the largest possible total regret

we could have in the first KN rounds is KN (recall the reward is always bounded in [0, 1]), i.e.,

Regretexplore ≤ KN.

Now let us consider total regret between round [KN+1, T], i.e., the regret from the exploitation phase.
Recall î = argmaxi∈[K] µ̂i, and i? = argmaxi∈[K] µi, i.e., î is the arm with the highest estimated expected

reward—the empirical estimator, while i? is the best arm. Let us compute the gap between µî and µi? , i.e., the
gap between the expected reward of our estimator î, and the highest expected reward. First, since î has the highest
estimated mean, i.e., î = argmaxi∈[K] µ̂i, we must have

µ̂î ≥ µ̂i? . (1)
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On the other hand, we know that with probability at least 1−Kδ, we have:

µî ≤ µî +
√

log(2/δ)

2N
, (2)

µ̂i? ≥ µi? −
√

log(2/δ)

2N
. (3)

Now combine Inequalities 1&2&3, we have:

µk +

√
log(2/δ)

2N
≥ µi? −

√
log(2/δ)

2N
,

which leads us to:

µi? − µî ≤ 2

√
log(2/δ)

2N
.

Now we can bound the total regret from the exploitation phase:

Regretexploit =
T∑

i=NK

(µi? − µî) ≤ 2(T −NK)

√
log(2/δ)

2N
.

Hence, the total regret is:

Regret = Regretexplore + Regretexploit = KN + 2T

√
log(2/δ)

2N
− 2NK

√
log(2/δ)

2N

≤ KN + 2T

√
log(2/δ)

2N
.

Now let us minimize KN + 2T

√
log(2/δ)

2N by choosing the right N . Again, we are going to compute the gradient
with respect to N , set the gradient to zero, and solve for N . If we do that, we will roughly get (here we are very
sloppy on constants and log-terms):

N = (T/K)2/3.

which gives us the regret:

Regret = Õ(K1/3T 2/3).

Finally, recall that we computed the regret by assuming the confidence intervals are all valid. The probability of the
confidence intervals being not valid (i.e., there exists at least one arm whose confidence interval does not contain its
true expectation µ) is at most Kδ via the union bound argument. Thus, the regret holds with probability 1−Kδ as
least.
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