# Trust Region Policy Optimization

#### **Announcements**

Thanks for providing midterm feedback!

1. HW2 will be out this Friday

2. I will have an additional office hour every Monday morning (11am - noon)

# **Recap Policy Gradient**

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid s_0 \sim \mu, a \sim \pi_{\theta}\right]$$

# **Recap Policy Gradient**

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid s_0 \sim \mu, a \sim \pi_{\theta}\right]$$

The most commonly used formulation:

$$\nabla_{\theta} J(\pi_{\theta_t}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) A^{\pi_{\theta_t}}(s, a) \right]$$

# **Recap Policy Gradient**

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid s_0 \sim \mu, a \sim \pi_{\theta}\right]$$

The most commonly used formulation:

$$\nabla_{\theta} J(\pi_{\theta_t}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) A^{\pi_{\theta_t}}(s, a) \right]$$

Algorithm: Stochastic Gradient Ascent

# Recap on Conservative Policy Iteration

For  $t = 0 \dots$ 

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[ A^{\pi^t}(s, \pi(s)) \right]$$

2. Incremental Update:

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

# Recap on Conservative Policy Iteration

For  $t = 0 \dots$ 

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[ A^{\pi^t}(s, \pi(s)) \right]$$

2. Incremental Update:

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Q: Why this is incremental? In what sense?

Q: Can we get monotonic policy improvement?

## Recap of CPI:

Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \leq \frac{2\gamma\alpha}{1 - \gamma}$$

#### **Pros and Cons of CPI:**

#### Pros:

#### This is fundamental!

The idea of incremental update and the theorem behind it are still being used today...

#### Cons:

Practical Issue (e.g., memory issue)

e.g., what if my policies are all extremely large neural networks...

# **Today's Question**

Can we develop some practical version of CPI?

#### **Outlines**

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

#### Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc

Action: torques on joints

#### Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc

Action: torques on joints



#### Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc

Action: torques on joints



#### Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc

Action: torques on joints







#### Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps



(BTW, This reveals an issue on reward design—we will study it in Learning from Demonstrations)

Given two distributions P & Q, where  $P \in \Delta(X), Q \in \Delta(X)$ , KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[ \ln \frac{P(x)}{Q(x)} \right]$$

Given two distributions P & Q, where  $P \in \Delta(X), Q \in \Delta(X)$ , KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[ \ln \frac{P(x)}{Q(x)} \right]$$

#### **Examples:**

If 
$$Q = P$$
, then  $KL(P | Q) = KL(Q | P) = 0$ 

Given two distributions P & Q, where  $P \in \Delta(X), Q \in \Delta(X)$ , KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[ \ln \frac{P(x)}{Q(x)} \right]$$

#### **Examples:**

If 
$$Q = P$$
, then  $KL(P | Q) = KL(Q | P) = 0$ 

If 
$$P = \mathcal{N}(\mu_1, \sigma^2 I)$$
,  $Q = \mathcal{N}(\mu_2, \sigma^2 I)$ , then  $KL(P \mid Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$ 

Given two distributions P & Q, where  $P \in \Delta(X), Q \in \Delta(X)$ , KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[ \ln \frac{P(x)}{Q(x)} \right]$$

#### **Examples:**

If 
$$Q = P$$
, then  $KL(P | Q) = KL(Q | P) = 0$ 

If 
$$P = \mathcal{N}(\mu_1, \sigma^2 I)$$
,  $Q = \mathcal{N}(\mu_2, \sigma^2 I)$ , then  $KL(P \mid Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$ 

#### **Fact:**

 $KL(P | Q) \ge 0$ , and being 0 if and only if P = Q

#### **Outlines**



1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

# **Policy Parameterization**

Recall that we consider parameterized policy  $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$ 

# 1. Softmax linear Policy (We will try this in HW2)

Feature vector  $\phi(s,a) \in \mathbb{R}^d$ , and parameter  $\theta \in \mathbb{R}^d$ 

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

#### 2. Neural Policy:

Neural network  $f_{\theta}: S \times A \mapsto \mathbb{R}$ 

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

At iteration t, with  $\pi_{\theta_t}$  at hand, we compute  $\theta_{t+1}$  as follows:

At iteration t, with  $\pi_{\theta_t}$  at hand, we compute  $\theta_{t+1}$  as follows:

$$\max_{\boldsymbol{\pi}_{\theta}} \mathbb{E}_{\boldsymbol{s} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{\boldsymbol{a} \sim \pi_{\theta}(\boldsymbol{s})} A^{\pi_{\theta_{t}}}(\boldsymbol{s}, \boldsymbol{a}) \right]$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

At iteration t, with  $\pi_{\theta_t}$  at hand, we compute  $\theta_{t+1}$  as follows:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

We want to maximize local advantage against  $\pi_{\theta_t}$ , but we want the new policy to be close to  $\pi_{\theta_t}$  (in the KL sense)

At iteration t, with  $\pi_{\theta_t}$  at hand, we compute  $\theta_{t+1}$  as follows:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

We want to maximize local advantage against  $\pi_{\theta_t}$ , but we want the new policy to be close to  $\pi_{\theta_t}$  (in the KL sense)

How we can actually do the optimization here? After all, we don't even know the analytical form of trajectory likelihood...

At iteration t, with  $\pi_{\theta_t}$  at hand, we compute  $\theta_{t+1}$  as follows:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

$$\text{s.t., } KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

High-level strategy:

- 1. First-order Taylor expansion on the objective at  $\theta_t$
- 2.second-order Taylor expansion of the constraint at  $heta_t$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot (\theta - \theta_{t})}_{\nabla_{\theta} J(\pi_{\theta_{t}})}$$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot (\theta - \theta_{t})}_{\nabla_{\theta} J(\pi_{\theta_{t}})}$$

$$= \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}} (\theta - \theta_{t})$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \mathcal{E}(\theta)$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$\mathscr{E}(\theta) \approx \mathscr{E}(\theta_t) + \nabla \mathscr{E}(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathscr{E}(\theta_t)(\theta - \theta_t)$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$\mathscr{E}(\theta) \approx \mathscr{E}(\theta_t) + \nabla \mathscr{E}(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathscr{E}(\theta_t)(\theta - \theta_t)$$

$$\mathscr{E}(\theta_t) = KL(\rho_{\theta_t} | \rho_{\theta_t}) = 0$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_t) + \nabla \mathcal{E}(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t)(\theta - \theta_t)$$

$$\mathscr{C}(\theta_t) = KL(\rho_{\theta_t} | \rho_{\theta_t}) = 0$$

We will show that  $\nabla_{\theta} \mathcal{E}(\theta_t) = 0$ , and  $\nabla^2 \mathcal{E}(\theta_t)$  has a nice form!

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)}$$

$$KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s_{h}, a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right] := \mathcal{E}(\theta)$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)}$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right] := \mathcal{E}(\theta)$$

$$\nabla_{\theta} \mathcal{E}(\theta) \big|_{\theta = \theta_t} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{a} \pi_{\theta_t}(a \mid s) \Big( -\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \big|_{\theta = \theta_t} \Big)$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)}$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right] := \mathcal{E}(\theta)$$

$$\begin{aligned} \nabla_{\theta} \mathcal{E}(\theta) \mid_{\theta = \theta_{t}} &= \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \mid_{\theta = \theta_{t}} \Big) \\ &= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} \end{aligned}$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)}$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right] := \mathcal{E}(\theta)$$

$$\begin{aligned} \nabla_{\theta} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} &= \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \big|_{\theta = \theta_{t}} \Big) \\ &= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} = 0 \end{aligned}$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right] := \mathcal{E}(\theta)$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right] := \mathcal{E}(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) \big|_{\theta=\theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \big|_{\theta=\theta_{t}} \Big)$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right] := \mathcal{E}(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{\sigma} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \big|_{\theta = \theta_{t}} \Big)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left( \frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)} \right)$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right] := \mathcal{E}(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \big|_{\theta = \theta_{t}} \Big)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left( \frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)} \right)$$

$$= \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \left( \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \right)^{\top} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \ln \frac{\pi_{\theta_{t}}(a_{h} | s_{h})}{\pi_{\theta}(a_{h} | s_{h})} \right] := \mathcal{E}(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{\sigma} \pi_{\theta_{t}}(a \mid s) \Big( -\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \big|_{\theta = \theta_{t}} \Big)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left( \frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)} \right)$$

$$= \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left( \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\top} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

It's called fisher Information Matrix!

#### Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H}KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}}F_{\theta_t}(\theta - \theta_t)$$

$$F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left( \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\top} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

#### Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H}KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}}F_{\theta_t}(\theta - \theta_t)$$

$$F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left( \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

This leads to the following much simplified constrained optimization:

#### **Summary so far:**

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H}KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}}F_{\theta_t}(\theta - \theta_t)$$

$$F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[ \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left( \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\top} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

This leads to the following much simplified constrained optimization:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$
s.t.  $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$ 

#### **Outlines**



1. Quick intro on KL-divergence



2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

At iteration t, we update to  $\theta_{t+1}$  via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$

s.t. 
$$(\theta - \theta_t)^T F_{\theta_t} (\theta - \theta_t) \leq \delta$$

At iteration t, we update to  $\theta_{t+1}$  via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$

s.t. 
$$(\theta - \theta_t)^T F_{\theta_t} (\theta - \theta_t) \leq \delta$$

Linear objective and quadratic convex constraint, we can solve it optimally!

At iteration t, we update to  $\theta_{t+1}$  via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$

s.t. 
$$(\theta - \theta_t)^T F_{\theta_t} (\theta - \theta_t) \leq \delta$$

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

At iteration t, we update to  $\theta_{t+1}$  via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$

s.t. 
$$(\theta - \theta_t)^T F_{\theta_t} (\theta - \theta_t) \leq \delta$$

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

Where 
$$\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

Initialize  $\theta_0$ 

For  $t = 0, \dots$ 

Initialize  $heta_0$ 

For  $t = 0, \dots$ 

Estimate PG  $\nabla_{\theta} J(\pi_{\theta_t})$ 

Initialize  $\theta_0$ 

For  $t = 0, \dots$ 

Estimate PG  $\nabla_{\theta} J(\pi_{\theta_t})$ 

Estimate Fisher info-matrix  $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\mathsf{T}}$ 

Initialize  $\theta_0$ 

For  $t = 0, \dots$ 

Estimate PG  $\nabla_{\theta} J(\pi_{\theta_t})$ 

Estimate Fisher info-matrix  $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\top}$ 

Natural Gradient Ascent:  $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$ 

Initialize  $\theta_0$ 

For  $t = 0, \dots$ 

Estimate PG  $\nabla_{\theta} J(\pi_{\theta_t})$ 

Estimate Fisher info-matrix  $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\top}$ 

Natural Gradient Ascent:  $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$ 

Where 
$$\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

Initialize  $\theta_0$ 

For  $t = 0, \dots$ 

Estimate PG  $\nabla_{\theta} J(\pi_{\theta_{r}})$ 

Estimate Fisher info-matrix  $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\top}$ 

Natural Gradient Ascent:  $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$ 

Where 
$$\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

(We will implement it in HW2 on Cartpole)

Trust Region Policy Optimization and NPG

#### At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

$$\text{s.t., } KL \left( \rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$$

Intuition: maximize local adv subject to being incremental (in KL);

Trust Region Policy Optimization and NPG

At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$$

$$\text{s.t., } KL \left( \rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$$

Intuition: maximize local adv subject to being incremental (in KL);

Trust Region Policy Optimization and NPG

#### At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$$

$$\text{s.t., } KL \left( \rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$
  $\longrightarrow$  second-order Taylor expansion at  $\theta$ 

Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$
s.t.  $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$ 

Trust Region Policy Optimization and NPG

#### At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$$

$$\text{s.t., } KL \left( \rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$
  $\longrightarrow$  second-order Taylor expansion at  $\theta$ 

Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$$
  
s.t.  $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$ 

(Exercise: work out the arg max)

Trust Region Policy Optimization and NPG

#### At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$$

$$\text{s.t., } KL \left( \rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$$

s.t., 
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$
  $\longrightarrow$  second-order Taylor expansion at  $\theta$ 

Intuition: maximize local adv subject to being incremental (in KL);

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \qquad \qquad \max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} (\theta - \theta_t)$$
 s.t.  $(\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta$ 

(Exercise: work out the arg max)