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Fθt
:= !s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ
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2. Intuitive Explanation of Natural (Policy) Gradient

3. Review of Policy Optimization (API, CPI, PG, and NPG) & a new algorithm
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A more standard and straightway is to use Lagrange multiplier :λ ≤ 0

min
λ≤0

max
θ

∇θJ(πθt
)⊤(θ − θt) + λ ((θ − θt)⊤Fθt
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(This is optional: Lagrange formulation is out of scope)

Summary: at this stage, we complete the NPG algorithm derivation
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Consider special case where  is a diagonal matrix:  Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
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∀i : θ1[i] = θ0[i] + (ησ−1
i )∇θ0

[i]
For tiny , we indeed have a huge learning rate, i.e., , at coordinate  !σi ησ−1

i i
In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much
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(In HW2, try to compare PG and NPG, see how they perform differently in practice!)
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π∈Π

!s∼dπtμ [Aπt(s, π(s))]
i.e., find the greedy policy that maximizes the local advantage (e.g., via regression)

Unfortunately,  might be very different from , 

and API could fail to make any progress

πt+1 πt
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Given an current policy , we perform policy update to πt πt+1

second attempt: Conservative Policy Iteration

πgrd = arg max
π∈Π

!s∼dπtμ [Aπt(s, π(s))]

i.e., CPI find the greedy policy, and move towards it a little bit!

Two nice properties: 

∀s : πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απgrd( ⋅ |s)

dπt( ⋅ ) − dπt+1( ⋅ )
1

≤ O ( α
1 − γ ), Vπt+1 > Vπt (if not terminate yet)
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θ
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When , gradient ascent ensures 

we improve the objective function

η → 0+
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Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)]
s . t . , KL(ρθt

|ρθ) ≤ δ

Define fisher info-matrix , 

a convex approximation, e.g., linearize obj and quadratize constraint, 


gives us the following NPG update: 

Fθt
= ∇2

θKL(ρθt
|ρθ) |θ=θt

max
θ

∇θJ(πθt
)⊤(θ − θt),  s.t., (θ − θt)⊤Fθt

(θ − θt) ≤ δ
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An extension of NPG (even faster in practice): 

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

!s∼dπθtμ [!a∼πθ(⋅|s)Aπθt(s, a)] −λ!s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence: 

ℓ(θ) := !s∼dπθtμ [!a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ!s∼dπθtμ
!a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on  to approximate ℓ(θ) arg max
θ

ℓ(θ)



Next a few lectures:

Imitation Learning  
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?




