Trust Region
Policy Optimization & NPG
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Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm
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At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) " (0 — 0
9 t
s.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier 4 < O:

min max V,J(z,)T(0 — ) + A ((9 —0)TF,(0—6) - 5)
<0 0 ' !

(This is optional: Lagrange formulation is out of scope)

Summary: at this stage, we complete the NPG algorithm derivation
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NPG update: 0, = 0, + 7/1F9_O1 Va, (B-20 [ (0-2)

KL (e |9,) <52 0 QO)T@Q — 0y <8

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

For tiny o;, we indeed have a huge learning rate, i.e., nai'l, at coordinate i !

In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much
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Example of Natural Gradient on 1-d problem:
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Example of Natural Gradient on 1-d problem:
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Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

(In HW2, try to compare PG and NPG, see how they perform differently in practice!)

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm
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We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A J
many classes What about continuous actions a € R“?

Deep Learning Neural Network

Byl +19) = (1), exp(@ ey

ot . C-|s
ot | %:= 15, a]

(@ Hidden Layer @ Output Layer



Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

aitl = argmax [, _ = [A”T(S, ﬂ(S))]
U

nell



Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

t+1

n'" = arg max [Es~d,7f [A”T(S, ﬂ(S))]

nell

i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)



Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

t+1

2k argmax B, [47(5, 2(5)|

nell

i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Unfortunately, 7'+ might be very different from 7/,
and API could fail to make any progress
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Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration
Torg = ATE rjfleaﬁ( g lA” (s, zr(s))]
. 1 —
Vs:a™ (- |s) = —a)a'(- |s) +amy, (- |5)
i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

” d7(-)—d™"'(+) H <0 (%) v > V7 (if not terminate yet)
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Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

rneax |Es~d:9f [lEa~ﬂ9(-|S)A ngt(Sa Cl)]

Locally Improve the local-adv a little bit via one-step gradient ascent:
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Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy
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Locally Improve the local-adyv a little bit via one-step gradient ascent:
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Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

max kg [an(ws)A (s, a)]

Locally Improve the local-adyv a little bit via one-step gradient ascent:

QH_I == gt + n- ESNd:H, I:[EaNﬂet(s) Vln ﬂgt(a | S) . Aﬂ‘gl(s, a)]

When 17 = 07, gradient ascent ensures
we improve the objective function
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7
mHaX [Es~d;,[97 lEClN”a('L?)A (s, a)

s.t.,KL(pg | py) <6
L Has s om
Define fisher info-matrix F, = VgKL(p@ 1) | g—g »

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:



Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to z/*!

Fourth attempt: Natural Policy Gradient

TT
max g | Eanry 1A )

s.t.,KL(pg | py) <6

Define fisher info-matrix F, = VgKL(pgt | Py) Igzgt,

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

max V,J(1,)"(0 = 6,), s.t., (0—0)TF,0—6) <5
9 t t



An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E_ " E

6 f )AEHI(S’ a)

a~my(-|s



An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E__ [EaNﬂ()(-|s)Aﬂ0[(S’ a)] —AE, [KL <7rg(a |s)| my(al s))]
0 H /) . !

regularization



An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E = |E, . .19A™ (s, a)] —AE, [KL <7T9(Cl | s) | my(a| s))]
0 H H t

regularization

Use importance weighting & expand KL divergence:



An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

meax E.. 4 E o154, a)] —AE, gr [KL <7r91(a |s) | my(al s))]

regularization

Use importance weighting & expand KL divergence:
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An extension of NPG (even faster in practice): 3
B de

Given an current policy 7/, we perform policy update to z/*!

[l
fifth attempt (new): Proximal Policy Optimization (PPO)

max E_ 4 [[EaNﬂe(.| G AT, a)] —@ESN ax [KL <7rgr(a |s) | my(al s))]

0

) \yy;wﬁ‘“ SL@>

regularization

£ P |
rr’\wﬁ Use importance weighting & expand KL divergence:
Xb
my(als)
ACIY SN = | =Sy A"(s,a)| —AE__ mE,. .. .o |—In7y(als
(©) s~d;,0 [ o, (| )”9,(a |'5) ( )] s dﬂa o,(:|5) [ 9( | )]

PPO: Perform a few steps of mini-batch SGA on £(6) to approximate arg max £ ()
0
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Next a few lectures:

Imitation Learning
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?
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