Trust Region
Policy Optimization



Announcements

Thanks for providing midterm feedback!

1. HW2 will be out this Friday

2. | will have an additional office hour every Monday morning
(11am - noon)
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Recap Policy Gradient

J(my) = E [z vir(s,, ay) | s ~ . a ~ 71'9]

h=0

The most commonly used formulation:

Vod(ny) = E [Vgln 7yal DA%, a)]
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Algorithm: Stochastic Gradient Ascent
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1. Greedy Policy Selector:
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Recap on Conservative Policy lteration

Fort=0...

1. Greedy Policy Selector:
7 € argmax E, . |A7(s, Jr(s))]
nell #

2. Incremental Update:
a1 s) =1 —a)'(- |s) +ax'(-|5),Vs

Q: Why this is incremental? In what sense?

Q: Can we get monotonic policy improvement?



Recap of CPI:

Incremental update (Lemma 12.1 in AJKS)

”dﬂrﬂ —dﬂr“ < 27/(1
2 p 1 = 1




Pros and Cons of CPI:

Pros:
This is fundamental!
The idea of incremental update and the theorem behind it are still being used today...

Cons:
Practical Issue (e.g., memory issue)
e.g., what if my policies are all extremely large neural networks...



Today’s Question

Can we develop some practical version of CPI?



Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc
Action: torques on joints
Reward: distance of moving forward between two steps
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Interesting videos from the today’s algorithm

Train a robot to “run” forward as fast as possible:
State: joint angles, center of mass, velocity, etc
Action: torques on joints
Reward: distance of moving forward between two steps

(BTW, This reveals an issue on reward design—we will study it in Learning from Demonstrations)



KL-divergence: measures the distance between two distributions

Given two distributions P & Q, where P € A(X), O € A(X),
KL Divergence is defined as:

KL(P|Q) = E [ln P(x)]
= ow)
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KL-divergence: measures the distance between two distributions

Given two distributions P & Q, where P € A(X), O € A(X),
KL Divergence is defined as:
P(x) ]
Q(x)

KL(P|Q)=E,_, [ln

Examples:
If Q = P, then KL(P| Q) = KL(Q|P) =0
If P = N (uy,06°1), Q = N (i, 6°1), then KL(P | Q) = ||u; — oI5/ 0

Fact:
KL(P|Q) > 0, and being 0 if and only if P = Q



Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



Policy Parameterization

Recall that we consider parameterized policy zy( - | s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:
(We will try this in HW2)

Feature vector ¢(s, a) € RY, and Neural network
parameter @ € R? Jo: SXAPR
exp(© (s, @) exp(fy(s, @)
pals) = PO & my(als) = /

Y. exp(@T¢(s,a) Y exp(fy(s,a)



A trust region formulation for policy update:

At iteration t, with Ty, at hand, we compute 9; +1 as follows:



A trust region formulation for policy update:

At iteration t, with Ty, at hand, we compute 9; +1 as follows:
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A trust region formulation for policy update:

At iteration t, with Ty, at hand, we compute 9; +1 as follows:

max E__ [[EaNﬂg(S)A "or(s, a)]

Tty K
s:t. KL (ps,10s,) <6

We want to maximize local advantage against Ty, but we want

the new policy to be close to Ty, (in the KL sense)



A trust region formulation for policy update:

At iteration t, with Ty, at hand, we compute 9; +1 as follows:

max £ _ [[ECM[@(S) A"os, a)]

Ty F

=5 Siwp ’ 'ljc)’

s.t., KL (pﬂ9[| pﬂ9> <5

We want to maximize local advantage against Ty, but we want

the new policy to be close to Ty, (in the KL sense)

How we can actually do the optimization here?
After all, we don’t even know the analytical form of trajectory likelihood...
-



A trust region formulation for policy update:

At iteration t, with Ty, at hand, we compute 9; +1 as follows:

max E 'Nd;,TH’ [[ECZNEQ(S)A os, Cl)]

S
Tty

s:t. KL (ps, 10s,) <0

High-level strategy:
1. First-order Taylor expansion on the objective at 0,

2.second-order Taylor expansion of the constraint at 0,



Simplify Objective Function
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Simplify Objective Function

T
mgx [ESNCl;gl [EGN”H(S)A (s, a)

Since the objective is also non-linear,
let’s do first order-talyor expansion on it:



Simplify Objective Function

S

Since the objective is also non-linear,

let’s do first order-talyor expansion on it: 7
ypst
r Vordpn 4.

E, g [[EQNHO(S)A”’*(S, a)] Syt [Eany A" a] +E, g [[ano’(s)veln ry(al HA™(s,a)| - (0 - 0)
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Simplify Objective Function

T — T
max [ESNd:g[ [[ECZNJZ'Q(S)A QZ(S, Cl)] % VQ J(@/L} (9’ /G’Q
0 o

a

Since the objective is also non-linear,
let’s do first order-talyor expansion on it:

i | EamnA™6.0)| & By |[Eony A5 )| + By By Vol my(al 9475, )] - (0= )

\Y HJ(HH,)

= V(1)) (0 - 6)



Simplify Constraint via second-order Taylor Expansion:
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Simplify Constraint via second-order Taylor Expansion:

KL(pg | pg) = £(0)
£(0) X L0)+VeEwd,) (6 -0)+ %(9 —0)TV2£(6)(0 - 6,)

£(6,) = KL(py | pg) =0



Simplify Constraint via second-order Taylor Expansion:

KL(pg | pg) = £(0)
© O
£(0) f_ﬁﬁt +@(9 - 0)+ %(9 — Qt)T V%f(@)(e -0)
2(0,) = KL(P@JP@) =0

We will show that V,£(6,) = 0, and sz(@) has a nice form!

KL ( Fﬁ—& Pe»>ﬁj /)l: (@/Q«)T Vﬁi—/g(@{>/§’99




The gradient of the KL-divergence is zero at 0,

Change from trajectory distribution to state-action distribution:
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Change from trajectory distribution to state-action distribution:
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The gradient of the KL-divergence is zero at 0,

2 \\/l/\."e‘X
Change from trajectory distribution to state-action distribution: A s izon
Pz, (7) ol mp(aylsy) Lﬁ‘é_/
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The gradient of the KL-divergence is zero at 0,

Change from trajectory distribution to state-action distribution:

P, (7) Hl mo(ay|s,)
KL (s 10s) = Ereyy INn—— =, 3 In——
ne M Pr,(0) = 7ok sp)

H y(a,|s;,)
= LLE o I = (0)
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The gradient of the KL-divergence is zero at 0,

Change from trajectory distribution to state-action distribution:

Pr, (T) =l my(ay | sy,)
() od= meay | sp)
1 AR
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The gradient of the KL-divergence is zero at 0,

Change from trajectory distribution to state-action distribution:

Pr, (T) =l my(ay | sy,)
KL (o 102) = Fry 720 1)
: % PrT) od= meay | sp)
1 m(ay | sp)
=——F, s |In TR TR £(0)
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Let’s compute the Hessian of the KL-divergence at 0,

my(a,|s;)
E, o |In—— | := £0)
o moay | sp)




Let’s compute the Hessian of the KL-divergence at 0,
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Let’s compute the Hessian of the KL-divergence at 0,

my(a,|s;)
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Let’s compute the Hessian of the KL-divergence at 0,

my(ay | sp)
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Let’s compute the Hessian of the KL-divergence at 0,

”e,(ah | 51)

E 79, n
Saad” [ may | sp)

] = 72(0)

V3O gy, = E,gn 3 7@l )~ Viinzfal 9, )

T
=— [Es~dﬂ”9x2 7y (al s)( Vérafals) —@@VM@(“ | S)T) w ’ w1

my(als) m(als) /r(et@»l 5) u Q&Q«l 5)

S~ = —

c Rdimgxdimﬁ

"
- HES,CZNC]:()’ [vﬁln 7'[9[(6{ | S)( Veln ﬂ-@,(a | S)>

It’s called fisher Information Matrix!



Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:
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We did second-order Taylor expansion on the KL constraint, and we get:
1 1 T
=KL (s, 19y, ) % 50— 0)TFy(0 - 6)

F9 c Rd imgXdim,

t

.
=E,,. 4 lvgln m(a | s)( Volnmy(a| S)>

This leads to the following much simplified constrained optimization:



Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

1 1 \
~ T
T <pﬂ0r | pﬂo) ~ (0= 0) Fo(0-06) %X
T T
Fy:=E [VQIH my(a| s)( Volnny(al s)> e [Rdimgxdimg
! " 1 1
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This leads to the following much simplified constrained optimization:
/ P&

max V,J(z)" (6 - 6,)
0

s.t. (0—0)'F,(0—-0) <6
4 psp
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1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization T
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3. Algorithm: Natural Policy Gradient
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At iteration t, we update to 0, | via:

0 t

s.t. (0—60)'Fp(0—0)<6



Put everything together, we get:

At iteration t, we update to 0, | via:

0 t

s.t. (0—60)'Fp(0—0)<6

Linear objective and quadratic convex constraint, we can solve it optimally!



Put everything together, we get:

At iteration t, we update to 0, | via:

max V@J(EQI)T(Q - QZ) F.Q{ + >\_L
0 _— dovasdible g P
s.t. (0—0)[Fpl0—0)<6 “

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

Orp1 = 0, + ’7F9_tl Vol ()



Put everything together, we get:

At iteration t, we update to 0, | via:

e 75 (54) @vgj(n@ﬂe —6)
(5/&)// i) s.t. (0 - QI)T\/I;@;@ —0) S@ W\"W:L'f 6 65) P%e—Qo)

3 Linear objective and quadratic convex constraint, we can solve it optimally!

/’7 A

Indeed this gives us:

0, =0+ @91(@) 7
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Fort=0, ...
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Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...
Estimate PG VJ(7y)
Estimate Fisher info-matrix Fyy := ﬂES’aNd:otvgln my(a | s)(Vyln my(a |s)T
Natural Gradient Ascent: 0, = 0, + nFe_tl ng(ﬂgt)
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Algorithm: Natural Policy Gradient
Initialize 6,

Fort=0, ...

= 797@9/9:@%

Estimate PG Vg.](ﬂgl)

Estimate Fisher info-matrix F,, := [E w0, VoIn,(a|s)(Vylnz,(als))’
Gt s,aNd” 0 Qt 0 9,

Natural Gradient Ascent: 0, = 0, + ;1F9_1 ng(ﬂgt)
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Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...

Estimate PG Vg.](ﬂgt)

Estimate Fisher info-matrix Fyy := [E o Volnmy(a | s)(Vyln my(a |s)T

7T,
s,a~d,

Natural Gradient Ascent: 0, = 0, + nFe_l ng(ﬂgt)

Wh 0
ere n =
! Vo () TF5 1 V g J(m5)

(We will implement it in HW2 on Cartpole)
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to being incremental (in KL);
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At iteration t:
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Summary for today:

Trust Region Policy Optimization and NPG

At iteration t:

TT
max [Es~d;f Z l[Earvﬂ@(s)A (s, a)] —>  First-order Taylor expansion at 6,
Ty

s.t., KL (pﬂgllpﬂ9> <6 — second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

0 t

O =06+ 77F9_,1 Ve-](ﬂgt) —
— s.t. (0—0) Fy0—-0)<6

NPG

(Exercise: work out the arg max)
0






