
Trust Region
Policy Optimization

Announcements

1. HW2 will be out this Friday

2. I will have an additional office hour every Monday morning
(11am - noon)

Thanks for providing midterm feedback!

Recap Policy Gradient

J(πθ) = ! [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = !s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = ! [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = !s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = ! [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Algorithm: Stochastic Gradient Ascent

Recap on Conservative Policy Iteration

1. Greedy Policy Selector:

π′ ∈ arg max

π∈Π
!s∼dπt

μ [Aπt(s, π(s))]
2. Incremental Update:

πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απ′ (⋅ |s), ∀s

For t = 0 …

Recap on Conservative Policy Iteration

1. Greedy Policy Selector:

π′ ∈ arg max

π∈Π
!s∼dπt

μ [Aπt(s, π(s))]
2. Incremental Update:

πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απ′ (⋅ |s), ∀s

Q: Can we get monotonic policy improvement?

Q: Why this is incremental? In what sense?

For t = 0 …

Recap of CPI:

Incremental update (Lemma 12.1 in AJKS)

∥dπt+1
μ − dπt

μ ∥1 ≤ 2γα
1 − γ

Pros and Cons of CPI:

Pros:

This is fundamental!

The idea of incremental update and the theorem behind it are still being used today…

Cons:

Practical Issue (e.g., memory issue)

e.g., what if my policies are all extremely large neural networks…

Today’s Question

Can we develop some practical version of CPI?

Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

(BTW, This reveals an issue on reward design—we will study it in Learning from Demonstrations)

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
Q(x)]

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = .(μ1, σ2I), Q = .(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = !x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = .(μ1, σ2I), Q = .(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact:
, and being if and only if KL(P |Q) ≥ 0 0 P = Q

Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

Policy Parameterization

1. Softmax linear Policy
(We will try this in HW2)

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) = exp(fθ(s, a))
∑a′

exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

A trust region formulation for policy update:

At iteration t, with at hand, we compute as follows: πθt
θt+1

A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against , but we want
the new policy to be close to (in the KL sense)

πθt

πθt

A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against , but we want
the new policy to be close to (in the KL sense)

πθt

πθt

How we can actually do the optimization here?

After all, we don’t even know the analytical form of trajectory likelihood…

A trust region formulation for policy update:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

High-level strategy:

1. First-order Taylor expansion on the objective at

2.second-order Taylor expansion of the constraint at
θt

θt

Simplify Objective Function

max
θ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]

Simplify Objective Function

max
θ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

Simplify Objective Function

max
θ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)] ≈ !s∼dπθtμ [!a∼πθt(s)Aπθt(s, a)] + !s∼dπθtμ [!a∼πθt(s) ∇θln πθt
(a |s)Aπθt(s, a)]

∇θJ(πθt)

⋅ (θ − θt)

Simplify Objective Function

max
θ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)] ≈ !s∼dπθtμ [!a∼πθt(s)Aπθt(s, a)] + !s∼dπθtμ [!a∼πθt(s) ∇θln πθt
(a |s)Aπθt(s, a)]

∇θJ(πθt)

⋅ (θ − θt)

= ∇θJ(πθt
)⊤(θ − θt)

Simplify Constraint via second-order Taylor Expansion:

Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

ℓ(θ) ≈ ℓ(θt) + ∇ℓ(θt)⊤(θ − θt) + 1
2 (θ − θt)⊤ ∇2

θℓ(θt)(θ − θt)

Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

ℓ(θ) ≈ ℓ(θt) + ∇ℓ(θt)⊤(θ − θt) + 1
2 (θ − θt)⊤ ∇2

θℓ(θt)(θ − θt)

ℓ(θt) = KL(ρθt
|ρθt

) = 0

Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

ℓ(θ) ≈ ℓ(θt) + ∇ℓ(θt)⊤(θ − θt) + 1
2 (θ − θt)⊤ ∇2

θℓ(θt)(θ − θt)

ℓ(θt) = KL(ρθt
|ρθt

) = 0

We will show that and has a nice form!∇θℓ(θt) = 0, ∇2ℓ(θt)

The gradient of the KL-divergence is zero at θt

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at θt

KL (ρπθt
|ρπθ) = !τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ) = !τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at θt

KL (ρπθt
|ρπθ) = !τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ) = !τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

= 1
1 − γ

!sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at θt

KL (ρπθt
|ρπθ) = !τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ) = !τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

= 1
1 − γ

!sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

∇θℓ(θ) |θ=θt
= !s∼dπθtμ ∑

a
πθt

(a |s)(−∇θln πθ(ah |sh) |θ=θt)

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at θt

KL (ρπθt
|ρπθ) = !τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ) = !τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

= 1
1 − γ

!sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

∇θℓ(θ) |θ=θt
= !s∼dπθtμ ∑

a
πθt

(a |s)(−∇θln πθ(ah |sh) |θ=θt)

= − !s∼dπθtμ ∑
a

πθt
(a |s)

∇θπθt
(a |s)

πθt
(a |s)

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at θt

KL (ρπθt
|ρπθ) = !τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ) = !τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

= 1
1 − γ

!sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

∇θℓ(θ) |θ=θt
= !s∼dπθtμ ∑

a
πθt

(a |s)(−∇θln πθ(ah |sh) |θ=θt)

= − !s∼dπθtμ ∑
a

πθt
(a |s)

∇θπθt
(a |s)

πθt
(a |s) = 0

Change from trajectory distribution to state-action distribution:

Let’s compute the Hessian of the KL-divergence at θt

!s,a∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

Let’s compute the Hessian of the KL-divergence at θt

!s,a∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

∇2
θℓ(θ) |θ=θt

= !s∼dπθtμ ∑
a

πθt
(a |s)(−∇2

θln πθ(a |s) |θ=θt)

Let’s compute the Hessian of the KL-divergence at θt

!s,a∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

= − !s∼dπθtμ ∑
a

πθt
(a |s)(

∇2
θπθt

(a |s)
πθt

(a |s) −
∇θπθt

(a |s)∇θπθt
(a |s)⊤

π2
θt
(a |s))

∇2
θℓ(θ) |θ=θt

= !s∼dπθtμ ∑
a

πθt
(a |s)(−∇2

θln πθ(a |s) |θ=θt)

Let’s compute the Hessian of the KL-divergence at θt

!s,a∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

= − !s∼dπθtμ ∑
a

πθt
(a |s)(

∇2
θπθt

(a |s)
πθt

(a |s) −
∇θπθt

(a |s)∇θπθt
(a |s)⊤

π2
θt
(a |s))

∇2
θℓ(θ) |θ=θt

= !s∼dπθtμ ∑
a

πθt
(a |s)(−∇2

θln πθ(a |s) |θ=θt)

= !s,a∼dπθtμ [∇θln πθt
(a |s)(∇θln πθt

(a |s))
⊤] ∈ ℝdimθ×dimθ

Let’s compute the Hessian of the KL-divergence at θt

!s,a∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)] := ℓ(θ)

= − !s∼dπθtμ ∑
a

πθt
(a |s)(

∇2
θπθt

(a |s)
πθt

(a |s) −
∇θπθt

(a |s)∇θπθt
(a |s)⊤

π2
θt
(a |s))

∇2
θℓ(θ) |θ=θt

= !s∼dπθtμ ∑
a

πθt
(a |s)(−∇2

θln πθ(a |s) |θ=θt)

= !s,a∼dπθtμ [∇θln πθt
(a |s)(∇θln πθt

(a |s))
⊤] ∈ ℝdimθ×dimθ

It’s called fisher Information Matrix!

Summary so far:

1
H

KL (ρπθt
|ρπθ) ≈ 1

2 (θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= !s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

Summary so far:

1
H

KL (ρπθt
|ρπθ) ≈ 1

2 (θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= !s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

This leads to the following much simplified constrained optimization:

Summary so far:

1
H

KL (ρπθt
|ρπθ) ≈ 1

2 (θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= !s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

This leads to the following much simplified constrained optimization:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

At iteration t, we update to via:θt+1

Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Linear objective and quadratic convex constraint, we can solve it optimally!

At iteration t, we update to via:θt+1

Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

At iteration t, we update to via:θt+1

Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

Where η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

At iteration t, we update to via:θt+1

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= !s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= !s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

Algorithm: Natural Policy Gradient

Where η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= !s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

Algorithm: Natural Policy Gradient

Where η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= !s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

(We will implement it in HW2 on Cartpole)

Summary for today:

Trust Region Policy Optimization and NPG

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Summary for today:

Trust Region Policy Optimization and NPG

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Summary for today:

Trust Region Policy Optimization and NPG

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Summary for today:

Trust Region Policy Optimization and NPG

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

(Exercise: work out the)arg max
θ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Summary for today:

Trust Region Policy Optimization and NPG

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

(Exercise: work out the)arg max
θ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG

