
Homework 1: Policy Iteration
& Nonlinear Control

CS 4789/5789: Introduction to Reinforcement Learning

(Due March 22rd 11:59 ET)

0 Instructions
For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework. Please add your remarks in a
“Question 0”.

1 Policy Iteration:
Complexity of Returning the Optimal Policy?

Recall policy iteration algorithm. In the class, we prove that the policy iteration has the following
property:

∥∥∥V πt+1 − V ?
∥∥∥
∞
≤ γ

∥∥V πt − V ?
∥∥
∞. So ideally, if we run Policy iteration infinitely

many iterations, i.e., t→∞, we will have limt→∞ ‖V πt − V ?‖∞ = 0.
In this section, we are more interested in the following question: can policy iteration exactly

hit the optimal policy π? with at most finite number of iterations? The answer is yes, and we are
going to investigate it below.

1.1 When PI does not make improvement.. [20 points]
In the class, we proved that PI has monotonic improvement, i.e., Qπt+1

(s, a) ≥ Qπt
(s, a) for all

s, a. What happens if PI does not making progress, i.e., πt+1 and πt are exactly the same in the
following sense:

Qπt+1

(s, a) = Qπt

(s, a),∀s, a. (1)

I.e., policy iteration does not give us improvement at any state action pair.

Q: Assume that Eq. 1 holds, and reward is always bounded between [0, 1]. Prove that πt+1 is an
optimal policy, i.e., Qπt+1

(s, a) = Q?(s, a) for all s, a.

1.2 Bounding the number of iterations [10 points]
Q: Consider the setting where we have A many actions and S many states. Prove that PI will
find an optimal policy with number of iterations at most AS .
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1.3 Summary and Comparison to Value Iteration (No questions here)
In summary, PI actually finds an exact optimal policy with finite number of iterations AS . Recall
the value iteration (VI) algorithm, unlike PI, VI indeed does not guarantee to find the optimal policy
with finite number of iterations. The worst case situation is that in the MDP there exists some sub-
optimal policy π̂ such that V π̂ is arbitarily close to V ?. While in this case, π̂ is a nearly optimal
policy already (i.e., from an approximation algorithm perspectively, it’s totally ok to return π̂ as a
high quality approximation), it will take VI arbitrarily many iterations to eventually distinguish π̂
from π?.

2 Linear Quadratic Regulator [20 points]
In the class, we introduced the most basic formulation of LQR. In this section, we are going to
slightly make the model more general.

We are interested in solving the following problem:

min
π0,...,πH−1

E

[
H−1∑
t=0

x>t Qxt + u>t Rut + x>t Mut + q>xt + r>ut + b

]
(2)

subject to xt+1 = Axt +But +m,ut = πh(xt) x0 ∼ µ0. (3)

Here we have x ∈ Rdx , u ∈ Rdu , Q ∈ Rdx×dx (Q is positive definite), M ∈ Rdx×du , q ∈ Rdx ,
R ∈ Rdu×du (R is positive definite), r ∈ Rdu , b ∈ R, A ∈ Rdx×dx , B ∈ Rdx×du , and m ∈ Rdx . We
also always have the following matrix being positive definite:[

Q M/2
M>/2 R

]
.

The difference between the above formulation and the formulation we had in class is that here
the cost function contains an additional second order term xTt Mut, first-order terms qTxt + rTut,
and zeroth order term c, and the dynamics contains zeroth order term m.

Q: Derive the optimal policy for the above general LQR control. Note that the optimal policy
will be linear in the form of π?t (x) = K?

t x+ k?t where K?
t ∈ Rdu×dx and k?t ∈ Rdu .

Start from defining Q?
H−1(x, u). Then given the formulation of V ?

h+1(x), write out the expres-
sion for Q?

h(x, u). Then derive π?h from the expression of Q?
h(x, u). Finally using π?h and Q?

h(x, u)
we can get V ?

h (x) which completes the recursion step. Namely, you should work out a base case,
and a recursive step (i.e., something similar to the Ricatti equation we talked about in the LQR
lecture).

Make sure that the derivation above is correct. Also simplify the equations as much as you
can as you will need to implement these equations in the next problem for controlling a simulated
CartPole.
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3 Programming:
Local Linearization Approach for Controlling CartPole [50
points]

3.1 Background on local linearization approach for nonlinear contorl
Consider the following general nonlinear control problem:

min
π0,...,πH−1

H−1∑
t=0

c(xt, ut)

subject to:xt+1 = f(xt, ut), ut = πt(xt), x0 ∼ µ0;

where f : Rdx × Rdu 7→ Rdx .
In general the cost c(x, u) could be anything. Here we focus on a special instance where we try

to keep the system stable around some stable point (x?, u?), i.e., our cost function c(x, u) penalizes
the deviation to (x?, u?), i.e., c(x, u) = ρ (xt − x?) + ρ(ut − u?), where ρ could be some distance
metric such as `1 or `2 distance.

To deal with nonlinear f and non-quadratic c, we use the linearization approach here. Since
the goal is to control the robot to stay at the pre-specified stable point (x?, u?), it is reasonable
to assume that the system is approximately linear around (x?, u?), and the cost is approximately
quadratic around (x?, u?). Namely, we perform first-order taylor expansion of f around (x?, u?),
and we perform second-order taylor expansion of c around (x?, u?):

f(x, u) ≈ A(x− x?) +B(u− u?) + f(x?, u?),

c(x, u) ≈ 1

2

[
x− x?
u− u?

]> [
Q M
MT R

] [
x− x?
u− u?

]
+

[
q
r

]> [
x− x?
u− u?

]
+ c(x?, u?);

Here A and B are Jacobians, i.e.,

A ∈ Rdx×dx : A[i, j] =
∂f [i]

∂x[j]
[x?, u?] : B ∈ Rdx×du , B[i, j] =

∂f [i]

∂u[j]
[x?, u?],

where f [i](x, u) stands for the i-th entry of f(x, u), and x[i] stands for the i-th entry of the vector
x. Similarly, for cost function, we will have Hessian and gradients as follows:

Q ∈ Rdx×dx : Q[i, j] =
∂2c

∂x[i]∂x[j]
[x?, u?], R ∈ Rdu×du : R[i, j] =

∂2c

∂u[i]∂u[j]
[x?, u?]

M ∈ Rdx×du :M [i, j] =
∂2c

∂x[i]∂u[j]
[x?, u?], q ∈ Rdx : q[i] =

∂c

∂x[i]
[x?, u?]

r ∈ Rdu : r[i] =
∂c

∂u[i]
[x?, u?].

We are almost ready compute a control policy using A,B,Q,R,M, q, r together with the op-
timal control we derived for the system in Eq. 2. One potential issue here is that the original cost
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function c(x, u) may not be even convex. Thus the Hessian matrix H :=

[
Q M
MT R

]
may not be a

positive definite matrix. We will apply further approximation to make it a positive definite matrix.
Denote the eigen-decomposition of H as H =

∑dx+du
i=1 σiviv

>
i where σi are eigenvalues and vi are

corresponding eigenvectors. We approximate H as follows:

H ≈
dx+du∑
i=1

1{σi > 0}σiviv>i + λI, (4)

where λ ∈ R+ is some small positive real number for regularization which ensures that after
approximation, we get an H that is positive definite with minimum eigenvalue lower bounded by
λ.

3.2 Setup of Simulated CartPole
The simulated CartPole has the following nonlinear deterministic dynamics xt+1 = f(xt, ut), and
potentially non-quadratic cost function c(x, u) that penalizes the deviation of the state from the
balance point (x?, u?) where u? = 0, and x? represents the state of CartPole where the pole is
straight and the cart is in a pre-specified position.

The state xt is a 4-dimension vector. It consists of the position of the cart, the speed of the cart,
the angle of the pole in radian and the angular velocity of the pole. The action ut is a 1-dimenstion
vector correspond to the force applied on the cart.

Through this section, we assume that we have black-box access to c and f , i.e., we can feed
any (x, u) to f and c, we will get two scalar returns which are f(x, u) and c(x, u) respectively.
Namely, we do not know the analytical math formulation of f and c (e.g., imagine that we are
trying to control some complicated simulated humanoid robot. The simulator is the black-box f ).

In this assignment we will use our customized OpenAI gym CartPole environment provided
in the following repository. The environment is under env directory. The goal is to finish the
implementation of cartpole controller.py which contains a class to compute the locally
linearized optimal policy of our customized CartPole environment. We also provide other files to
help you get started. Please refer to README.md for more details.

https://github.com/cs4789-s21/PA1

3.3 Using Finite Difference for Taylor Expansion
Since we do not know the analytical form of f and c, we cannot directly compute the analytical
formulations for Jacobians, Hessians, and gradients. However, given the black-box access to f and
c, we can use finite difference to approximately compute these quantities.

Below we first explain the finite differencing approach for approximately computing deriva-
tives. Your task is to use finite differencing methods to compute A,B,Q,R,M, q, r.
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To illustrate finite differencing, assume that we are given a function g : R 7→ R. Given any
α0 ∈ R, to compute g′(α0), we can perform the following process:

Finite Difference for derivative:ĝ′(α0) :=
g(α0 + δ)− g(α0 − δ)

2δ
,

for some δ ∈ R+. Note that by the definition of derivative, we know that when δ → 0+, the
approximation approaches to g′(α0). In practice, δ is a tuning parameter: we do not want to set it
to 0+ due to potential numerical issue. We also do not want to set it too large, as it will give a bad
approximation of g′(α0).

With ĝ′(α) as a black-box function, we can compute the second-derivate using Finite differ-
encing on top of it:

Finite Difference for Second Deriviative: ĝ′′(α0) :=
ĝ′(α0 + δ)− ĝ′(α0 − δ)

2δ

Note that to implement the above second derivative approximator ĝ′′(α), we need to first implement
the function ĝ′(α) and treat it as a black-box function inside the implementation of ĝ′′(α). You can
see that we need to query black-box f twice for computing g′(α0) and we need to query black-box
f four times for computing g′′(α0).

Similar ideas can be used to approximate Jocabians, gradients, and Hessians.
At this end, using the provided Cartpole simulator which has black-box access to f and c, and

the goal balance point x?, u?, to compute A,B,Q,R, q, r, with the provided value for δ.
We provide minimum barebone functions and some tests for finite difference method in the file

finite difference method.py. You can try to complete the implementation of gradient,
Jacobian and Hessian functions as we can use them to compute A,B,Q,R,M, q, r which will be
used in the next section.

3.4 Computing locally optimal control

With A,B,Q,R,M, q, r computed from finite differencing, let us first check if
[
Q M
MT R

]
a pos-

itive definite matrix (if it’s not PD, your LQR formulation may run into the case where matrix
inverse does not exist and and numerically you will observe NAN as well.). If not, let’s use the

trick in Eq. 4. Denote H :=

[
Q M
MT R

]
. We now are ready to solve the following linear quadratic

system:

min
π0,...,πH−1

H−1∑
t=0

1

2

[
xt − x?
ut − u?

]>
H

[
xt − x?
ut − u?

]
+

[
q
r

]> [
xt − x?
ut − u?

]
+ c(x?, u?), (5)

subject to xt+1 = Axt +But +m,ut = πt(xt), x0 ∼ µ0. (6)

With some rearranging terms, we can re-write the above program in the format of Eq. 2. To
this end, we can implement the optimal control that solves the final formulation in Eq. 6.
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Please complete the function compute local policy in cartpole controller.py.
The function computes the linear locally optimal control policy of the CartPole environment. We
also provide you a barebone LQR function in lqr.py to get started, you can implement it by
using the policy you derived in Problem 2.

After finishing the compute local policy function in the file cartpole controller.py,
you can try running cartpole.py and see the visualization.

3.5 Test the performance
Given policies π0, . . . , πH−1 that computed from the previous section, we will evaluate its per-
formance by executing it on the real system f and real cost c. To generate a H-step trajectory,
we first sample x0 ∼ µ0, and then take ut = πt(xt), and then call the black-box f to compute
xt+1 = f(xt, ut) till t = H − 1. This gives us a trajectory τ = {x0, u0, x1, u1, . . . , xH−1, uH−1}.
The total cost of the trajectory is C(τ) :=

∑H−1
t=0 c(xt, ut). Since we have randomness in µ0, we

need to draw N such i.i.d trajectories, τ 1 . . . τN , and compute the average, i.e.,
∑N

i=1C(τ
i)/N . As

N approaches to +∞, we have (by law of large numbers):

N∑
i=1

C(τ i)/N → Ex0∼µ0

[
H−1∑
t=0

c(xt, ut)|ut = πt(xt), xt+1 = f(xt, ut)

]
.

In the test file test.py, we provide several difference initialization distributions. These dis-
tributions are ordered based on the distance between the means to the goal (x?, u?). Intuitively,
we should expect that our control perform worse when the initial states are far away from the
taylor-expansion point (x?, u?), as our linear and quadratic approximation become less accurate.
Testing your computed policies on these difference initializations and report the performances for
all initializations by running test.py.

3.6 Visualization
Now, using the visualization tool provided by Open AI Gym, provide a video demonstration of
your policy with the given initial distribution by running cartpole.py. The generated mp4
video file should be under the directory ./gym-results).

3.7 Submission
Please submit a zip file containing your implementation along with your video file name cartpole.mp4
organized as follows.
YOUR NET ID/

README.md
init .py

cartpole.mp4
cartpole.py
cartpole controller.py
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finite difference method.py
lqr.py
test.py
env/

init .py
cartpole control env.py
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