Conservative Policy Iteration

Recap

Recall Policy Iteration (Pl) with known (P, r)

Recap

Recall Policy Iteration (Pl) with known (P, r)

Assume MDP is known, we compute A™4(s, a) exactly for all s, a, Pl updates policy as:

Recap

Recall Policy Iteration (Pl) with known (P, r)

Assume MDP is known, we compute A™4(s, a) exactly for all s, a, Pl updates policy as:

T, (8) = arg max A™u(s, a)
a

Recap

Recall Policy Iteration (Pl) with known (P, r)

Assume MDP is known, we compute A™4(s, a) exactly for all s, a, Pl updates policy as:

T, (8) = arg max A™u(s, a)
a

i.e., pick an action that has the largest advantage against z_,, at every state s,

Recap

Recall Policy Iteration (Pl) with known (P, r)

Assume MDP is known, we compute A™4(s, a) exactly for all s, a, Pl updates policy as:

T, (8) = arg max A™u(s, a)
a

i.e., pick an action that has the largest advantage against z_,, at every state s,

Maximize advantage is great, as it gives monotonic improvement:
Q"(s, @) 2 Q"i(s,), Vs, a

Recap

Recall Policy Iteration (PI):

T, (8) = arg max A™u(s, a)
a

Recap

Recall Policy Iteration (PI):

T, (8) = arg max A™u(s, a)
a

Performance Difference Lemma (PDL): for all 5, € S

Recap

Recall Policy Iteration (PI):
T, (8) = arg max A™u(s, a)

Performance Difference Lemma (PDL): for all 5, € S

1
Vﬂnew(so) —_ Vﬂold(so) e I—[ES,GNd%MW [A”uld(s’ a)]
—]/ S

Recap

Recall Policy Iteration (PI):
T, (8) = arg max A™u(s, a)
Performance Difference Lemma (PDL): for all 5, € S

1
V(o) = Vils0) = T Fuamager 47405, 0)
— }/ S

The advantage against r,,, averaged over r, 'S
own distribution

Today:
Conservative Policy Iteration

Q: How to enforce incremental policy update and ensure monotonic improvement

Outline

1. Greedy Policy Selection (via reduction to regression) and recap of API

2. Conservative Policy lteration

3. Monotonic Improvement of CPI

Setting and Notation

Discounted infinite horizon MDP: . fA

1 ('L"f'\“'/’ <0
"
M= {S,A,y, r,P@

Setting and Notation
Discounted infinite horizon MDP:

M= {S,A,y,r,P,u}

State visitation: d;f(s) =({1-y) Z thP’Z(s;,u)
h=0

Setting and Notation

Discounted infinite horizon MDP:
={S,A,y,r,P,u}

State visitation: d;f(s) =({1-y) Z yh[P’Z(s;,u)
h=0

As we will consider large scale unknown MDP here, we start with a (restrlcted) function class I1:

-t] b L

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P,u}

State visitation: d;f(s) =({1-y) Z thP’Z(s;,u)
h=0

As we will consider large scale unknown MDP here, we start with a (restricted) function class II:

[M={n:5— A}

(We can think about each policy as a classifier)
Note that the optimal policy 7* may not be in I1

Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P,u}

State visitation: d;f(s) =({1-y) Z thP’Z(s;,u)
h=0

As we will consider large scale unknown MDP here, we start with a (restricted) function class II:

N={z:S— A} From now on, think about
deterministic policy as a special
stochastic policy

(We can think about each policy as a classifier)
Note that the optimal policy 7* may not be in I1

Recall Approximate Policy Iteration (API)

Recall Approximate Policy Iteration (API)

Given the current policy 7/, let’s find a new policy that has large local adv over z’ under d;ft

Recall Approximate Policy Iteration (API)

Given the current policy 7/, let’s find a new policy that has large local adv over z’ under d;ft
i.e., let’s aim to (approximately) solve the following program:

argmax E;_g» [A”I(S, ﬂ(S))]

Recall Approximate Policy Iteration (API)

Given the current policy 7/, let’s find a new policy that has large local adv over z’ under d;ft
i.e., let’s aim to (approximately) solve the following program:

argmax E_ [A”I(S, 77(5))]
rell Greedy Policy Selector

Recall Approximate Policy Iteration (API)

Given the current policy 7/, let’s find a new policy that has large local adv over z’ under d;ft
i.e., let’s aim to (approximately) solve the following program:

argmax E,_ . [A”I(S, ﬂ(S))]
zell — Y Greedy Policy Selector

How to implement such greedy policy selector?
We talked about a regression process..

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation (
,e <
«

X
&) — =)
F={f1SxAm R} (mary A = FE Ve

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation
F={f:SxA-R} (xa™ ¢ Givemn

I = {x(s) = argmax f(s,a) : f€ F} < pw@J»\cﬁ&

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

~
F={f:SXAr R} ~ AT au

() S;o/)/—/)

I = {7(s) = arg max f(s,a) : f € F} T

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation
F={f:SXA R} (xA™

IT = {z(s) = argmax f(s,a) : f€ F}

{Si’ ai, yl}’ Sl ~ d;jt, al ~ U(A [E [yl] = Aﬂt(sl', a.
Regression oracle: J

—~ , Y
s A —arg;EgIZ(f(Sl,a,) vi)
N~ !

~h

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation
F={f:SXA R} (xA™

IT = {z(s) = argmax f(s,a) : f€ F}

Regression oracle:

A\IZ ; a)—v.)?
arg ?2232 (s @) = ;)

Act greedily wrt the estimator Al (as we hope Al A”t):

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation
F={f:SXA R} (xA™ orgm e P’Kls«)

I = {x(s) = are max f(s, a) : f € F) _ g @@&)
{Si’ ai, yl}’ Sl ~ d;jt, al ~ U(A), [E [yl] = Aﬂt(sl', Cll)
Regression oracle:

A\IZ ; a)—v)°
arg ;relg_l Z (f(sp az) yl)

Act greedily wrt the estimator Al (as we hope Al A”t):

7(s) = arg max A (s, a), Vs

Successful Regression ensures approximate greedy operator
Regression oracle:

Al —argmlnz S a) = yl)

feF

Successful Regression ensures approximate greedy operator

Sis Uiy Vit S; ~ d;ft’ a; ~ U(A), M

Regression oracle:

Al —argmmz S @) = y,)

feF

Assume this regression is successful, i.e., E e
~N

—~ t 2 (_/
@(A (5.0) = A"(5,)) <

LY,

Successful Regression ensures approximate greedy operator

! ! 'k.
{spany}.s;~df,a;~ UA),E [y] =A"(s,a) = L AT s Ee)

S~/\'d/\/‘ <~

Regression oracle: - 4;4& A (s,ﬂd)
Sod" e
At = 'y
arg?;glz f(sn l) yl) = b Lip;\/k;b P@)/IE/ LS‘K@"))

54"
: L . I" -+ />r (s /ww/
Assume this regression is successful, i.e.,
R0 - N

2
Eyeatatin (A0 =~ A5,0)) <5 €

+

2 //Bf Cs, /%/LS))

Then, 7(s) = arg max A\I(S a) is an approximate greedy policy: —//5“'”{(3 f;;,s)B
a o

s
EqqrA” (s, 7(s) = max Ey_ A" (s, 2(5)) — O
~d; S, (s max d S, (s \/_y N(&&/{))

Summary So Far:

By reduction to Supervised Learning (i.e., via Regression to approximate A"
under d;f), we can expect to find an approximate greedy optimizer 7,st.,

Summary So Far:

By reduction to Supervised Learning (i.e., via Regression to approximate A"
under d;f), we can expect to find an approximate greedy optimizer 7,st.,

E, i [A”’(s, ;?(s))] ~ max E, [A”’(s, ﬂ(s))]

A nell

L
P‘X((suo),\eis% ADS .
e ovr k=0, ~-~-
o~ Summary So Far: F e Y/;\ Ww;
g) o B

By reduction to Supervised Learning (i.e., via Regression to approximate A"
under d;f), we can expect to find an approximate greedy optimizer 7,st.,

Svoun “tad ution &

E, i [A”(s ﬂ(s))] ~ max [A”’(s, Jz(s))]

\ JM
Throughout this lecture, (Hm ok

) &\
we will simply assume we can achieve arg max [E s [A” (s, JT(S))] N
mell

Gecdy 00Qey selectot

Outline

1. Greedy Policy Selection

2. Conservative Policy lteration

3. Monotonic Improvement of CPI

The Failure case of API: Abrupt distribution change

API cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)
//_/Aﬂr
—0— 00— 00 00000 0 ¢ @ o
T s, a

The Failure case of API: Abrupt distribution change

API cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)

- =™

—~

A1‘$ ﬂ.H-l

The Failure case of API: Abrupt distribution change

API| cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)

The Failure case of API: Abrupt distribution change

API| cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)

The Failure case of API: Abrupt distribution change

API| cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)

Oscillation between two updates:
No monotonic improvement

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that dl’fm and d;ft are not that different!

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change
t+1 1
Let’s design policy update rule such that d;f and d;f are not that different!

Recall Performance Difference Lemma:

+ ! 1 !
1% _ V7 = —[Es~d”t+1 [A”(S, ﬂH_l(S))]
-y . i

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change
t+1 1
Let’s design policy update rule such that d;f and d;f are not that different!

Recall Performance Difference Lemma:

1+ ! 1 !
T N U,
— 7/ H

%DWLQ,L\J"VJT ! ~]z'H'l
de ~ dﬂ

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change
t+1 1
Let’s design policy update rule such that dl’f and d/’j are not that different!

Recall Performance Difference Lemma:

1+ ! 1 !
T N U,
— 7/ H

t t+1

d™ ~d"

St By [A% (5, A1) % Byt [A7(5, 21|

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change
t+1 1
Let’s design policy update rule such that dl’f and d;f are not that different!

Recall Performance Difference Lemma:

1+ ! 1 !
T N U,
— 7/ H

dﬂ.t ~ dﬂ.l+1 K

S.1, ES"'dﬁt I:A]It(s,]Z,t'l'l(S)) , [ESNd/’fH-l I:Aﬂ't(s,][t+1(s)):|

This we know how to optimize: the Greedy Policy Selector

(Ra cod Raj»’aﬁs,‘m>

The CPI Algorithm

Initialize 77:0

Fort=0...

The CPI Algorithm

Initialize 7°
Fort=0... LU(/,‘/LJA&V/L
1. Greedy Policy Selector: ¢ paprss
r' € argmax E,_ [A”I(S, JZ'(S))]
€l "

A9 T .(<’”\/ oy

e

The CPI Algorithm

Initialize 77:0

Fort=0...

1. Greedy Policy Selector:

7' € argmax E,_ [A”’(S, ﬂ(S))]
nmell .

2. lfmax E,_,[A" (s, n(s))] < €
rell #

Return 7/

The CPI Algorithm

Initialize 7° Witk pYel ()

Fort=0... \/\// PV by o

1. Greedy Policy Selector:

7' € argmax Ey_ [A (s, ﬂ(S))]
nmell

mental Update:
t“(|5) = —a)7'(- |s) +ar'(-|s

24 ¢ Grocdy Paﬂﬂm/ selectol

e
Ve

' . ﬁ’*;\&"\

il

0\/\/{1&0'5)

mN*ﬂl(-/ﬁ)

The CPI Algorithm

Initialize 7:0

Fort=0...

1. Greedy Policy Selector:

7' € argmax E,_ [A”I(S, ﬂ(S))]
nell .

Q: Why this is incremental? In what sense?

2. lfmax E,_,[A" (s, n(s))] < €
rell #

Q: Can we get monotonic policy improvement?

Return 7/

3. Incremental Update:
(1) =1 —a)a'(- |s) +ax'(- |5), Vs

Today: Policy Optimization

1. Greedy Policy Selection

2. Conservative Policy lteration

3. Monotonic Improvement of CPI

Q1: Why this is incremental? In what sense?

s =0 —a)a'(-|s) + ax'(-|s),Vs

Q1: Why this is incremental? In what sense?
(- 1s) = A —a)a'(- |s)+ar'(-|s), Vs

Key observation 1:

For any state s, we have ||7/71(- | s) — 2'(- |)|, < 2«

Q1: Why this is incremental? In what sense?
(- 1s) = A —a)a'(- |s)+ar'(-|s), Vs
Key observation 1:

For any state s, we have ||7/71(- | s) — 2'(- |)|, < 2«

Key observation 2 (Lemma 12.1 in AJKS)

, Yo
For any two policies z and 7', if ||z(- |) — #'(- | $)|l; < 6, Vs, then ||d;(-) —dy ()} < ‘1—
-7

Q1: Why this is incremental? In what sense?
(- 1s) = A —a)a'(- |s)+ar'(-|s), Vs
Key observation 1:

For any state s, we have ||7/71(- | s) — 2'(- |)|, < 2«

Key observation 2 (Lemma 12.1 in AJKS)

. ;. , : Yo

For any two policies 7z and «, if ||z(- | s) — 2'(- |)|} < 8, Vs, then [|d7(-) —di ()| < T—,
-7

! ! 2ya
CPI ensures incremental update, i.e., ||d[f+l() =dy ()l £ 1%

Recall CPI:

Monotonic Improvement before Termination: J- Gireedy Polloy Selector:
7' € argmax E,_ [A” (s, ﬂ(S))]
nell s

Before terminate, we have non-trivial avglocal advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁt [A”(s, Jr’(s))] > € rell

Return 7'

3. Incremental Update:
a1y = A —a)a'(- |s) +an'(- |5),Vs

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

A= (VE" = VE) = B [EgemninoA” 0|

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

A= (VE" = VE) = B [Evemriao A7)

=[E,_ [aA”t(s, ir’(s))]
U

Recall CPI:

Monotonic Improvement before Termination: 1. Greedy Policy Selector;
7' € argmax E,_ [A” (s, ﬂ(S))]
zell #

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

(- y)<v;;'“ - v;’) = E, 4 [[Ea,v,ﬂﬂ(,mA”t(s, a)]

=E, [aA”t(s,%’(s))] Why?

[
-0

4 T
B e Gl ~ V)

L -
A ere T2
_h,,/,e()a)
@

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

A= (VE" = VE) = B [Evemriao A7)

= F) ad™ (s, ﬂ’(s))] Why?
M /7 d’ﬂ{
/4.

S fetomy)

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

A= (VE" = VE) = B [Evemriao A7)

=E, [aA”’(s, ﬂ’(s))] Why?

= Egqy [aA”[(s, ﬂ’(s))] +E,. ' [aA”t(s, ﬂ’(s))] —Eygy [(XA”Z(S, ﬂ'(S))]

' (01 1+ '
> oy [, 200 | - 4 - 4

Recall CPI:
Monotonic Improvement before Termination: 1. Greedy Policy Selector:

n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

Before terminate, we have non-trivial avg local advantage: ,
, 2. f max E, 4 [A" (s, 7(s))] < €
A = [Edﬁz [A”(s, Jr’(s))] > € mell

Return 7'

Can we translate local advantage A to vt — g (Yes, by PDL) | 3.Incremental Update:
a1 1) = A —a)a'(-|s)+ax'(-|s),Vs

(- ”(V»'fm - Vf) =E,_ g [[anr”l(ws)A”t(s’ “)]
=E,_ [aA”t(s, ir’(s))] Why?
=, [aAﬂ’(s, ﬂ’(s))] +E, [aA”’(s, ﬂ’(s))] ~E, 4 [aAﬂ’(s, ﬂ’(s))]
= , a s a
> Eoyp [, #0) | - N4 - 4

2ya’?
(1 -2

> aA —

Monotonic Improvement before Termination:

Before terminate, we have non-trivial avg local advantage:

A= Ey [A”’(s, ﬂ’(s))] > ¢
Can we translate local advantage A to |V v (Yes, by PDL)
A= (VE" = VE) = B [Evemriao A7)
= [ESNdﬁt+1 [aA”t(s, ir’(s))] Why?
= st [aA”[(s, ﬂ’(s))] +E,. g+t [aA”t(s, ﬂ’(s))] — [Es~d;;’ [(XA”Z(S, ﬂ’(s))]

' (01 1+ '
)l B A A |

2 1 —»)2A
2re (Seta = d=-rA)

> aA —
(I-77 4y

Recall CPI:

1. Greedy Policy Selector:
n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

2. 1f max E,_ [A™ (s, 7(s))] < €
rell i

Return 7'

3. Incremental Update:
a1y = A —a)a'(- |s) +an'(- |5),Vs

Monotonic Improvement before Termination:

Before terminate, we have non-trivial avg local advantage:

A= Ey [A”’(s, ﬂ’(s))] > ¢
Can we translate local advantage A to |V v (Yes, by PDL)
A= (VE" = VE) = By [Eueprgo A7)
= [ESNdﬁt+1 [aA”t(s, ir’(s))] Why?
= st [aA”[(s, ﬂ’(s))] +E,. g+t [aA”t(s, ﬂ’(s))] — [Es~d;;’ [(XA”Z(S, ﬂ’(s))]

' (01 1+ '
)l B A A |

2ol A0 e = (1 - y)zA)

> aA — —~ 7
(I-77 8y 4y

Recall CPI:

1. Greedy Policy Selector:
n' € argmax E,_ [A”l(s, ﬂ(s))]
el s

2. 1f max E,_ [A™ (s, 7(s))] < €
rell i

Return 7'

3. Incremental Update:
a1y = A —a)a'(- |s) +an'(- |5),Vs

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, zr(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

8. Incremental Update:
a1 1s) = —aa'(- |s)+ax'(-|5),Vs

2ya

t+1 t
A
—7 Local adv versus distribution change:

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, n(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a9 = —a)a'(- |s)+ax'(-|5),Vs

2ya

t+1 t
A
—7 Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, zr(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a9 = —a)a'(- |s)+ax'(-|5),Vs

2ya

t+1 t
A
—7 Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

(By setting step size a properly...)

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, n(s))]

2. If max E_[A" (s, n(@)@
nell .

Re T

1. Incremental update (Lemma 12.1 in AJKS)

. Incremental Update:
a1 s) =1 —an'(-|s)+ax'(-|5),Vs

it p
”dlu - dlu ||l S

Local adv versus distribution change:
A ——

(By setting step size a properly...)

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, zr(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a9 = —a)a'(- |s)+ax'(-|5),Vs

2ya

t+1 t
A
—7 Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS): N
2 Vi =Vu

Vﬂ.t+1 . Vﬂ.l > 6_ ’
H H — 87/

(By setting step size a properly...)

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, zr(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a9 = —a)a'(- |s)+ax'(-|5),Vs

2ya

t+1 t
A
—7 Local adv versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS):

ﬂ.z+l ”[
2 Vi = Vi

t+1 t
T T : —||la*" ’
VP Y > — > aF, [A”<s,n'(s)>] - 1“ [EAEAl
s -7

H ﬂ—gy

(By setting step size a properly...)

Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, n(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a1 s) =1 —an'(-|s)+ax'(-|5),Vs

it p
”dlu - dlu ||l S

Loc v versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS): N
2) V” — V”

ﬂ.l+1 7[[6
8y

(By setting step size a properly...) 2 ae = (1 _ 7,)2
Sy

Summary for today:

1. Algorithm: Conservative Policy Iteration:
Find the local greedy policy, and move towards it a little bit

2. Small change in policies results small change in state distributions

2. Unlike API, incremental policy update ensures monotonic improvement

:jc(;‘mﬂb s P(s‘jsA) & cp T Q\D—CI)

a&&s‘a) L Vsa 77

-\
YV\.'I\\/\ g— C C g\,Lo\M>
— =

sX, Sun= %(Sv\ aw) “V’/ﬂ“mj

