Conservative Policy Iteration

Recall Policy Iteration (PI) with known (P, r)

Recall Policy Iteration (PI) with known (P, r)

Assume MDP is known, we compute $A^{\pi_{old}}(s,a)$ exactly for all s,a, PI updates policy as:

Recall Policy Iteration (PI) with known (P, r)

Assume MDP is known, we compute $A^{\pi_{old}}(s,a)$ exactly for all s,a, PI updates policy as:

$$\pi_{new}(s) = \arg\max_{a} A^{\pi_{old}}(s, a)$$

Recall Policy Iteration (PI) with known (P, r)

Assume MDP is known, we compute $A^{\pi_{old}}(s,a)$ exactly for all s,a, PI updates policy as:

$$\pi_{new}(s) = \underset{a}{\operatorname{arg max}} A^{\pi_{old}}(s, a)$$

i.e., pick an action that has the largest advantage against π_{old} at every state s,

Recall Policy Iteration (PI) with known (P, r)

Assume MDP is known, we compute $A^{\pi_{old}}(s,a)$ exactly for all s,a, PI updates policy as:

$$\pi_{new}(s) = \arg\max_{a} A^{\pi_{old}}(s, a)$$

i.e., pick an action that has the largest advantage against π_{old} at every state s,

Maximize advantage is great, as it gives monotonic improvement:

$$Q^{\pi_{new}}(s,a) \geq Q^{\pi_{old}}(s,a), \forall s, a$$

Recall Policy Iteration (PI):

$$\pi_{new}(s) = \arg\max_{a} A^{\pi_{old}}(s, a)$$

Recall Policy Iteration (PI):

$$\pi_{new}(s) = \arg\max_{a} A^{\pi_{old}}(s, a)$$

Performance Difference Lemma (PDL): for all $s_0 \in S$

Recall Policy Iteration (PI):

$$\pi_{new}(s) = \arg\max_{a} A^{\pi_{old}}(s, a)$$

Performance Difference Lemma (PDL): for all $s_0 \in S$

$$V^{\pi_{new}}(s_0) - V^{\pi_{old}}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_0}^{\pi_{new}}} \left[A^{\pi_{old}}(s, a) \right]$$

Recall Policy Iteration (PI):

$$\pi_{new}(s) = \underset{a}{\operatorname{arg max}} A^{\pi_{old}}(s, a)$$

Performance Difference Lemma (PDL): for all $s_0 \in S$

$$V^{\pi_{new}}(s_0) - V^{\pi_{old}}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_0}^{\pi_{new}}} \left[A^{\pi_{old}}(s, a) \right]$$

The advantage against π_{old} averaged over π_{new} 's own distribution

Today: Conservative Policy Iteration

Q: How to enforce incremental policy update and ensure monotonic improvement

Outline

1. Greedy Policy Selection (via reduction to regression) and recap of API

2. Conservative Policy Iteration

3. Monotonic Improvement of CPI

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$$

State visitation:
$$d^\pi_\mu(s) = (1-\gamma)\sum_{h=0}^\infty \gamma^h \mathbb{P}^\pi_h(s;\mu)$$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$$

State visitation:
$$d^\pi_\mu(s) = (1 - \gamma) \sum_{h=0}^\infty \gamma^h \mathbb{P}^\pi_h(s;\mu)$$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Π :

$$\Pi = \{\pi : S \mapsto A\}$$

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$$

State visitation:
$$d^\pi_\mu(s) = (1 - \gamma) \sum_{h=0}^\infty \gamma^h \mathbb{P}^\pi_h(s;\mu)$$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Π :

$$\Pi = \{\pi : S \mapsto A\}$$

(We can think about each policy as a classifier) Note that the optimal policy π^* may not be in Π

Discounted infinite horizon MDP:

$$\mathcal{M} = \{S, A, \gamma, r, P, \mu\}$$

State visitation:
$$d^\pi_\mu(s) = (1-\gamma)\sum_{h=0}^\infty \gamma^h \mathbb{P}^\pi_h(s;\mu)$$

As we will consider large scale unknown MDP here, we start with a (restricted) function class Π :

$$\Pi = \{\pi : S \mapsto A\}$$

From now on, think about deterministic policy as a special stochastic policy

(We can think about each policy as a classifier) Note that the optimal policy π^{\star} may not be in Π

Given the current policy π^t , let's find a new policy that has large local adv over π^t under $d_\mu^{\pi^t}$

Given the current policy π^t , let's find a new policy that has large local adv over π^t under $d_\mu^{\pi^t}$

i.e., let's aim to (approximately) solve the following program:

$$\underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi(s)) \right]$$

Given the current policy π^t , let's find a new policy that has large local adv over π^t under $d_\mu^{\pi^t}$

i.e., let's aim to (approximately) solve the following program:

$$\arg\max_{\pi\in\Pi}\mathbb{E}_{s\sim d_{\mu}^{\pi^t}}\left[A^{\pi^t}(s,\pi(s))\right]$$
 Greedy Policy Selector

Given the current policy π^t , let's find a new policy that has large local adv over π^t under $d_\mu^{\pi^t}$

i.e., let's aim to (approximately) solve the following program:

$$\underset{\pi \in \Pi}{\arg \max} \, \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 Greedy Policy Selector

How to implement such greedy policy selector? We talked about a regression process..

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{ f : S \times A \mapsto \mathbb{R} \} \quad (\approx A^{\pi^t})$$

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{f : S \times A \mapsto \mathbb{R}\} \quad (\approx A^{\pi^t})$$

$$\Pi = \{\pi(s) = \arg\max f(s, a) : f \in \mathcal{F}\}$$

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{f : S \times A \mapsto \mathbb{R}\} \quad (\approx A^{\pi^t})$$

$$\Pi = \{\pi(s) = \arg\max_{a} f(s, a) : f \in \mathcal{F}\}$$

$$\{s_i, a_i, y_i\}, s_i \sim d_u^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{f : S \times A \mapsto \mathbb{R}\} \quad (\approx A^{\pi^t})$$

$$\Pi = \{\pi(s) = \arg\max_{a} f(s, a) : f \in \mathcal{F}\}$$

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_i, a_i) - y_i)^2$$

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{f : S \times A \mapsto \mathbb{R}\} \quad (\approx A^{\pi^t})$$

$$\Pi = \{\pi(s) = \arg\max_{a} f(s, a) : f \in \mathcal{F}\}$$

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_i, a_i) - y_i)^2$$

Act greedily wrt the estimator \widehat{A}^t (as we hope $\widehat{A}^t \approx A^{\pi^t}$):

We can do a reduction to Regression via Advantage function approximation

$$\mathcal{F} = \{f : S \times A \mapsto \mathbb{R}\} \quad (\approx A^{\pi^t})$$

$$\Pi = \{\pi(s) = \arg\max_{a} f(s, a) : f \in \mathcal{F}\}$$

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_i, a_i) - y_i)^2$$

Act greedily wrt the estimator \widehat{A}^t (as we hope $\widehat{A}^t \approx A^{\pi^t}$):

$$\widehat{\pi}(s) = \arg\max_{a} \widehat{A}^{t}(s, a), \forall s$$

Successful Regression ensures approximate greedy operator

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_i, a_i) - y_i)^2$$

Successful Regression ensures approximate greedy operator

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_i, a_i) - y_i)^2$$

Assume this regression is successful, i.e.,

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}, a \sim U(A)} \left(\widehat{A}^t(s, a) - A^{\pi^t}(s, a) \right)^2 \leq \delta$$

Successful Regression ensures approximate greedy operator

$$\{s_i, a_i, y_i\}, s_i \sim d_{\mu}^{\pi^t}, a_i \sim U(A), \mathbb{E}\left[y_i\right] = A^{\pi^t}(s_i, a_i)$$

Regression oracle:

$$\widehat{A}^{t} = \arg\min_{f \in \mathscr{F}} \sum_{i} (f(s_{i}, a_{i}) - y_{i})^{2}$$

Assume this regression is successful, i.e.,

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}, a \sim U(A)} \left(\widehat{A}^t(s, a) - A^{\pi^t}(s, a) \right)^2 \leq \delta$$

Then, $\widehat{\pi}(s) = \arg\max_{a} \widehat{A}^{t}(s, a)$ is an approximate greedy policy:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}} A^{\pi^t}(s, \widehat{\pi}(s)) \ge \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} A^{\pi^t}(s, \pi(s)) - O\left(\sqrt{\delta}\right)$$

Summary So Far:

By reduction to Supervised Learning (i.e., via Regression to approximate A^{π^t} under $d_{\mu}^{\pi^t}$), we can expect to find an approximate greedy optimizer $\hat{\pi}$, s.t.,

Summary So Far:

By reduction to Supervised Learning (i.e., via Regression to approximate A^{π^t} under $d_u^{\pi^t}$), we can expect to find an approximate greedy optimizer $\hat{\pi}$, s.t.,

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \widehat{\pi}(s)) \right] \approx \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

Summary So Far:

By reduction to Supervised Learning (i.e., via Regression to approximate A^{π^t} under $d_u^{\pi^t}$), we can expect to find an approximate greedy optimizer $\widehat{\pi}$, s.t.,

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \widehat{\pi}(s)) \right] \approx \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

Throughout this lecture, we will simply assume we can achieve $\underset{\pi \in \Pi}{\arg \max} \, \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s,\pi(s)) \right]$

Outline

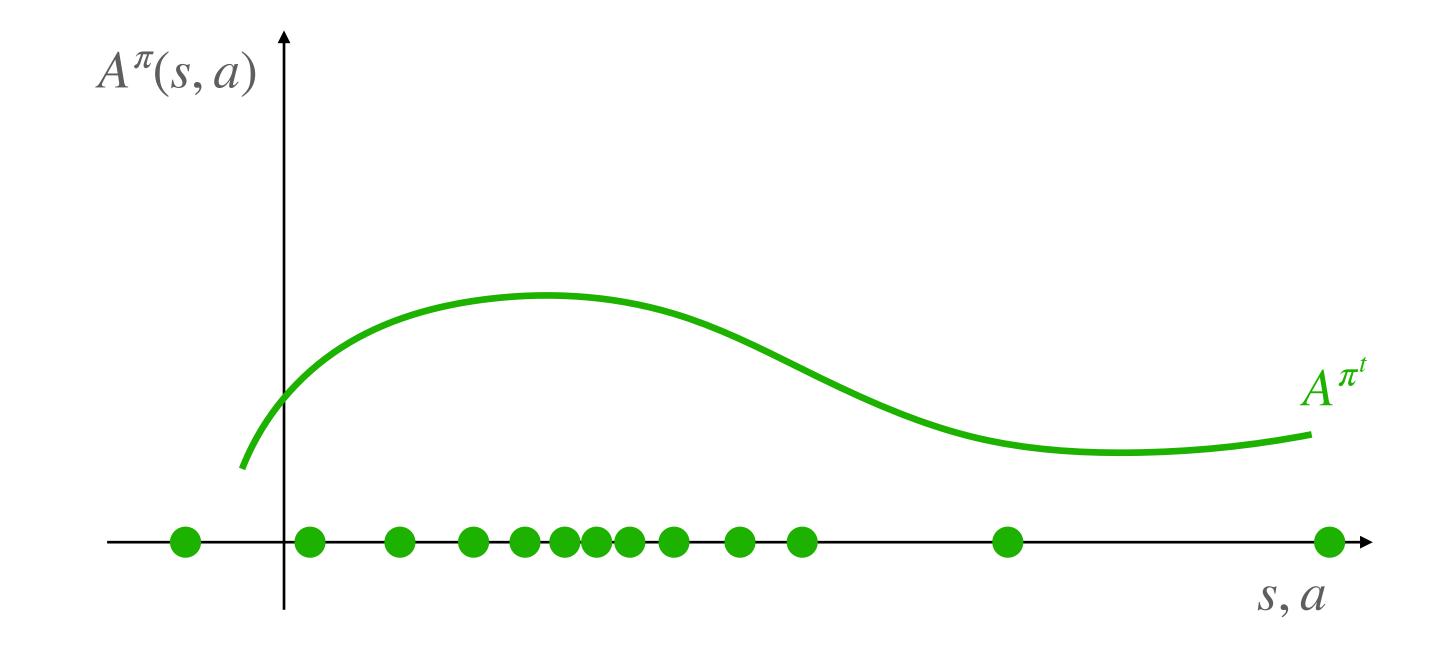
1. Greedy Policy Selection

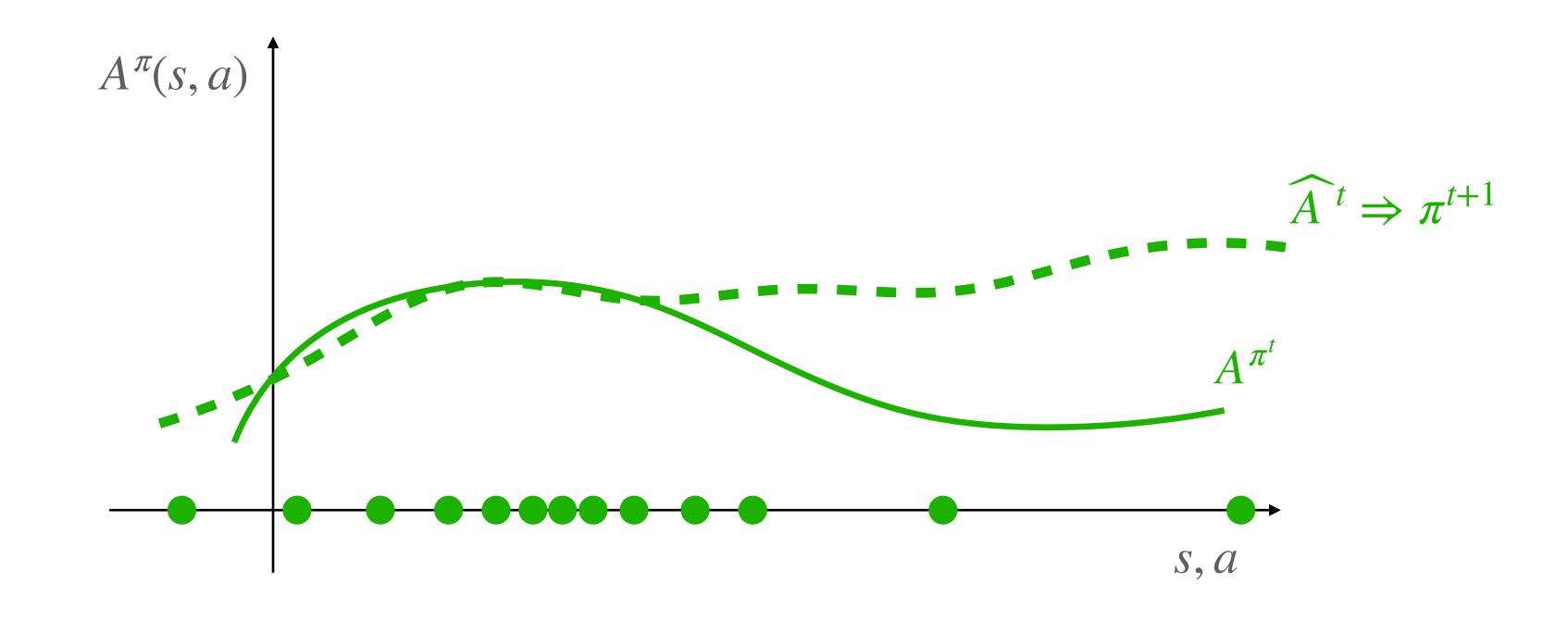
2. Conservative Policy Iteration

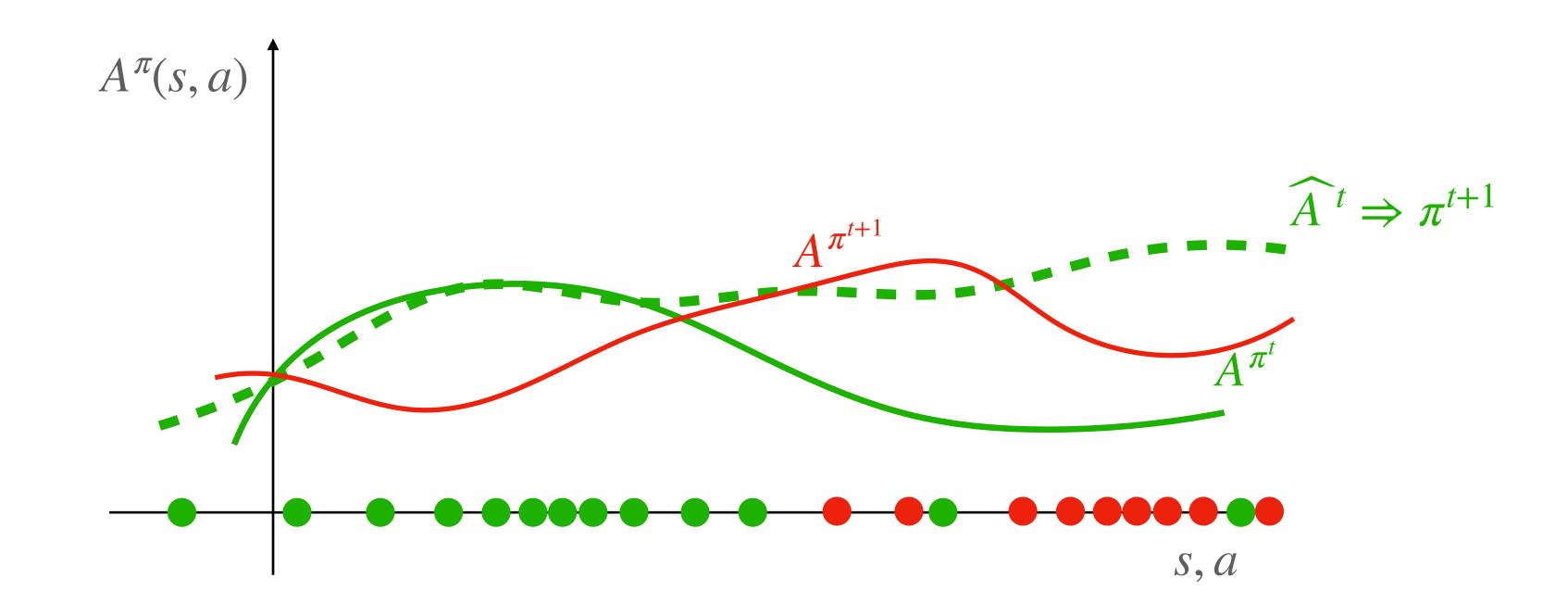
3. Monotonic Improvement of CPI

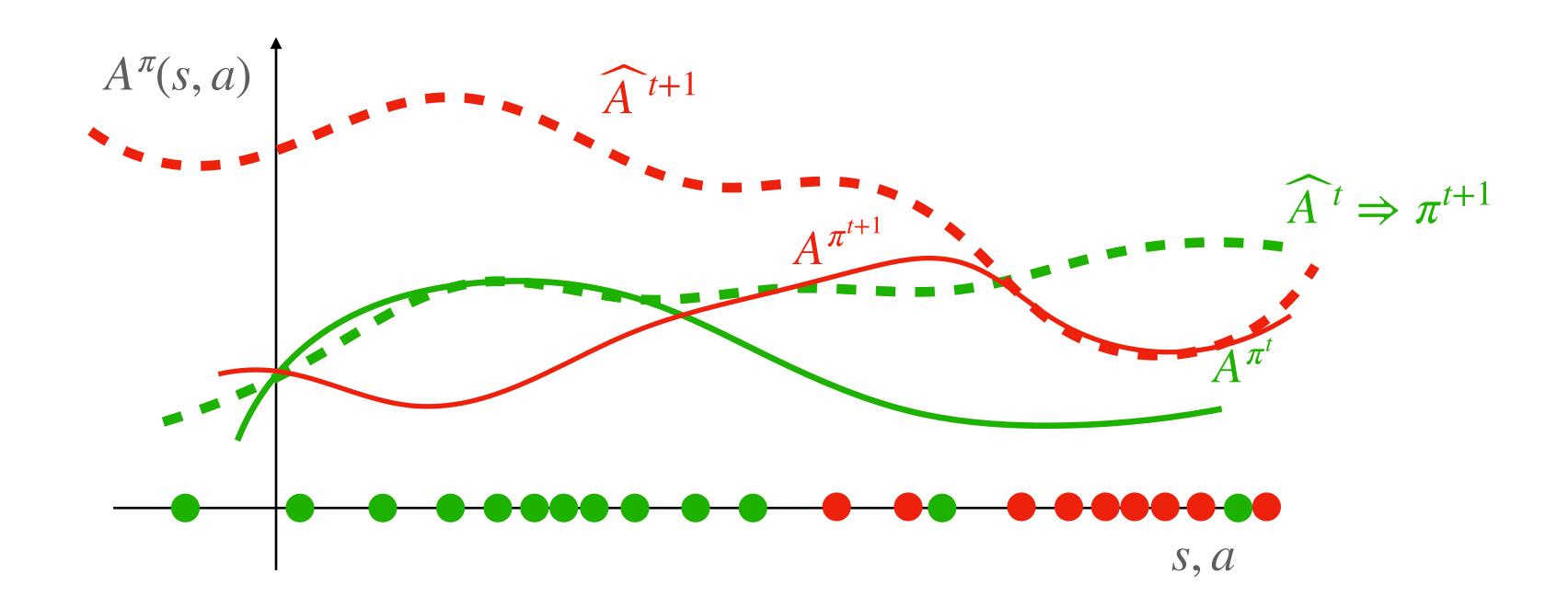
The Failure case of API: Abrupt distribution change

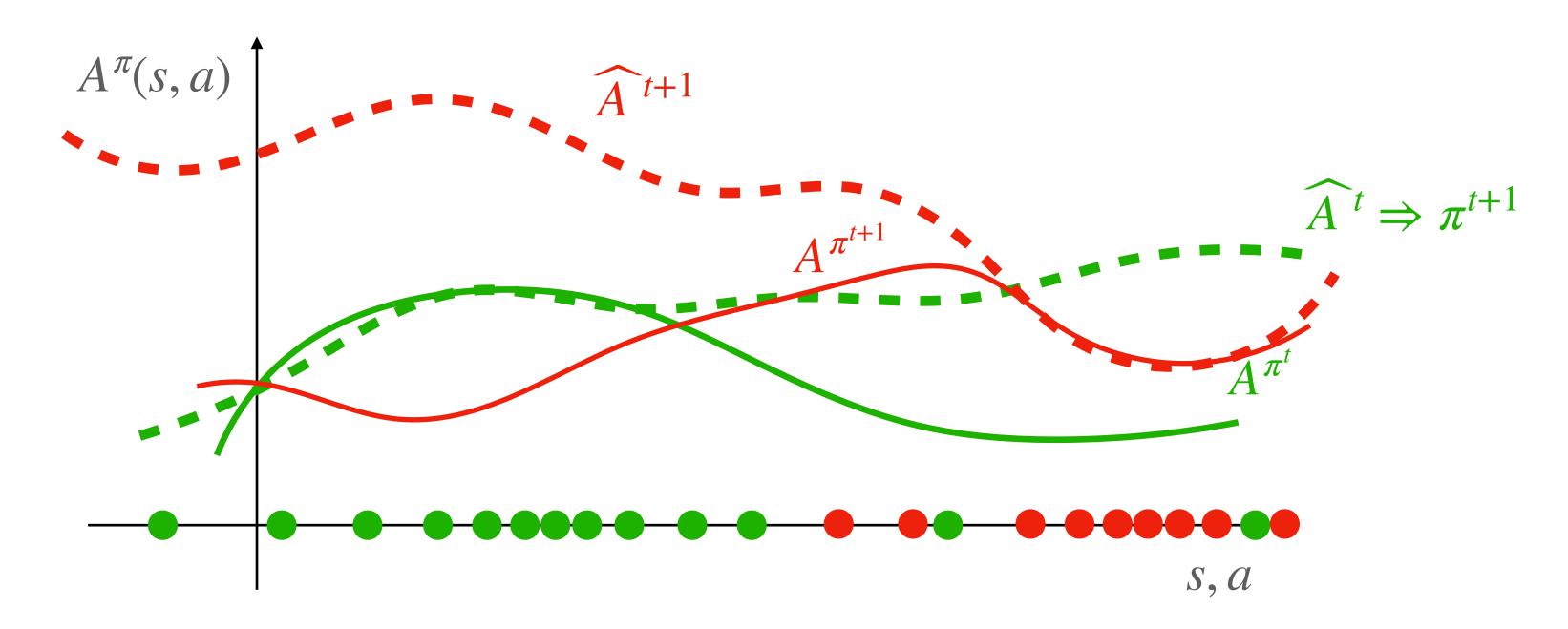
API cannot guarantee to succeed (let's think about advantage function approximation setting)











Oscillation between two updates: No monotonic improvement

Let's design policy update rule such that $d_{\mu}^{\pi^{t+1}}$ and $d_{\mu}^{\pi^t}$ are not that different!

Let's design policy update rule such that $d_{\mu}^{\pi^{t+1}}$ and $d_{\mu}^{\pi^t}$ are not that different!

Recall Performance Difference Lemma:

$$V^{\pi^{t+1}} - V^{\pi^t} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

Let's design policy update rule such that $d_{\mu}^{\pi^{t+1}}$ and $d_{\mu}^{\pi^t}$ are not that different!

Recall Performance Difference Lemma:

$$V^{\pi^{t+1}} - V^{\pi^t} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

$$d^{\pi^t} pprox d^{\pi^{t+1}}$$

Let's design policy update rule such that $d_{\mu}^{\pi^{t+1}}$ and $d_{\mu}^{\pi^t}$ are not that different!

Recall Performance Difference Lemma:

$$V^{\pi^{t+1}} - V^{\pi^t} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

$$d^{\pi^t} pprox d^{\pi^{t+1}}$$

s.t.,
$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

Let's design policy update rule such that $d_{\mu}^{\pi^{t+1}}$ and $d_{\mu}^{\pi^t}$ are not that different!

Recall Performance Difference Lemma:

$$V^{\pi^{t+1}} - V^{\pi^t} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

$$d^{\pi^t} pprox d^{\pi^{t+1}}$$

$$\text{s.t.}, \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^t}(s, \pi^{t+1}(s)) \right]$$

This we know how to optimize: the Greedy Policy Selector

Initialize π^0

For $t = 0 \dots$

Initialize π^0

For $t = 0 \dots$

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

Initialize π^0

For $t = 0 \dots$

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

Initialize π^0

For $t = 0 \dots$

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Initialize π^0

For $t = 0 \dots$

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

Return π^t

3. Incremental Update:

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Q: Why this is incremental? In what sense?

Q: Can we get monotonic policy improvement?

Today: Policy Optimization

1. Greedy Policy Selection

2. Conservative Policy Iteration

3. Monotonic Improvement of CPI

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Key observation 1:

For any state s, we have $\|\pi^{t+1}(\cdot | s) - \pi^t(\cdot | s)\|_1 \le 2\alpha$

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Key observation 1:

For any state s, we have $\|\pi^{t+1}(\cdot | s) - \pi^t(\cdot | s)\|_1 \le 2\alpha$

Key observation 2 (Lemma 12.1 in AJKS)

For any two policies π and π' , if $\|\pi(\cdot \mid s) - \pi'(\cdot \mid s)\|_1 \le \delta$, $\forall s$, then $\|d^{\pi}_{\mu}(\cdot) - d^{\pi'}_{\mu}(\cdot)\|_1 \le \frac{\gamma \delta}{1 - \gamma}$

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Key observation 1:

For any state s, we have $\|\pi^{t+1}(\cdot | s) - \pi^t(\cdot | s)\|_1 \le 2\alpha$

Key observation 2 (Lemma 12.1 in AJKS)

For any two policies π and π' , if $\|\pi(\cdot \mid s) - \pi'(\cdot \mid s)\|_1 \le \delta$, $\forall s$, then $\|d^{\pi}_{\mu}(\cdot) - d^{\pi'}_{\mu}(\cdot)\|_1 \le \frac{\gamma \delta}{1 - \gamma}$

CPI ensures incremental update, i.e.,
$$\|d_{\mu}^{\pi^{t+1}}(\,\cdot\,) - d_{\mu}^{\pi^t}(\,\cdot\,)\|_1 \le \frac{2\gamma\alpha}{1-\gamma}$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage \mathbb{A} to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot | s)} A^{\pi^t}(s, a) \right]$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage \mathbb{A} to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage \mathbb{A} to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot|s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$
 Why?

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}}-V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot \mid s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] \quad \text{Why?}$$

$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] - \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

3. Incremental Update:
$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot \mid s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$
 Why?

$$\begin{split} &= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] - \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] \\ &\geq \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \| d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}} \|_{1} \end{split}$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot \mid s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$
 Why?

$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] - \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$

$$\geq \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1}$$

$$\geq \alpha \mathbb{A} - \frac{2\gamma \alpha^2}{(1-\gamma)^2}$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

Return π^t

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot \mid s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$
 Why?

$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] - \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$

$$\geq \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1}$$

$$\geq \alpha \mathbb{A} - \frac{2\gamma \alpha^2}{(1 - \gamma)^2} \qquad \qquad \text{(Set } \alpha = \frac{(1 - \gamma)^2 \mathbb{A}}{4\gamma}$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Before terminate, we have non-trivial avg local advantage:

$$\mathbb{A} := \mathbb{E}_{d^{\pi^t}_{\mu}} \left[A^{\pi^t}(s, \pi'(s)) \right] \geq \varepsilon$$

Can we translate local advantage $\mathbb A$ to $V^{\pi^{t+1}} - V^{\pi^t}$? (Yes, by PDL)

$$(1 - \gamma) \left(V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\mathbb{E}_{a \sim \pi^{t+1}(\cdot \mid s)} A^{\pi^t}(s, a) \right]$$
$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$
 Why?

$$= \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right] - \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[\alpha A^{\pi^t}(s, \pi'(s)) \right]$$

$$\geq \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\alpha A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1}$$

$$\geq \alpha \mathbb{A} - \frac{2\gamma \alpha^2}{(1 - \gamma)^2} = \frac{\mathbb{A}^2 (1 - \gamma)}{8\gamma} \qquad \text{(Set } \alpha = \frac{(1 - \gamma)^2 \mathbb{A}}{4\gamma}\text{)}$$

Recall CPI:

1. Greedy Policy Selector:

$$\pi' \in \underset{\pi \in \Pi}{\operatorname{arg max}} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

Return π^t

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \leq \frac{2\gamma\alpha}{1 - \gamma}$$

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^t}\|_1 \le \frac{2\gamma\alpha}{1 - \gamma}$$

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^t}\|_1 \le \frac{2\gamma\alpha}{1 - \gamma}$$

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

(By setting step size α properly...)

1. Incremental update (Lemma 12.1 in AJKS)

$$||d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^t}||_1 \le \frac{2\gamma\alpha}{1 - \gamma}$$

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

$$V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \ge \frac{\epsilon^2}{8\gamma}$$

(By setting step size α properly...)

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \leq \frac{2\gamma\alpha}{1 - \gamma}$$

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

$$V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \ge \frac{\epsilon^2}{8\gamma}$$

(By setting step size α properly...)

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

$$V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^{t}}$$

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \leq \frac{2\gamma\alpha}{1 - \gamma}$$

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

$$V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \ge \frac{\epsilon^2}{8\gamma}$$

(By setting step size α properly...)

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

$$V_{\mu}^{\pi^{t+1}}-V_{\mu}^{\pi^t}$$

$$\geq \alpha \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \| d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}} \|_{1}$$

1. Incremental update (Lemma 12.1 in AJKS)

$$\|d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}}\|_{1} \leq \frac{2\gamma\alpha}{1 - \gamma}$$

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

$$V_{\mu}^{\pi^{t+1}} - V_{\mu}^{\pi^t} \ge \frac{\epsilon^2}{8\gamma}$$

(By setting step size α properly...)

Recall CPI:

1. Greedy Policy Selector:
$$\pi' \in \arg\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$
 2. If $\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$

2. If
$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon$$

Return π^t

3. Incremental Update:
$$\pi^{t+1}(\,\cdot\,|\,s) = (1-\alpha)\pi^t(\,\cdot\,|\,s) + \alpha\pi'(\,\cdot\,|\,s), \forall s$$

$$V_\mu^{\pi^{t+1}}-V_\mu^{\pi^t}$$

$$\geq \alpha \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi'(s)) \right] - \frac{\alpha}{1 - \gamma} \| d_{\mu}^{\pi^{t+1}} - d_{\mu}^{\pi^{t}} \|_{1}$$

$$\geq \alpha \epsilon - \frac{\gamma \alpha^2}{(1 - \gamma)^2}$$

Summary for today:

1. Algorithm: Conservative Policy Iteration: Find the local greedy policy, and move towards it a little bit

2. Small change in policies results small change in state distributions

2. Unlike API, incremental policy update ensures monotonic improvement