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Announcements

1. HW2 will be out this Friday

2. I will have an additional office hour every Monday morning 
(11am - noon)

Thanks for providing midterm feedback!



Recap Policy Gradient

J(πθ) = ! [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]
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Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = !s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = ! [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Algorithm: Stochastic Gradient Ascent



Recap on Conservative Policy Iteration

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
!s∼dπt

μ [Aπt(s, π(s))]
2. Incremental Update: 

πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απ′ ( ⋅ |s), ∀s

For t = 0 …



Recap on Conservative Policy Iteration

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
!s∼dπt

μ [Aπt(s, π(s))]
2. Incremental Update: 

πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απ′ ( ⋅ |s), ∀s

Q: Can we get monotonic policy improvement? 

Q: Why this is incremental? In what sense? 

For t = 0 …



Recap of CPI:

Incremental update (Lemma 12.1 in AJKS) 

∥dπt+1
μ − dπt

μ ∥1 ≤ 2γα
1 − γ



Pros and Cons of CPI:

Pros: 

This is fundamental!  

The idea of incremental update and the theorem behind it are still being used today…

Cons: 

Practical Issue (e.g., memory issue) 

e.g., what if my policies are all extremely large neural networks…



Today’s Question

Can we develop some practical version of CPI?



Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible: 
State: joint angles, center of mass, velocity, etc


Action: torques on joints

Reward: distance of moving forward between two steps 
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Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible: 
State: joint angles, center of mass, velocity, etc


Action: torques on joints

Reward: distance of moving forward between two steps 

(BTW, This reveals an issue on reward design—we will study it in Learning from Demonstrations)
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P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
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KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = .(μ1, σ2I), Q = .(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact: 
, and being  if and only if KL(P |Q) ≥ 0 0 P = Q



Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



Policy Parameterization

1. Softmax linear Policy 
(We will try this in HW2)

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) = exp( fθ(s, a))
∑a′ 

exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s



A trust region formulation for policy update:

At iteration t, with  at hand, we compute  as follows: πθt
θt+1
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πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
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πθt
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A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt

How we can actually do the optimization here? 

After all, we don’t even know the analytical form of trajectory likelihood…



A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

High-level strategy: 

1. First-order Taylor expansion on the objective at 


2.second-order Taylor expansion of the constraint at  
θt

θt
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Simplify Objective Function

max
θ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
Since the objective is also non-linear, 


let’s do first order-talyor expansion on it:

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)] ≈ !s∼dπθtμ [!a∼πθt(s)Aπθt(s, a)] + !s∼dπθtμ [!a∼πθt(s) ∇θln πθt
(a |s)Aπθt(s, a)]

∇θJ(πθt)

⋅ (θ − θt)

= ∇θJ(πθt
)⊤(θ − θt)
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Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

ℓ(θ) ≈ ℓ(θt) + ∇ℓ(θt)⊤(θ − θt) + 1
2 (θ − θt)⊤ ∇2

θℓ(θt)(θ − θt)

ℓ(θt) = KL(ρθt
|ρθt

) = 0

We will show that  and  has a nice form!∇θℓ(θt) = 0, ∇2ℓ(θt)
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(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:
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Algorithm: Natural Policy Gradient

Where η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

Initialize θ0

For t = 0, … 

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= !s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

(We will implement it in HW2 on Cartpole)
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max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt
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max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

(Exercise: work out the )arg max
θ

Intuition: maximize local adv subject 
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG




