Trust Region Policy Optimization

Announcements

Thanks for providing midterm feedback!

1. HW2 will be out this Friday

2. I will have an additional office hour every Monday morning (11am - noon)

Recap Policy Gradient

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,|\, s_{0} \sim \mu, a \sim \pi_{\theta}\right]$$

Recap Policy Gradient

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,|\, s_{0} \sim \mu, a \sim \pi_{\theta}\right]$$

The most commonly used formulation:

$$\nabla_{\theta} J(\pi_{\theta_{t}}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right]$$

Recap Policy Gradient

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,|\, s_{0} \sim \mu, a \sim \pi_{\theta}\right]$$

The most commonly used formulation:

$$\nabla_{\theta} J(\pi_{\theta_{t}}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right]$$

Algorithm: Stochastic Gradient Ascent

Recap on Conservative Policy Iteration

For $t = 0 \dots$

1. Greedy Policy Selector:

$$\pi' \in \arg \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi(s)) \right]$$

2. Incremental Update: $\pi^{t+1}(\cdot | s) = (1 - \alpha)\pi^{t}(\cdot | s) + \alpha\pi'(\cdot | s), \forall s$

Recap on Conservative Policy Iteration

For $t = 0 \dots$

1. Greedy Policy Selector:

$$\pi' \in \arg \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi(s)) \right]$$

2. Incremental Update: $\pi^{t+1}(\cdot | s) = (1 - \alpha)\pi^{t}(\cdot | s) + \alpha\pi'(\cdot | s), \forall s$

Q: Why this is incremental? In what sense?

Q: Can we get monotonic policy improvement?

Recap of CPI:

Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \le \frac{2\gamma\alpha}{1 - \gamma}$$

Pros and Cons of CPI:

Pros:

This is fundamental!

The idea of incremental update and the theorem behind it are still being used today...

Cons:

Practical Issue (e.g., memory issue)

e.g., what if my policies are all extremely large neural networks...

Today's Question

Can we develop some practical version of CPI?

Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

Train a robot to "run" forward as fast as possible:

Train a robot to "run" forward as fast as possible:

Train a robot to "run" forward as fast as possible:

Train a robot to "run" forward as fast as possible:

Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc Action: torques on joints Reward: distance of moving forward between two steps

(BTW, This reveals an issue on reward design—we will study it in Learning from Demonstrations)

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]$$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

 $\mathbb{P}(X) = \mathbb{Q} \times \mathbb{Q}^{X \times X}$ **Examples:** If Q = P, then $KL(P \mid Q) = KL(Q \mid P) = 0$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If
$$Q = P$$
, then $KL(P | Q) = KL(Q | P) = 0$
If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then $KL(P | Q) = \frac{\|\mu_1 - \mu_2\|_2^2 / \sigma^2}{\sqrt{2}}$

 $KL(P \mid Q) \geq 0$, and being 0 if and only if P = Q

Outlines

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

Policy Parameterization

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

2. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

Δ

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

s.t., *KL* $\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$

We want to maximize local advantage against π_{θ_i} , but we want the new policy to be close to π_{θ_i} (in the KL sense)

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

We want to maximize local advantage against π_{θ_i} , but we want the new policy to be close to π_{θ_i} (in the KL sense)

How we can actually do the optimization here? After all, we don't even know the analytical form of trajectory likelihood...

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \leftarrow \text{Linewise object } \theta_{e}$$

s.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \leftarrow \text{Second-order}$
Taylor - Explored

High-level strategy:

1. First-order Taylor expansion on the objective at θ_t 2.second-order Taylor expansion of the constraint at θ_t

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$ V7 E LE A (S.a) =) $E_{S-d} \begin{bmatrix} E & V \ln \Pi_{\theta_{t}}(a|s) A^{\Pi_{\theta_{t}}(s-\alpha)} \end{bmatrix}$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

Inner product

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot (\theta - \theta_{t})$$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \bigvee_{\theta} \mathbb{J}(\theta_{\tau})^{\mathsf{T}} \left(\theta - \theta_{\theta} \right)$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right]}_{\nabla_{\theta} J(\pi_{\theta_{t}})} \cdot (\theta - \theta_{t})$$

$$= \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}}(\theta - \theta_{t})$$

```
KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)
```

 $\mathit{KL}(\rho_{\theta_t} | \rho_{\theta}) := \mathscr{C}(\theta)$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \underbrace{\nabla^2_{\theta} \ell(\theta_t)(\theta - \theta_t)}_{\mathsf{Hessivery}}$$

 $\mathit{KL}(\rho_{\theta_t} | \rho_{\theta}) := \mathscr{C}(\theta)$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t)(\theta - \theta_t)$$
$$\ell(\theta_t) = KL(\rho_{\theta_t} | \rho_{\theta_t}) = 0$$

 $\mathit{KL}(\rho_{\theta_t} | \rho_{\theta}) := \mathscr{C}(\theta)$

$$\ell(\theta) \approx \underbrace{\ell(\theta_t)}^{\mathcal{P}} + \underbrace{\nabla \ell(\theta_t)}^{\mathcal{P}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \underbrace{\nabla_{\theta}^2 \ell(\theta_t)}^{\mathcal{P}} (\theta - \theta_t)$$

$$\ell(\theta_t) = KL(\rho_{\theta_t} | \rho_{\theta_t}) = 0$$

We will show that $\nabla_{\theta} \ell(\theta_t) = 0$, and $\nabla^2 \ell(\theta_t)$ has a nice form!

$$\mathsf{KL}(\mathsf{P}_{\Theta_{4}}|\mathsf{P}_{\Theta}) \stackrel{\sim}{\approx} \frac{1}{2} (\Theta - \Theta_{4})^{\mathsf{T}} \nabla_{\theta}^{2} l(\Theta_{1})(\Theta - \Theta_{4})$$

$$KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \sum_{h=0}^{H=1} \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}$$

$$\frac{P_{\tau_{1}}}{P_{\varepsilon}(\varepsilon)} = \mathcal{M}_{\sigma}(\varepsilon_{\sigma}) \operatorname{T}_{\varepsilon}(\alpha_{\sigma}|s_{\sigma}) \operatorname{P}_{\varepsilon}(s_{1}|s_{\sigma},\alpha_{\sigma}) - \cdots$$

$$\frac{P_{\tau_{1}}}{P_{\varepsilon}(\varepsilon)} = \mathcal{M}_{\sigma}(\varepsilon_{\sigma}|s_{\sigma}) \operatorname{T}_{\varepsilon}(\alpha_{\sigma}|s_{\sigma}) \operatorname{P}_{\varepsilon}(s_{1}|s_{\sigma},\alpha_{\sigma}) - \cdots$$

$$\lim_{n \to \infty} \left[\frac{P_{\pi_{\theta}}(\varepsilon_{r})}{P_{\tau_{\theta}}(\varepsilon_{r})} \right] = \sum_{h=0}^{\infty} \mathcal{M}_{\tau} \operatorname{Toc}(\alpha_{r}|s_{\sigma})$$

2 Finile Horizon setting Change from trajectory distribution to state-action distribution:

$$KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}$$
$$= \frac{1}{1/\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right] := \ell(\theta)$$

$$KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}$$
$$= \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right] := \ell(\theta)$$

$$\nabla_{\theta} \mathscr{E}(\theta)|_{\theta=\theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left(-\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \mid_{\theta=\theta_{t}} \right)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{\pi_{\theta_{t}}(a \mid s)} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{\pi_{\theta_{t}}(a \mid s)} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s) \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \nabla_{\theta} \sum_{a} \pi_{\theta_{t}}(a \mid s)} \underbrace{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}_{s} = -\mathbb{E}_{s \sim \theta_{\theta}^{\pi_{\theta_{t}}}} \nabla_{\theta} \nabla_{\theta} \sum_{a} \nabla_{\theta} \nabla_{$$

$$KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}$$
$$= \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right] := \mathscr{E}(\theta)$$

$$\nabla_{\theta} \mathscr{E}(\theta) |_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left(-\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \mid_{\theta = \theta_{t}} \right)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{a} \pi_{\theta_t}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_t}(a \mid s)}{\pi_{\theta_t}(a \mid s)} = 0$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}(a_{h} \mid s_{h})}{\pi_{\theta}(a_{h} \mid s_{h})}\right] := \ell(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{C}(\theta)|_{\theta=\theta_{l}} = \mathbb{E}_{s,a \sim d_{\mu}^{\pi\theta_{l}}} \sum_{a} \pi_{\theta_{l}}(a \mid s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \mid_{\theta=\theta_{l}} \right) \xrightarrow{I_{\phi}} \pi_{\theta_{h}} - \int_{\Omega} \pi_{\theta} \left(\frac{s}{s} \right)^{2} = \frac{f'}{g} - \frac{f \cdot g}{g}$$

$$\nabla_{\theta}^{2} \mathcal{C}(\theta)|_{\theta=\theta_{l}} = \mathbb{E}_{s \sim d_{\mu}^{\pi\theta_{l}}} \sum_{a} \pi_{\theta_{l}}(a \mid s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \mid_{\theta=\theta_{l}} \right) \xrightarrow{I_{\phi}} \pi_{\theta_{h}} - \int_{\Omega} \pi_{\theta} \left(\frac{s}{s} \right) = \frac{V_{\theta} - \tau_{\theta}(a \mid s)}{T_{\theta}(a \mid s)} \xrightarrow{I_{\phi}} \pi_{\theta}(a \mid s) = \frac{V_{\theta} - \tau_{\theta}(a \mid s)}{T_{\theta}(a \mid s)} \xrightarrow{I_{\phi}} \pi_{\theta}(a \mid s) = \frac{V_{\theta} - \tau_{\theta}(a \mid s)}{T_{\theta}(a \mid s)} \xrightarrow{I_{\phi}} \pi_{\theta}(a \mid s) \xrightarrow{I_{\phi}} \pi_{\theta}(a \mid s) = \frac{V_{\theta} - \tau_{\theta}(a \mid s)}{T_{\theta}(a \mid s)} \xrightarrow{I_{\phi}} \pi_{\theta}(a \mid s) \xrightarrow{I_{\phi}} \pi_{\theta$$

$$\mathbb{E}_{s,a\sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln\frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}\right] := \ell(\theta)$$

$$\nabla_{\theta}^{2}\ell(\theta)|_{\theta=\theta_{t}} = \mathbb{E}_{s\sim d_{\mu}^{\pi_{\theta_{t}}}}\sum_{a}\pi_{\theta_{t}}(a|s)\Big(-\nabla_{\theta}^{2}\ln\pi_{\theta}(a|s)|_{\theta=\theta_{t}}\Big)$$

$$= -\mathbb{E}_{s\sim d_{\mu}^{\pi_{\theta_{t}}}}\sum_{a}\pi_{\theta_{t}}(a|s)\Big(\frac{\nabla_{\theta}^{2}\pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta}\pi_{\theta_{t}}(a|s)\nabla_{\theta}\pi_{\theta_{t}}(a|s)^{\mathsf{T}}}{\pi_{\theta_{t}}^{2}(a|s)}\Big)$$

$$= -\mathbb{E}_{s\sim d_{\mu}^{\pi_{\theta_{t}}}}\sum_{a}\pi_{\theta_{t}}(a|s)\Big(\frac{\nabla_{\theta}^{2}\pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta}\pi_{\theta_{t}}(a|s)\nabla_{\theta}\pi_{\theta_{t}}(a|s)^{\mathsf{T}}}{\pi_{\theta_{t}}^{2}(a|s)}\Big)$$

$$= -\mathbb{E}_{s\sim d_{\mu}^{\pi_{\theta_{t}}}}\sum_{a}\pi_{\theta_{t}}(a|s)\Big(\frac{\nabla_{\theta}^{2}\pi_{\theta}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta}\pi_{\theta}(a|s)\nabla_{\theta}\pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}^{2}(a|s)}\Big)$$

$$= -\mathbb{E}_{s\sim d_{\mu}^{\pi_{\theta_{t}}}}\sum_{a}\pi_{\theta_{t}}(a|s)\Big(\frac{\nabla_{\theta}^{2}\pi_{\theta}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta}\pi_{\theta}(a|s)}{\pi_{\theta_{t}}^{2}(a|s)}\Big)$$

$$\mathbb{E}_{s,a\sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln\frac{\pi_{\theta_{t}}(a_{h}\,|\,s_{h})}{\pi_{\theta}(a_{h}\,|\,s_{h})}\right] := \ell(\theta)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) |_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) |_{\theta = \theta_{t}} \right)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}}}{\pi_{\theta_{t}}^{2}(a \mid s)} \right)$$

$$= \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\underbrace{\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)}_{\in \mathcal{R}^{d_{t}, m_{\theta}}} \left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

$$\mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}(a_{h} \mid s_{h})}{\pi_{\theta}(a_{h} \mid s_{h})}\right] := \mathscr{E}(\theta)$$

It's called fisher Information Matrix!

Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H}KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_{t})^{\mathsf{T}}F_{\theta_{t}}(\theta - \theta_{t})$$
$$\overset{\wedge}{\bigtriangleup}$$
$$F_{\theta_{t}} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\nabla_{\theta}\ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta}\ln \pi_{\theta_{t}}(a \mid s)\right)^{\mathsf{T}}\right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H} KL\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}}\right) \approx \frac{1}{2} (\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}} (\theta - \theta_{t})$$
$$F_{\theta_{t}} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\nabla_{\theta} \ln \pi_{\theta_{t}} (a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta_{t}} (a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

This leads to the following much simplified constrained optimization:

Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H}KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_{t})^{\mathsf{T}}F_{\theta_{t}}(\theta - \theta_{t})$$
$$F_{\theta_{t}} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\nabla_{\theta}\ln\pi_{\theta_{t}}(a|s)\left(\nabla_{\theta}\ln\pi_{\theta_{t}}(a|s)\right)^{\mathsf{T}}\right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

(XXT) F PSD

This leads to the following much simplified constrained optimization:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}} \begin{pmatrix} \theta - \theta_{t} \end{pmatrix}$$

s.t. $(\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}}(\theta - \theta_{t}) \leq \delta$

Outlines

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient

At iteration t, we update to θ_{t+1} via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\top} (\theta - \theta_{t})$$

s.t. $(\theta - \theta_{t})^{\top} F_{\theta_{t}} (\theta - \theta_{t}) \leq \delta$

At iteration t, we update to θ_{t+1} via:

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}} (\theta - \theta_{t})$ s.t. $(\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}} (\theta - \theta_{t}) \leq \delta$

Linear objective and quadratic convex constraint, we can solve it optimally!

At iteration t, we update to θ_{t+1} via:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}} (\theta - \theta_{t})$$

s.t. $(\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}} (\theta - \theta_{t}) \leq \delta$

 $F_{\theta_{x}} + \lambda I$ t t^{-7}

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

At iteration t, we update to θ_{t+1} via:

Linear objective and quadratic convex constraint, we can solve it optimally!

Initialize θ_0

For t = 0, ...

Initialize θ_0

For t = 0, ...

Estimate PG $\nabla_{\theta} J(\pi_{\theta_t})$

Initialize θ_0

For t = 0, ...

Estimate PG $\nabla_{\theta} J(\pi_{\theta_{t}})$ Estimate Fisher info-matrix $F_{\theta_{t}} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s))^{\mathsf{T}}$

Initialize θ_0

For $t = 0, \ldots$

Estimate PG $\nabla_{\theta} J(\pi_{\theta_t})$

Estimate Fisher info-matrix $F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\mathsf{T}}$ Natural Gradient Ascent: $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

Natural Fraidient

Initialize θ_0

For t = 0, ... Estimate PG $\nabla_{\theta} J(\pi_{\theta_t})$ $\nabla_{\theta} J(\pi_{\theta_t})$

Estimate Fisher info-matrix $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\mathsf{T}}$ Natural Gradient Ascent: $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$ Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}$

Initialize θ_0

For $t = 0, \ldots$

Estimate PG $\nabla_{\theta} J(\pi_{\theta_t})$

Estimate Fisher info-matrix $F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s))^{\top}$ Natural Gradient Ascent: $\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

Where
$$\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

(We will implement it in HW2 on Cartpole)

Trust Region Policy Optimization and NPG

At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

s.t., $KL\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local adv subject to being incremental (in KL);

Trust Region Policy Optimization and NPG

At iteration t:

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$ s.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$

Intuition: maximize local adv subject to being incremental (in KL);

Trust Region Policy Optimization and NPG

At iteration t:

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$ s.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$ Intuition: maximize local adv subject to being incremental (in KL);

> $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}}(\theta - \theta_{t})$ s.t. $(\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}}(\theta - \theta_{t}) \leq \delta$

Trust Region Policy Optimization and NPG

At iteration t:

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$ S.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$ Intuition: maximize local adv subject

to being incremental (in KL);

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$ s.t. $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \le \delta$

(Exercise: work out the arg max)

Trust Region Policy Optimization and NPG

At iteration t:

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}t}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta}t}(s, a) \right] \longrightarrow \text{First-order Taylor expansion at } \theta_{t}$$

$$\text{s.t., } KL \left(\rho_{\pi_{\theta}t} | \rho_{\pi_{\theta}} \right) \leq \delta \longrightarrow \text{second-order Taylor expansion at } \theta_{t}$$

$$\text{Intuition: maximize local adv subject to being incremental (in KL);}$$

$$\theta_{t+1} = \theta_{t} + \eta F_{\theta_{t}}^{-1} \nabla_{\theta} J(\pi_{\theta_{t}}) \longrightarrow \max_{\theta} \nabla_{\theta} J(\pi_{\theta_{t}})^{\mathsf{T}}(\theta - \theta_{t})$$

$$\text{s.t. } (\theta - \theta_{t})^{\mathsf{T}} F_{\theta_{t}}(\theta - \theta_{t}) \leq \delta$$

NPG

(Exercise: work out the arg max)

$$= E \ln Q(x) - \ln \frac{1}{|x|}$$

$$= E \ln Q(x) - \ln \frac{1}{|x|}$$

