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Assume MDP is known, we compute A™4(s, a) exactly for all s, a, Pl updates policy as:

T, (8) = arg max A™u(s, a)
a

i.e., pick an action that has the largest advantage against z_,, at every state s,

Maximize advantage is great, as it gives monotonic improvement:
Q"(s, @) 2 Q"i(s, ), Vs, a
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Recap

Recall Policy Iteration (PI):
T, (8) = arg max A™u(s, a)
Performance Difference Lemma (PDL): for all 5, € S
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The advantage against r,,, averaged over r, 'S
own distribution



Today:
Conservative Policy Iteration

Q: How to enforce incremental policy update and ensure monotonic improvement



Outline

1. Greedy Policy Selection (via reduction to regression) and recap of API

2. Conservative Policy lteration

3. Monotonic Improvement of CPI
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Setting and Notation

Discounted infinite horizon MDP:

M= {S,A,y,r,P,u}

State visitation: d;f(s) =({1-y) Z thP’Z(s;,u)
h=0

As we will consider large scale unknown MDP here, we start with a (restricted) function class II:

N={z:S— A} From now on, think about
deterministic policy as a special
stochastic policy

(We can think about each policy as a classifier)
Note that the optimal policy 7* may not be in I1
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Recall Approximate Policy Iteration (API)

Given the current policy 7/, let’s find a new policy that has large local adv over z’ under d;ft
i.e., let’s aim to (approximately) solve the following program:

argmax E,_ . [A”I(S, ﬂ(S))]
zell  — Y Greedy Policy Selector

How to implement such greedy policy selector?
We talked about a regression process..
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Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation
F={f:SXA R} (xA™ orgm e P’Kls«)

I = {x(s) = are max f(s, a) : f € F) _ g @@&)
{Si’ ai, yl}’ Sl ~ d;jt, al ~ U(A), [E [yl] = Aﬂt(sl', Cll)
Regression oracle:

A\IZ ; a)—v)°
arg ;relg_l Z (f(sp az) yl)

Act greedily wrt the estimator Al (as we hope Al A”t):

7(s) = arg max A (s, a), Vs
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Sis Uiy Vit S; ~ d;ft’ a; ~ U(A), M

Regression oracle:
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Successful Regression ensures approximate greedy operator
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By reduction to Supervised Learning (i.e., via Regression to approximate A"
under d;f), we can expect to find an approximate greedy optimizer 7,st.,

E, i [A”’(s, ;?(s))] ~ max E, [A”’(s, ﬂ(s))]

A nell
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By reduction to Supervised Learning (i.e., via Regression to approximate A"
under d;f), we can expect to find an approximate greedy optimizer 7,st.,

Svoun “tad ution &

E, i [A”(s ﬂ(s))] ~ max [A”’(s, Jz(s))]
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Outline

1. Greedy Policy Selection

2. Conservative Policy lteration

3. Monotonic Improvement of CPI



The Failure case of API: Abrupt distribution change

API cannot guarantee to succeed (let’s think about advantage function approximation setting)
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The Failure case of API: Abrupt distribution change

API| cannot guarantee to succeed (let’s think about advantage function approximation setting)

A”(s,a)

Oscillation between two updates:
No monotonic improvement
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change
t+1 1
Let’s design policy update rule such that dl’f and d;f are not that different!

Recall Performance Difference Lemma:
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dﬂ.t ~ dﬂ.l+1 K

S.1, ES"'dﬁt I:A]It(s, ]Z,t'l'l(S)) , [ESNd/’fH-l I:Aﬂ't(s, ][t+1(s)):|

This we know how to optimize: the Greedy Policy Selector
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The CPI Algorithm

Initialize 7° Witk pYel ()

Fort=0... \/\// PV by o

1. Greedy Policy Selector:

7' € argmax Ey_ [A (s, ﬂ(S))]
nmell

mental Update:
t“( |5) = —a)7'(- |s) +ar'(-|s
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The CPI Algorithm

Initialize 7:0

Fort=0...

1. Greedy Policy Selector:

7' € argmax E,_ [A”I(S, ﬂ(S))]
nell .

Q: Why this is incremental? In what sense?

2. lfmax E,_,[A" (s, n(s))] < €
rell #

Q: Can we get monotonic policy improvement?

Return 7/

3. Incremental Update:
(1) =1 —a)a'(- |s) +ax'( - |5), Vs




Today: Policy Optimization

1. Greedy Policy Selection

2. Conservative Policy lteration

3. Monotonic Improvement of CPI
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Q1: Why this is incremental? In what sense?
(- 1s) = A —a)a'(- |s)+ar'(-|s), Vs
Key observation 1:

For any state s, we have ||7/71(- | s) — 2'( - | )|, < 2«

Key observation 2 (Lemma 12.1 in AJKS)

. ;. , : Yo

For any two policies 7z and «, if ||z( - | s) — 2'(- | )|} < 8, Vs, then [|d7(-) —di ()| < T—,
-7

! ! 2ya
CPI ensures incremental update, i.e., ||d[f+l( ) =dy ()l £ 1%
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(By setting step size a properly...)



Recall CPI:
1. Greedy Policy Selector:
Summary of CPI so far: 7 € argmax B,y [A”’(s, n(s))]

2. It max E,_;[A™ (s, 7(s))] < €
zell s

Return 7'

1. Incremental update (Lemma 12.1 in AJKS)

3. Incremental Update:
a1 s) =1 —an'(-|s)+ax'(-|5),Vs

it p
”dlu - dlu ||l S

Loc v versus distribution change:

2. Before terminate, monotonic improvement (Thm 12.2 in AJKS): N
2) V” — V”

ﬂ.l+1 7[[ 6
8y

(By setting step size a properly...) 2 ae = (1 _ 7,)2
Sy




Summary for today:

1. Algorithm: Conservative Policy Iteration:
Find the local greedy policy, and move towards it a little bit

2. Small change in policies results small change in state distributions

2. Unlike API, incremental policy update ensures monotonic improvement
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