Trust Region
Policy Optimization & NPG

At iteration t:

max 4 [A"0(s, a)]

Tty

—a~y(s)

s.t., KL (%| p@) <5

Intuition: maximize local adv subject
to being incremental (in KL);

Recap on NPG:

max
7

At iteration t:

- 7,
SNdM [

—a~y(s)

A"0(s, a)]

to being incremental (in KL);

Recap on NPG:

— First-order Taylor expansion at 0,

S.l., KL (P@JP@) <0 —» gsecond-order Taylor expansion at 0,

Intuition: maximize local adv subject

Recap on NPG:

At iteration t:

_ _ 7T
maX SNd:pt [aNﬂ(g(S)A Ht(S, a):|

7, — First-order Taylor expansion at 0,

s.t., KL (P@JP@) <0 — second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

max V,J(z,)T (0 - 6)
9 [
S.t. (0 —0)TFy(0—6) <6

Recap on NPG:

At iteration t:

max 4 [)A "or(s, a)]

Tty

a~g(s —» First-order Taylor expansion at 6’t

s.t., KL (P@JP@) <0 — second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

max V,J(z,) (0 — 6
011 :6’¢+77FH:1V9J(7T9[) — 0 ot Ht) (g

oo s.t. (0—-6)'Fy(0—0) <6

Recap on NPG:

At iteration t:

_ _ 7T
maX SNd:pt [aNﬂg(S)A HI(S, a)]

7, — First-order Taylor expansion at 0,

s.t., KL (P@JP@) <0 — second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

max V,J(r,)" (0 — 0
Ht—|—1 _ Ht_l_;/]FH—tl V@J(ﬂ_et) — p 0 (Ht) (t)

e S.t. (0 —0)TFy(0—6) <6

5

T
Fe = _S,aNdﬂet [V@ln ﬂfet(a ‘ S)< V@ln ﬂ@t(a ‘ S)>

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,)7(0 — 0)
9 !
S.t. (0 —0)TFy0—6) <6

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — @) Notation
0 f simplification

S.t. (0 — HT)TFHI(H _ 91) <5 —

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

St (0-0)F0-0)<6 — gt ATFA <5

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

St (0-0)F0-0)<6 — gt ATFA <5

l T = P2

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l X = FIPA
max (F_I/ZV)T X,
A

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l X = FIPA
max (F_I/ZV)TX,
A

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

F~12y R l —

A :=F"°A

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l X = FIPA
max (F_I/ZV)T X,
A

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l X = Pl
i “12v\ ' X
= nF V IIlNaX (F V) A 9
A

InF~ 2V, = /6

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l X = Pl
i “12v\ ' X
= nF V IIlNaX (F V) A 9
A

InF~2V |, =1/6
- st. ATA <5
:.,F\/

VIF-1V

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

St (0-0)F0-0)<6 — gt ATFA <5

l T = plp
_ T —
_7/]F_1/2V mEX (F 1/2V) A :
A
InF~ 2V, = /6 o
. st. ATA <6
:} —
T \/VTF—lv

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(r,) (0 — @) Notatior max V'A,
0 / simplification A

st.(0—-6)'Fp0-6)<s — st ATFA<S

l T = P2

_ ;/,F—l/Z V

InF~ 2V, = /6

5
— —
T \/ VTF-1V

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 6))
H [
S.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier A < 0:

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,)T (0 — 6)
H [
S.t. (0—60)TFy(0—0) <6

A more standard and straightway is to use Lagrange multiplier A < 0:

min max V,J(z,)T(0 — 0,) + A ((9 _0)TF, 00, 5)
A<0 6 f ’

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 6))
6 [
S.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier A < 0:

min max V,J(z,)T(0 — 0,) + A ((9 _0)TF, 00, 5)
<0 6 f f

(This is optional: Lagrange formulation is out of scope)

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,)T (0 — 6)
H [
S.t. (0—60)TFy(0—0) <6

A more standard and straightway is to use Lagrange multiplier A < 0:

min max V,J(z,)T(0 — 0,) + A ((9 _0)TF, 00, 5)
A<0 6 f ’

(This is optional: Lagrange formulation is out of scope)

Summary: at this stage, we complete the NPG algorithm derivation

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

_1 V‘
FHO
H
1
_ (90
te: 91 —
da
up
PG
N

%

_1 V@O
Fﬁo
H
4
_ (90
te: 91 —
da
up
PG
N

5
O) |

6) JU O

(

0, =

S

K

NPG update: ¢, = 0, + 7 9_01 Vﬁo

KLy 192,) <62 0= 00 Fy (0 0p) <6

Our goal is to make sure two distributions do not change to much,
but parameters €@ could potential change a lot!

NPG update: ¢, = 0, + 7 9_01 Vﬁo

KL (p% \p@) <52 (0—0)TF,(0—0) <0

Our goal is to make sure two distributions do not change to much,
but parameters €@ could potential change a lot!

cr 0 0
Consider special case where Iy is a diagonal matrix: Iy = 0 o, O

0 0 o

NPG update: 0, = 0, + nFQ_Ol Vﬁo

KLy 192,) <62 0= 00 Fy (0 0p) <6

Our goal is to make sure two distributions do not change to much,
but parameters €@ could potential change a lot!

cr 0 0
Consider special case where Iy is a diagonal matrix: Iy = 0 o, O
0 0 o4

Vi: 6,[i] = Oylil + (no; ") Vg [i]

NPG update: ¢, = 0, + 7 9_01 Vﬁo

KL (p% \p@) <52 (0—0)TF,(0—0) <0

Our goal is to make sure two distributions do not change to much,
but parameters €@ could potential change a lot!

cr 0 0
Consider special case where Iy is a diagonal matrix: Iy = 0 o, O
0 0 o4

Vi: 6,[i] = Oylil + (no; ") Vg [i]

For tiny o;, we indeed have a huge learning rate, I.e., r]al._l, at coordinate 1 !

NPG update: ¢, = 0, + 7 9_01 Vﬁo

KL (p% \p@) <52 (0—0)TF,(0—0) <0

Our goal is to make sure two distributions do not change to much,
but parameters €@ could potential change a lot!

cr 0 0
Consider special case where Iy is a diagonal matrix: Iy = 0 o, O
0 0 o4

Vi: 6,[i] = Oylil + (no; ") Vg [i]

For tiny o;, we indeed have a huge learning rate, I.e., nai_l, at coordinate 1 !

In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much

Example of Natural Gradient on 1-d problem:

B (exp(0) |)
Po=\ T+ exp@®) 1+ exp(d)

g(0) = 100 - pgl 1]+ 1 - pyl2]

Example of Natural Gradient on 1-d problem:

B (exp(0) |)
Po=\ T+ exp@®) 1+ exp(d)

g(0) = 100 - pgl 1]+ 1 - pyl2]

Example of Natural Gradient on 1-d problem:

B (exp(0) |)
Po=\ T+ exp®) 1+ exp(0)

g(0) = 100 - pgl 1]+ 1 - pyl2]

pl21]

[pll]

Example of Natural Gradient on 1-d problem:

B (exp(0) |)
Po=\ T+ exp®) 1+ exp(0)

g(0) = 100 - pgl 1]+ 1 - pyl2]

9*
7
| o0
pl2]
1
o exp(6,) !
(Pg,[1], Py [2]) = (1 4+ exp(@y) 1+ exp(6p))
1 p[lj

Example of Natural Gradient on 1-d problem:

exp(dy)

Po = (xp() :) Fisher information scalar: feo —

1 +exp(@) 1+ exp(6) (1 + exp(é’o))2

g(0) = 100 - pgl 1]+ 1 - pyl2]

9*
7
| o0
pl2]
1
o exp(6,) !
(Pg,[1], Py [2]) = (1 4+ exp(@y) 1+ exp(6p))
1 p[lj

Example of Natural Gradient on 1-d problem:

exp(6
Dy = (xp®)) Fisher information scalar: f, = PGy
g(0) = 100 - pg[1] + 1 - py[2] Hence: f, — 07, as 6 — oo
9*
0o
A oo
pl2]
1
exp(6) 1
11, po[2]) := :
(P L 11 Po 2D (1+exp(90) 1+exp(90))
I pll]

Example of Natural Gradient on 1-d problem:

exp(f
Dy = (xp®)) Fisher information scalar: f, = PGy
g(0) =100 - pg[1] + 1 - pyl2] Hence: f — 07, as 6 — o
9*
0 (7
) . NPG:6’1=6’O+ng(O)

t o0 fo,
pl2]
1

o exp(dy) 1
(P L1 Pol2D) = (I +exp(@) 1+ eXP(Ho))
L pll]

Example of Natural Gradient on 1-d problem:

exp(f
Dy = (xp®)) Fisher information scalar: f, = PGy
g(0) =100 - pg[1] + 1 - pyl2] Hence: f — 07, as 6 — o
9*

0 (7
) . NPG:6’1=6’O+ng(O)

t o0 fo,

pl2]
| GA: 0) = 0y +ng'(6))
o exp(6) 1
Py L1 Pa 2D = (I +exp(6p) 1+ eXP(Ho))
L pll]

Example of Natural Gradient on 1-d problem:

exp(O
Py = (xp©) 1) Fisher information scalar: f;, = PGy
g(0) =100 - pg[1] + 1 - pyl2] Hence: f — 07, as 6 — o
9*
0 (6p)
) . NPG: 0, = 0 + 52—
\ 0o Jo,
pl2]
| GA: 0) = 0y +ng'(6))
exp(6 |
(Do, 11, Py [2]) :=) : i.e., Plain GA in @ will move to @ = oo at a
L +exp(6p) 1+ exp(6h) constant speed

while Natural GA can traverse faster and

L pll faster when @ gets bigger
(subject to the same learning rate)

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

(In HW2, try to compare PG and NPG, see how they perform differently in practicel)

3. Review of Policy Optimization (API, CPI, PG, and NPQG) & a new algorithm

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 2551212

We can only reset from initial state distribution s, ~ u

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Deep Learning Neural Network

e\,

- A . .
ﬂf‘ 7 M .:;‘? %%v ol
@., “’:m:i;’;"’_"
“\2\4? %;fy‘"

@ Output Layer

() Hidden Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

0

‘é
e o‘, *”‘?«

Q‘ $" '; i

.& \.gg%.{m: (.ZI«'
/ ‘k‘ i"”;w"' oo
() Hidden Layer

@ Output Layer

S
—
.

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

' Q2SS QLN oS QAT S 9 « T [ﬂ? a]
4 “' ;ﬁ@%&é@%& 723

@ Output Layer

() Hidden Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

0:=1p,al

() Hidden Layer

@ Output Layer

Review on Policy Optimization: API

Given an current policy ', we perform policy update to z"

First attempt: Approximate Policy Iteration

7! = arg max ™ lA”t(s, JZ(S))]

nell

Review on Policy Optimization: API

Given an current policy ', we perform policy update to z"

First attempt: Approximate Policy Iteration

gt = arg max k£, = lA”t(s, JZ'(S))]
=l .

.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Review on Policy Optimization: API

Given an current policy ', we perform policy update to z"

First attempt: Approximate Policy Iteration

7! = arg max = lAﬂt(S, JZ'(S))]
nell .

.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Unfortunately, 7'*! might be very different from 7,

and API could fail to make any progress

Review on Policy Optimization: CPI

Given an current policy ', we perform policy update to z"

second attempt: Conservative Policy lteration

Morg = argmax g m lA”r(s, ﬂ(S))]
rell s

Review on Policy Optimization: CPI

Given an current policy z’, we perform policy update to '™

second attempt: Conservative Policy lteration

Morg = argmax g m lA”r(s, ﬂ(S))]
rell g

Vs 21 |9) = (1=)2(- |5) + ary (- |5)

Review on Policy Optimization: CPI

Given an current policy z’, we perform policy update to '™

second attempt: Conservative Policy lteration

Morg = argmax g m lA”r(s, ﬂ(S))]
rell s

Vs 21 |9) = (1=)2(- |5) + ary (- |5)

i.e., CPI find the greedy policy, and move towards it a little bit!

Review on Policy Optimization: CPI

Given an current policy ', we perform policy update to z"

second attempt: Conservative Policy lteration

ﬂgrd — arg max
rwell

g [A7 s 7(9)]

Vs 21 |9) = (1=)2(- |5) + ary (- |5)

i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

Review on Policy Optimization: CPI

Given an current policy ', we perform policy update to z"

second attempt: Conservative Policy lteration

Morg = argmax g m lA”r(s, ﬂ(S))]
rell s

Vs 21 |9) = (1=)2(- |5) + ary (- |5)

i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

|| d¥(-)—d™ () ” <0 (1 :/), v > v (if not terminate yet)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

—a~my(-|s)

max =, a7 [A%0(s, a)]

0

Locally Improve the local-adv a little bit via one-step gradient ascent:

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

—a~m(-|s)

max =, a7 [A%0(s, a)]

0

Locally Improve the local-adv a little bit via one-step gradient ascent:

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)

H

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

_ _ T
X E,_ o [y A705,)]

Locally Improve the local-adv a little bit via one-step gradient ascent:

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)

H

When #n — 07, gradient ascent ensures
we improve the objective function

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

s.1.,KL(py |pg) <6

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~m(-|s)

s.1.,KL(py |pg) <6

Define fisher info-matrix £y = V%KL(p@ [po) | o_p

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

_ _ T
X E,_ o [y A705,)]

s.1.,KL(py |pg) <6

Define fisher info-matrix £y = V%KL(p@ [po) | o_p

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

max V,J(z,)T(0 = 0), s.t., (0 — 0)TF,(0—0) <5
9 [[

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fifth attempt (new): Proximal Policy Optimization (PPO)

_ N T
X E,_ o [y A5,)]

An extension of NPG (even faster in practice):

Given an current policy z’, we perform policy update to '™

1

fifth attempt (new): Proximal Policy Optimization (PPO)

max

_aNﬂ'g(- ‘S)A ﬂgt(‘ga CZ)] —A

| -

- i [KL (Jz@t(a | 5) | my(a] S))]

4

regularization

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fifth attempt (new): Proximal Policy Optimization (PPO)

max E__ s, [‘aN@(-\S)A”HI(S’ a)] — A g [KL (ﬂet(él | 5) | 7me(a | S))]

\ - - 4

regularization

Use importance weighting & expand KL divergence:

An extension of NPG (even faster in practice):

Given an current policy 7', we perform policy update to ait]

fifth attempt (new): Proximal Policy Optimization (PPO)

max E__ s, [‘aN@(-\S)A”HI(S’ a)] — A g [KL (ﬂ@t(a | 5) | 7me(a | S))]

) - -

regularization

Use importance weighting & expand KL divergence:

m(a|s)

mp(a|s)

U

£0) :=E,__ [Sen ATos, a)] — AE, 7 a~y (-13) [—ln my(a | s)]

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fifth attempt (new): Proximal Policy Optimization (PPO)

max E__ s, [_aNﬂg(-\s)Aﬂm(S’ cz)] — A g [KL (ﬂet(d | 5) | 7me(a | S))]

) - - 4

regularization

Use importance weighting & expand KL divergence:

m(a|s)

mp(a|s)

U

£0) :=E,__ [Sen ATos, a)] — AE, 7 a~y (-13) [—ln my(a | s)]

PPO: Perform a few steps of mini-batch SGA on £(6) to approximate arg max 7 (&)
0

Next a few lectures:

Imitation Learning
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?

