
Trust Region
Policy Optimization & NPG

Recap on NPG:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Recap on NPG:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt
Intuition: maximize local adv subject

to being incremental (in KL);

At iteration t:

Recap on NPG:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

Recap on NPG:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG

Recap on NPG:

max
πθ

!s∼dπθtμ [!a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG

Fθt
:= !s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ
radius = δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ

Δ̃ max = ηF−1/2 ∇

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ ∥ηF−1/2 ∇∥2 = δ

Δ̃ max = ηF−1/2 ∇

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ ∥ηF−1/2 ∇∥2 = δ

Δ̃ max = ηF−1/2 ∇

⇒ η = δ
∇⊤F−1 ∇

Notation

simplification

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ ∥ηF−1/2 ∇∥2 = δ

Δ̃ max = ηF−1/2 ∇

⇒ η = δ
∇⊤F−1 ∇

Notation

simplification

Δ̃ max := δ
∇⊤F−1 ∇ F−1/2 ∇

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

max
Δ

∇⊤Δ,
s.t. Δ⊤FΔ ≤ δ

Δ̃ := F1/2Δ

max
Δ̃

(F−1/2 ∇)⊤ Δ̃ ,

s.t. Δ̃ ⊤ Δ̃ ≤ δ

F−1/2 ∇

radius = δ ∥ηF−1/2 ∇∥2 = δ

Δ̃ max = ηF−1/2 ∇

⇒ η = δ
∇⊤F−1 ∇

Notation

simplification

Δ̃ max := δ
∇⊤F−1 ∇ F−1/2 ∇ Δmax := δ

∇⊤F−1 ∇ F−1 ∇

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

A more standard and straightway is to use Lagrange multiplier :λ ≤ 0

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

A more standard and straightway is to use Lagrange multiplier :λ ≤ 0

min
λ≤0

max
θ

∇θJ(πθt
)⊤(θ − θt) + λ ((θ − θt)⊤Fθt

(θ − θt) − δ)

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

A more standard and straightway is to use Lagrange multiplier :λ ≤ 0

min
λ≤0

max
θ

∇θJ(πθt
)⊤(θ − θt) + λ ((θ − θt)⊤Fθt

(θ − θt) − δ)
(This is optional: Lagrange formulation is out of scope)

At iteration , NPG solves a convex constrained optimization problem:t

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

A more standard and straightway is to use Lagrange multiplier :λ ≤ 0

min
λ≤0

max
θ

∇θJ(πθt
)⊤(θ − θt) + λ ((θ − θt)⊤Fθt

(θ − θt) − δ)
(This is optional: Lagrange formulation is out of scope)

Summary: at this stage, we complete the NPG algorithm derivation

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much,

but parameters could potential change a lot! θ

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much,

but parameters could potential change a lot! θ

Consider special case where is a diagonal matrix: Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
0 0 σ3

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much,

but parameters could potential change a lot! θ

Consider special case where is a diagonal matrix: Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
0 0 σ3

∀i : θ1[i] = θ0[i] + (ησ−1
i)∇θ0

[i]

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much,

but parameters could potential change a lot! θ

Consider special case where is a diagonal matrix: Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
0 0 σ3

∀i : θ1[i] = θ0[i] + (ησ−1
i)∇θ0

[i]
For tiny , we indeed have a huge learning rate, i.e., , at coordinate !σi ησ−1

i i

NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much,

but parameters could potential change a lot! θ

Consider special case where is a diagonal matrix: Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
0 0 σ3

∀i : θ1[i] = θ0[i] + (ησ−1
i)∇θ0

[i]
For tiny , we indeed have a huge learning rate, i.e., , at coordinate !σi ησ−1

i i
In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much

Example of Natural Gradient on 1-d problem:

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

Example of Natural Gradient on 1-d problem:

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0))

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0))

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
= exp(θ0)

(1 + exp(θ0))2

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0))

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
= exp(θ0)

(1 + exp(θ0))2

Hence: fθ0
→ 0+, as θ0 → ∞

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0))

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
= exp(θ0)

(1 + exp(θ0))2

NPG: θ1 = θ0 + η
g′ (θ0)

fθ0

Hence: fθ0
→ 0+, as θ0 → ∞

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0))

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
= exp(θ0)

(1 + exp(θ0))2

NPG: θ1 = θ0 + η
g′ (θ0)

fθ0

GA: θ1 = θ0 + ηg′ (θ0)

Hence: fθ0
→ 0+, as θ0 → ∞

Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := (exp(θ0)
1 + exp(θ0)

, 1
1 + exp(θ0)) i.e., Plain GA in will move to at a

constant speed,

while Natural GA can traverse faster and

faster when gets bigger

(subject to the same learning rate)

θ θ = ∞

θ

pθ = (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
= exp(θ0)

(1 + exp(θ0))2

NPG: θ1 = θ0 + η
g′ (θ0)

fθ0

GA: θ1 = θ0 + ηg′ (θ0)

Hence: fθ0
→ 0+, as θ0 → ∞

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

(In HW2, try to compare PG and NPG, see how they perform differently in practice!)

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ∈ ℝd

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ∈ ℝd

πβ,α(⋅ |s) = 3 (μβ(s), exp(α)Id×d)
θ := [β, α]

Review on Policy Optimization:
We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ∈ ℝd

πβ,α(⋅ |s) = 3 (μβ(s), exp(α)Id×d)
θ := [β, α]

Review on Policy Optimization: API

Given an current policy , we perform policy update to πt πt+1

First attempt: Approximate Policy Iteration

πt+1 = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

Review on Policy Optimization: API

Given an current policy , we perform policy update to πt πt+1

First attempt: Approximate Policy Iteration

πt+1 = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]
i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Review on Policy Optimization: API

Given an current policy , we perform policy update to πt πt+1

First attempt: Approximate Policy Iteration

πt+1 = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]
i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Unfortunately, might be very different from ,

and API could fail to make any progress

πt+1 πt

Review on Policy Optimization: CPI

Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

Review on Policy Optimization: CPI

Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]
∀s : πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απgrd(⋅ |s)

Review on Policy Optimization: CPI

Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

i.e., CPI find the greedy policy, and move towards it a little bit!

∀s : πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απgrd(⋅ |s)

Review on Policy Optimization: CPI

Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

∀s : πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απgrd(⋅ |s)

Review on Policy Optimization: CPI

Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

∀s : πt+1(⋅ |s) = (1 − α)πt(⋅ |s) + απgrd(⋅ |s)

dπt(⋅) − dπt+1(⋅)
1

≤ O (α
1 − γ), Vπt+1 > Vπt (if not terminate yet)

Review on Policy Optimization: PG

Given an current policy , we perform policy update to πt πt+1

Third attempt: PG on parameterized policy

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]

Review on Policy Optimization: PG

Given an current policy , we perform policy update to πt πt+1

Third attempt: PG on parameterized policy

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

Review on Policy Optimization: PG

Given an current policy , we perform policy update to πt πt+1

Third attempt: PG on parameterized policy

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + η ⋅ !s∼dπθtμ [!a∼πθt(s) ∇ln πθt
(a |s) ⋅ Aπθt(s, a)]

Review on Policy Optimization: PG

Given an current policy , we perform policy update to πt πt+1

Third attempt: PG on parameterized policy

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + η ⋅ !s∼dπθtμ [!a∼πθt(s) ∇ln πθt
(a |s) ⋅ Aπθt(s, a)]

When , gradient ascent ensures

we improve the objective function

η → 0+

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
s . t . , KL(ρθt

|ρθ) ≤ δ

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
s . t . , KL(ρθt

|ρθ) ≤ δ

Define fisher info-matrix ,

a convex approximation, e.g., linearize obj and quadratize constraint,

gives us the following NPG update:

Fθt
= ∇2

θKL(ρθt
|ρθ) |θ=θt

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
s . t . , KL(ρθt

|ρθ) ≤ δ

Define fisher info-matrix ,

a convex approximation, e.g., linearize obj and quadratize constraint,

gives us the following NPG update:

Fθt
= ∇2

θKL(ρθt
|ρθ) |θ=θt

max
θ

∇θJ(πθt
)⊤(θ − θt), s.t., (θ − θt)⊤Fθt

(θ − θt) ≤ δ

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)] −λ!s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)] −λ!s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)] −λ!s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

ℓ(θ) := !s∼dπθtμ [!a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ!s∼dπθtμ
!a∼πθt(⋅|s) [−ln πθ(a |s)]

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)] −λ!s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

ℓ(θ) := !s∼dπθtμ [!a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ!s∼dπθtμ
!a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on to approximate ℓ(θ) arg max
θ

ℓ(θ)

Next a few lectures:

Imitation Learning
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?

