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1 Preliminaries

1.1 Problem Definition

Multi-armed bandit (MAB) problem is formally defined as follows:
We consider a MAB with K ∈ N+ many arms (i.e., actions), where each arm i ∈ {1, 2, . . . ,K} has its own

reward distribution νi. Denote µi as the mean of νi, and define

µ? = max
i∈[K]

µi, i? = arg max
i∈[K]

µi.

Note that the reward distributions and the means of reward distributions are all unknown. Instead, at any time step,
after pulling an arm i, we only receive a reward r sampled from νi. One can imagine that if we pull an arm i enough
times, then the average reward can serve as a good estimation of the expectation, i.e., µi.

At each time step t ∈ {0, . . . , T − 1}, the learner chooses some arm It ∈ {1, . . . ,K}. We are interested in the
learner’s regret, defined below:

Regret = Tµ? −
T∑
t=1

µIt ,

where µIt is the expected reward of the chosen arm indexed by It. The goal is to design the learner such that it
achieves sub-linear regret, e.g.,

√
T .

1.2 Explore-Exploit Dilemma

Note that only information the learner knows beforehand is just the number of total arms, i.e., K here. Every round,
the learner needs to make a decision in terms of just pulling the best arm so far (i.e., exploitation), or trying some
other arms that have not been tried not enough times yet (i.e., exploration).

1.3 Statistical tools: Concentration Inequalities

The only concentration inequality we are going to use in this note is the Hoeffding’s inequality. Hoeffding’s
inequality gives us a sense of how the empirical mean can deviate from the true mean in terms of the number of
samples.
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Algorithm 1 UCB
1: Play each arm once (note: this only gonna occur constant K total regret;)
2: Set ni,1 = 1 for all i ∈ [K]
3: for t = 0→ T − 1 do
4: Compute µ̂t(i) for all i ∈ [K]

5: Play It = arg maxi∈[K]

(
µ̂t(i) +

√
log(TK/δ)
nt−1(i)

)
, and observe rt

6: end for

Theorem 1 (Hoeffding’s Inequality). Consider a one-dimension distribution ν with expectation µ, where any sample
from µ is bounded, i.e., r ∼ µ must have |r| ≤ a ∈ R+. Given N many i.i.d scalars {ri}Ni=1

iid∼ ν sampled from ν,
we have that:

P

(∣∣∣∣∣
N∑
i=1

ri/N − µ

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2Nε2

a2

)
.

In other words, with probability at least 1− δ, we have:∣∣∣∣∣
N∑
i=1

ri/N − µ

∣∣∣∣∣ ≤
√
a2 log(2/δ)

2N
= O

(√
log(1/δ)/N

)
.

Namely, from Hoeffding’s inequality, we know that with high probability, our empirical mean estimation∑N
i=1 ri/N is approaching to the true mean µ in the rate of 1/

√
N .

Remark Proving the Hoeffding’s inequality is out of the scope of this class. Here all we need to know is that
Hoeffding’s inequality is an off-shelf statistical tool that builds confidence interval for our mean estimate.

Union bound Another statistical tool that we will leverage is the union bound, i.e., given N eventsA1,A2, . . . , AN ,
we have that P(A1 or A2 . . . or AN ) ≤

∑N
i=1 P(Ai). The inequality can be extended to any number of events. Again

we are not going to prove that. The intuition behind this is that think about Ai as a set in R2. P(A1 or A2 . . . or AN )
represents the area covered by the set A1 ∪A2 · · · ∪AK . Since there might be overlapping between these sets, we
have that area(A1 ∪A2 · · · ∪AK) ≤

∑N
i=1 area(Ai).

2 Upper Confidence Bound

Below we introduce the optimal algorithm: Upper Confidence Bound (UCB).
At the beginning of iteration t, UCB maintains the average reward of each arm i so far,

µ̂t(i) =
1

nt(i)

t−1∑
τ=0

1[Iτ = i]rτ , (1)

where nt(i) is the total number of times we pulled arm i so far, i.e., nt(i) =
∑t−1

τ=0 1[Iτ = i]. In words, for each
arm, we keep tracking its current average reward using all the rewards we received from this arm so far.

Alg. 1 summarizes the UCB algorithm. Note that every round when we choose an arm It, we do not choose
just based on the estimated mean µ̂t(i), instead we add a bonus term

√
log(KT/δ)/nt(i) to the estimated mean

µ̂t(i). Intuitively, the bonus plus the mean forms the so called Upper Confidence Bound of the true mean µi, i.e.,
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√
log(TK/δ)/nt(i) + µ̂t(i) ≥ µi (with high probability of course). The UCB algorithm picks the arm that has the

largest upper confidence bound. This general strategy is called Optimistic in the Face of Uncertainty. Below we
show that UCB achieves the optimal regret Õ(

√
KT ). The reason that it is optimal is that it matches to the lower

bound of MAB (one can show that there exists a MAB problem, where any algorithm has to suffer regret Ω(
√
KT )).

2.1 Analysis (optional)

Theorem 2 (Regret of UCB). Fix δ ∈ (0, 1). Assume that the reward sampled from νi is bounded in [0, 1] for any
i ∈ [K]. Assume T is known. With probability at least 1− δ, we have:

Regret = O(2
√

log(TK/δ)
√
KT ) = Õ(

√
KT ).

Proof. Consider a fixed iteration t and a fixed arm i ∈ [K], applying Hoeffding’s inequality with a parameter δ′, we
know that with probability at least 1− δ′, for i and t specifically, we have:

|µ̂t(i)− µi| ≤

√
log(2/δ′)

nt(i)
. (2)

Now we are interested in bounding the probability that ∀t ∈ [T ],∀i ∈ [K], |µ̂t(i)− µi| ≤
√

log(2/δ′)/nt(i).
Via union bound again, we have:

P
(
∃t ∈ [T ], i ∈ [K], |µ̂t(i)− µi| ≥

√
log(2/δ′)/nt(i)

)
≤

T−1∑
t=0

K∑
i=1

P(|µ̂t(i)− µi| ≥
√

log(2/δ′)/nt(i))

≤ TKδ′.

Hence, we have:

P
(
∀t ∈ [T ], i ∈ [K], |µ̂t(i)− µi| ≤

√
log(2/δ′)/nt(i)

)
≥ 1− TKδ′.

Now let us simply set δ′ = δ/(KT ), we have:

Pr
(
∀t ∈ [T ], i ∈ [K], |µ̂t(i)− µi| ≤

√
log(2KT/δ)/nt(i)

)
≥ 1− δ. (3)

The above says that with probability at least 1− δ, the confidence interval we have are all valid, for all t and all
i, simultaneously!

Let us now assume Eq 3 holds. All the analysis below condition on Eq 3 holds.
Let us consider round t. In round t, we choose It because it has the highest upper confidence bound, which

means that It’s upper confidence bound is no smaller than the upper confidence bound of any other arms, including
i?:

µ̂t(It) +
√

log(TK/δ)/nt(It) ≥ µ̂t(I?) +
√

log(TK/δ)/nt(I?).
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So the total regret is:

Regret =
T−1∑
t=0

µI? − µIt

≤
T−1∑
t=0

µ̂t(I
?) +

√
log(KT/δ)/nt(I?)− µIt

≤
T−1∑
t=0

µ̂t(It) +
√

log(KT/δ)/nt(It)− µIt

≤
T−1∑
t=0

µ̂t(It) +
√

log(KT/δ)/nt(It)− (µ̂t(It)−
√

log(KT/δ)/nt(It))

≤ 2
√

log(KT/δ)
T−1∑
t=0

√
1/nt(It).

The last step is just need to upper bound
∑T−1

t=0

√
1/nt(It). This step is a bit tricky and we can proceed as

follows:
T−1∑
t=0

√
1/nt(It) =

K∑
i=1

T−1∑
t=0

1[It = i]
√

1/nt(i)

=

K∑
i=1

nT (i)∑
t=1

√
1/t

≤
K∑
i=1

√
nT (i)

The first equality above basically considers all I0, . . . IT−1, and cluster them into K groups where the i group
contains all steps where arm i is pulled. I.e., the group of time steps that corresponds to arm i is {t : 1[It = i]}. The
size of this group should be equal to nT (i)—the total number of times we pulled arm i during the whole learning
process. The final inequality uses the trick that

∑N
i=1 1/

√
i ≤
√
N .

Another important fact here is that
∑K

i=1 nT (i) = T , i.e., the number of times we played for each arm over T
rounds must sum up equal to T (because we only play one arm per iteration). Consider function f(x) =

√
x which

is a concave function. By Jensen’s inequality, we have:

1

K

K∑
i=1

√
nT (i) ≤

√√√√ 1

K

K∑
i=1

nT (i) =
√
T/K.

Hence, we get:

Regret ≤ 2
√

log(KT/δ)

T−1∑
t=0

√
1/nt(It) ≤ 2

√
log(KT/δ)K

√
T/K = 2

√
log(TK/δ)

√
TK.

3 Bibliographic Remarks for MAB

The UCB analysis can be found in Bubeck et al. (2012).
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