Trust Region
Policy Optimization & NPG

At iteration t:

max E__ l[EaNﬂH(S)A”@(s, a)] |

(i

7y
S KL (py0g) <5 |

Intuition: maximize local adv subject
to being incremental (in KL);

Recap on NPG:

Recap on NPG:

At iteration t:

max E__ l[EaNﬂH(S)A”Hr(S, a)]

7, " —> First-order Taylor expansion at 0,

s.t.,, KL (P@JP@) <0 — second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

Recap on NPG:

At iteration t:

max E__ l[EaNﬂH(S)A”Hz(S, a)]

. 2 —> First-order Taylor expansion at 0,

s.t.,, KL (P@Jpng) <0 —» second-order Taylor expansion at 0,

Intuition: maximize local adv subject P&
to being incremental (in KL); ¥

meax @(6 - 0)

s.t. (0—0) Fy(0—0) <6

Recap on NPG:

At iteration t:

max E__ l[EaNﬂH(S)A”Hz(s, a)]

. 2 —> First-order Taylor expansion at 0,

s.t.,, KL (Pngtmng) <0 —» second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

max V,J(z,)T(0 - 6)
9 t

Oy = O, +1F; " Vol(y) +—
s.t. (0—0) Fy(0—0) <6

NPG

Recap on NPG:

At iteration t:

max E__ l[EaNﬂH(S)A”ﬁz(s, a)]

. 2 —> First-order Taylor expansion at 0,

/

s.t.,, KL (P@JP@) <0 —» second-order Taylor expansion at 0,

Intuition: maximize local adv subject
to being incremental (in KL);

max V,J(7,)" (0 — 0)
0., =06, +@ — p 0 o, t
PG s.t. (0—0) Fy(0—0) <6

Fg = c Rdi’/nexdinlg

t

.
Eq e lvgln o s>(Voln 7,(al s)>

Qo

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

At iteration 7, NPG solves a convex constrained optimization problem:
max VQJ(EQ)T(H —0)
0 t
s.t.(0—-6) Fy(0—0) <6

At iteration 7, NPG solves a convex constrained optimization problem:

simplification

st.(@—-0) Fy0—-0)<s —

max VQJ(ﬂH)T(H —0) Notation
0 t

At iteration 7, NPG solves a convex constrained optimization problem:

A
T — Notation T
mg?,lX Yo/ (1) simplification mAaX VA,
St (0 —f@»@_,(e— <5 T st ATFA<s

A

< F

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max V'A,
0 t

simplification A F‘i_ F
-\ P
st.(0-0)F0-6)<s — st ATFA<S FouzuT

l To—pea FoeUlz U
(FO% &

At iteration 7, NPG solves a convex constrained optimization problem:

z

A
—> v FF

max VHJ(”H)T(Q_HI) .No’Fe.ltior? max VT : _F JA)

0 ! simplification A . ~
St.(0-0)'F0-0)<s — st.&FN<s Z(et0 &

\7\ l X:= F1/2A
< %’, t
A ~—
Ct (F)maX(F 1/2V) A,
A
= 7R L \\ &
st. ATA <6

I

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max V'A,
0 ! simplification A

St (O-0)TF0-0)<6 —— gt ATFA<S$

l T A
_ T
mgx(F 1/2V) A,
A
fedus=Vo g

/ st. ATA <6

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max VA,
0 ! simplification A

st.(0—0) Fy0—-0)<6 — gt.ATFA<S$

l ‘A = F12A

max (F_I/QV)TX,

A Y3(0) o o | o
At iteration 7, NPG solves a convex constrained optimization problem:

Notation oy VTA P
0 simplification A - = - <k,
st(0-0)F0-0)<s — gt ATFA<S o, 38
T e
Folny A ~ Vercted™ dof
‘ l A = F'2A vy 64
T~
max (_F/_I/QV) A,

A
radius = /5

st. ATA <6

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max V'A,
0 ! simplification A

St (O-0)TF0-0)<6 —— gt ATFA<S$

F712V l = pina
L “12v\' X
1PV max (F V) A,
A
radius = /6 g’ ||7’]F_1/2V||2=\/5 o
— st ATA <6

~
ﬂm7<

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max V'A,
0 ! simplification A

St (O-0)TF0-0)<6 —— gt ATFA<S$

v g l T = pioa
- T~
'4 Amax N ,7F—1/2V ij <F 1/2 V) A 9
A

radius = /5 ||7’]F_1/2V||2 = \/5 .

5 st. ATA <6
TIEV VY

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max V'A,
0 ! simplification A

St (O-0)TF0-0)<6 —— gt ATFA<S$

~12y %

T~
< nFY max (F72V) A,
A
radius = /6 g’ ||7’]F_1/2V||2=\/5 o
5 st. ATA <6
Sn=q)——
"=\ VY

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) (0 — 0, Notation max VA,
0 ! simplification A

st.(0—0) Fy0—-0)<6 — gt.ATFA<S$

_ 12y 1naX(F_”2V)T2§,

radius=\§ ||;7F_1/2V||2 = \/5

5 s.t. ATA <o
S>n=4/—
TTV VTR 55
o 7 0 1
T — —112 A =4 | —F'V
o = grpg Y | e TV VY

r
B > ~ T - (
- \\’X\\D i\ \3’\\1/ s <’X~"<\' B Lt/\/mrx _ X? P ¢ y ! :\(/% e

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) " (0 — 0
9 t
s.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier 4 < O:

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) " (0 — 0
9 t
s.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier 4 < O:

min max V,J(z,)T(0 —) + A ((9 —0)TF,(0—6) - 5)
<0 6 ' i !

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) " (0 — 0
9 t
s.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier 4 < O:

min max V,J(z,)T(0 —) + A ((9 —0)TF,(0—6) - 5)
<0 6 ' !

(This is optional: Lagrange formulation is out of scope)

At iteration 7, NPG solves a convex constrained optimization problem:

max V,J(z,) " (0 — 0
9 t
s.t. (0—0) Fy(0—0) <6

A more standard and straightway is to use Lagrange multiplier 4 < O:

min max V,J(z,)T(0 —) + A ((9 —0)TF,(0—6) - 5)
<0 0 ' !

(This is optional: Lagrange formulation is out of scope)

Summary: at this stage, we complete the NPG algorithm derivation

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

_1 Veo
Feo
n
I
90
. 91 —
te:
da
up
PG
N

NPG update: 0, = 0, + nF, 1V9

KL(pﬂH I) <5=(0—0)Fy0—6) <5
\/am/
mexyte Fo, "> PO

NPG update: 0, = 0, + ’7F9_01 Va,

KL<p,,|)<5:(9 00) Fy (60— 6p) < 6

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

NPG update: 0, = 0, + 77F9"01 Va,

KL(p,,|)<5:(9 00) Fy (60— 6p) < 6

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

oo 0 O
Consider special case where [, is a diagonal matrix: Fyy = 0 o, O
0O O 03

G, <,
s vm
o, %Cz]

NPG update: 0, = 0, + ’7F9_01 Va,

KL(p,,|)<5:(9 00) Fy (60— 6p) < 6

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

oo 0 O
Consider special case where [, is a diagonal matrix: Fyy = 0 o, O
0O O 03

0,[i] = G[i] +\(n67")|V [i]

NPG update: 0, = 0, + 7/1F9_O1 Va,

KL (p% |an) <52 (0—0)Fp0—0) <5

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

oo 0 0
Consider special case where F90 is a diagonal matrix: FH0 =10 o0, O
0 0 o3

Vi: 0)[i] = 6yli] + (no; ") Vg [i]

For tiny o;, we indeed have a huge learning rate, i.e., nai'l, at coordinate i !

s
NPG update: 0, = 0, + 7/1F9_O1 Va, (B-20 [(0-2)

KL (e |9,) <52 0 QO)T@Q — 0y <8

Our goal is to make sure two distributions do not change to much,
but parameters @ could potential change a lot!

For tiny o;, we indeed have a huge learning rate, i.e., nai'l, at coordinate i !

In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much

Example of Natural Gradient on 1-d problem:

96?\ ?B_] pC) POV PRI
B < exp(0) 1 >
Py = 1 +exp(d)’ 1+exp(9) Ww@) o (19)
p . -
g(0) =100 - pg[l] + 1 pyl2] %\:(x’r |#z/xf§6’) .Q,K[)_U)
N

oM %&ﬁ) a7

X o

- Nz 1
12

P |

T CZ/B// O

Example of Natural Gradient on 1-d problem:

B < exp(0) 1)
Po=\T1% exp(6) " 1 + exp(6) - <d 5/(9)
6 = 9
2(0) =100 - pyl 11+ 1 - pyl2]

*
i e — D

a2 D

— Q0

D=+ @)

Example of Natural Gradient on 1-d problem:

_< exp() 1
Po=\ T+ exp@ 1+ exp(@

8(0) =100 - pyl1] + 1 - pyl2]
H*

pl2]

1 pl1]

Example of Natural Gradient on 1-d problem:

_< exp() 1)
Po=\ T ¥ exp@) 1+ exp(d)

8(0) = 100 - po[1] + 1 - py[2]

pl2]

.1)

exp(6y) | 1)><J{/t>

¢, 2]) =
"\ eoil]\,p al2D <1+exp(90) 1 + exp(6y)

x‘(d pl1]

[1)0\)5 ?9’*

SRy

?96 & Example of Natural Gradient on 1-d problem:
exp(6,
Pe=< P : :) Fisher information scalar: f, = P(%)
1 +exp(@) 1+ exp(0)) 0 (1 + eXp(QO))2
§6) =100+ p11+ 1+ p2 o0\ %) g,
9*
90

pl2]

(Pall1.py[2]) := [2 :
p00 ’peo T 1+ exp(eo) ’ 1+ exp(@o)

1 pl1]

Example of Natural Gradient on 1-d problem:

exp(6,)
9 = < *p(®) : :) Fisher information scalar: f, = P%
1 +exp(@) 1+ exp(0) 0 (1 + eXp(QO))2
8(0) = 100 - po[1]1 + 1 - py[2] Hence: fy, — 07, as 6 — oo
H*
. I LR

0 B2 0a (HR? Fw))
pl2] (

(Pall1.py[2]) := [2 :
p00 ’peo T 1+ exp(eo) ’ 1+ exp(@o)

1 pl1]

Example of Natural Gradient on 1-d problem:

exp(6,
p9=< *p(®) : :) Fisher information scalar: f, = p(%)
1+exp@) 1+ expd) 0 (1 + eXp(QO))2
8(0) = 100 - po[1]1 + 1 - py[2] Hence: fy, — 07, as 6 — oo
0™ /
0, g'(6))

NPGQIZQ()"‘V] ~
&) ifgoj

(Pall1.py[2]) := [2 :
p00 ’peo T 1+ exp(eo) ’ 1+ exp(@o)

pl2]

1 pl1]

Example of Natural Gradient on 1-d problem:

exp(0
P9=< @ 1) Fisher information scalar: f, = p(%)
1+exp@) 1+ expd) 0 (1 + eXP(G()))z
8(0) = 100 - po[1]1 + 1 - py[2] Hence: fy, — 07, as 6 — oo
H*
O (6)
) . NPG: 0, = Gy + o
00 fg0

pl2]

GA: 0, = 0y + ng'(6)

4 (pTopg2)) = 2 :
NP P = @) T+ exp(6y)

N

1 pl1]

Example of Natural Gradient on 1-d problem:

exp(0
p9=< *p(®) : :) Fisher information scalar: f, = p(%)
1+exp@) 1+ expd) 0 (1 + exp(go))2
8(0) = 100 - py[1]1 + 1 - py[2] Hence: fy, — 07, as 6 — oo
9*
7 (¢
) NPG:91=90+17g(0)
00 feo

pl2]

GA: 0 = 6y + 118'(6p)

exp(dy) 1
% , i.e., Plain GA in @ will moveto @ = oo ata
I+ exp@) 1+ exp() constant speed

while Natural GA can traverse faster and

I plll faster when 0 gets bigger
(subject to the same learning rate)

£ (11,9 2D) = (

N

Outline for Today:

1. Derivation of the closed-form NPG update

2. Intuitive Explanation of Natural (Policy) Gradient

(In HW2, try to compare PG and NPG, see how they perform differently in practice!)

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm

Review on Policy Optimization:

We have huge space space, i.e., | S| might be(2551212

We can only reset from initial state distribution 5, ~

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255712312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255712312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255312312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Deep Learning Neural Network

(@ Hidden Layer @ Output Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255312312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A J
many classes What about continuous actions a € R“?

Deep Learning Neural Network

(@ Hidden Layer @ Output Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255312312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation S _an Dry }/‘F(S) ep\of

A Policy is a classifier w/ A

many classes What about continuous aétions a € R9?

9 hta|) /

Deep Learning Neural Network

75.o(-+ |8) = N pp(s)/exp(@) g

0= [é, 05]

(@ Hidden Layer @ Output Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 255712312

We can only reset from initial state distribution 5, ~

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A J
many classes What about continuous actions a € R“?

Deep Learning Neural Network

Byl +19) = (1), exp(@ ey

ot . C-|s
ot | %:= 15, a]

(@ Hidden Layer @ Output Layer

Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

aitl = argmax [, _ = [A”T(S, ﬂ(S))]
U

nell

Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

t+1

n'" = arg max [Es~d,7f [A”T(S, ﬂ(S))]

nell

i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Review on Policy Optimization: API

Given an current policy 7/, we perform policy update to z'+!

First attempt: Approximate Policy Iteration

t+1

2k argmax B, [47(5, 2(5)|

nell

i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Unfortunately, 7'+ might be very different from 7/,
and API could fail to make any progress

Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration

Ty = argmax g n lA”[(S, ﬂ(S))]
nell .

Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration

Ty = argmax g n lA”[(S, ﬂ(S))]
nell .

Vs 19) = (1 —a)a'(- |s) + amy (- |5)

Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration

Ty = argmax g n lA”[(S, ﬂ(S))]
nell .

Vs 19) = (1 —a)a'(- |s) + amy (- |5)

i.e., CPI find the greedy policy, and move towards it a little bit!

Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration
Torg = ATE rjfleaﬁ(g lA” (s, zr(s))]
. 1 —
Vs:a™ (- |s) = —a)a'(- |s) +amy, (- |5)
i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

Review on Policy Optimization: CPI

Given an current policy 7/, we perform policy update to z'+!

second attempt: Conservative Policy Iteration
Torg = ATE rjfleaﬁ(g lA” (s, zr(s))]
. 1 —
Vs:a™ (- |s) = —a)a'(- |s) +amy, (- |5)
i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties:

” d7(-)—d™"'(+) H <0 (%) v > V7 (if not terminate yet)
-V

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

7
mHaX [Es~d;,[97 lEClN”a('L?)A (s, a)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

rneax |Es~d:9f [lEa~ﬂ9(-|S)A ngt(Sa Cl)]

Locally Improve the local-adv a little bit via one-step gradient ascent:
Uo| Gin L B, A s || = %3

}A (h"//qg(‘zg.)
/(D‘L
N j

v, [e ook
Md‘“

{ a}_S)
5 A’drj:e mri‘((m, \ 5) \7_}/9\{6-&(& SJA (_S ‘.)

0&’”(@4)/([3)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

max E, o | Equry oA ™(5.)|

Locally Improve the local-adyv a little bit via one-step gradient ascent:

9t+1 = 9[+7- ESNdlfet [[antg[(s) Vin ﬂ@,(a | S)) A”e,(s’ CZ)]

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to z/*!

Third attempt: PG on parameterized policy

max kg [an(ws)A (s, a)]

Locally Improve the local-adyv a little bit via one-step gradient ascent:

QH_I == gt + n- ESNd:H, I:[EaNﬂet(s) Vln ﬂgt(a | S) . Aﬂ‘gl(s, a)]

When 17 = 07, gradient ascent ensures
we improve the objective function

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to z/*!

Fourth attempt: Natural Policy Gradient

7
mHaX [Es~d;,[97 lEClN”a('L?)A (s, a)

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to z/*!

Fourth attempt: Natural Policy Gradient

TT
max g | Eanry 1A)

s.t.,KL(pg | py) <6

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to z/*!

Fourth attempt: Natural Policy Gradient

7
mHaX [Es~d;,[97 lEClN”a('L?)A (s, a)

s.t.,KL(pg | py) <6
L Has s om
Define fisher info-matrix F, = VgKL(p@ 1) | g—g »

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to z/*!

Fourth attempt: Natural Policy Gradient

TT
max g | Eanry 1A)

s.t.,KL(pg | py) <6

Define fisher info-matrix F, = VgKL(pgt | Py) Igzgt,

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

max V,J(1,)"(0 = 6,), s.t., (0—0)TF,0—6) <5
9 t t

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E_ " E

6 f)AEHI(S’ a)

a~my(-|s

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E__ [EaNﬂ()(-|s)Aﬂ0[(S’ a)] —AE, [KL <7rg(a |s)| my(al s))]
0 H /) . !

regularization

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

max E = |E, . .19A™ (s, a)] —AE, [KL <7T9(Cl | s) | my(a| s))]
0 H H t

regularization

Use importance weighting & expand KL divergence:

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to z/*!

fifth attempt (new): Proximal Policy Optimization (PPO)

meax E.. 4 E o154, a)] —AE, gr [KL <7r91(a |s) | my(al s))]

regularization

Use importance weighting & expand KL divergence:

mo(als)
ary(-1s) To(s, Cl)] - ﬂ[ESNd;o,[EaN%(,m [—ln my(a | S)]
e

szloow\a)\ el

me(als)

Fg ¢
An extension of NPG (even faster in practice): 3
B de

Given an current policy 7/, we perform policy update to z/*!

[l
fifth attempt (new): Proximal Policy Optimization (PPO)

max E_ 4 [[EaNﬂe(.| G AT, a)] —@ESN ax [KL <7rgr(a |s) | my(al s))]

0

) \yy;wﬁ‘“ SL@>

regularization

£ P |
rr’\wﬁ Use importance weighting & expand KL divergence:
Xb
my(als)
ACIY SN = | =Sy A"(s,a)| —AE__ mE,. .. .o |—In7y(als
(©) s~d;,0 [o, (|)”9,(a |'5) ()] s dﬂa o,(:|5) [9(|)]

PPO: Perform a few steps of mini-batch SGA on £(6) to approximate arg max £ ()
0

s) = ZQXT CFolend)

il

Next a few lectures:

Imitation Learning
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?

&,

T
e Fp U U

KL\HJ/'@{? .
/\ —\
T/@g - M S [/LT u==I

mx’@ ‘)

Kﬁ&‘f’@ Ce»l»{ F,r/“ to

AN D MQ? w w oo (075 +

Eoo= [VQM/@P) 2L,] e#}{“d\ 4. e

TJ
M
fo— —
=

