
Homework 2: Policy Gradient, Off-Policy Policy
Gradient, and Natural Policy Gradient

CS 4789/5789: Introduction to Reinforcement Learning

(Due April 16 11:59 ET)

0 Instructions
For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework. Please add your remarks in a
“Question 0”.

1 The Magic of Importance Weighting [10 points]
We consider importance weighting trick here, particularly we will see how to use that to get
some unbiased estimation. Let us consider the following simplified problem. We have k ac-
tions, a1, . . . , ak (you can think about it as an MDP with zero states), and each action has its own
reward r1, . . . , rk. Denote r = [r1, . . . , rk]

> as the k-dim vector. We have a sampling distribution
ρ ∈ ∆(k) over actions.

Now consider the following sampling and estimation process. We randomly sample an index
of action from ρ, i.e., i ∼ ρ, observe its reward ri, and record the probability of the sampled index,
i.e., pi := ρ(i). We form the following vector r which has zero everywhere except the i-th entry
containing the value ri/pi. In other words, we have

rj =
1(j = i)rj

pi
,∀j

(this is correct, as the indicator function will just be zero for any j 6= i, and it will be 1 when j = i).
What we can show is that this estimator r is indeed an unbiased estimate of the ground truth

reward vector r! This is kinda magic, because we only tried one sampled arm, but by importance
weighting, we simply get an unbiased estimate of the entire rewards of all arms.

So let us prove this property. Recall that r is a random quantity, i.e., it depends on the random
index i that we sampled from ρ.

Q: Prove the following property:

E [r] = r.

Hint: What is the source of the randomness in our estimator r? and then prove unbiasness for each
coordinate.

The unbiased estimator is used very commonly in ML, RL, causality, and some real applica-
tions such as news article recommendation.

1

2 Simplify REINFORCE Formulation [30 points]
We consider the following Finite horizon Markov Decision Process M = {S,A, H, r, P, µ0}where
µ0 is the initial state distribution, i.e., s0 ∼ µ0.

Recall in the class we developed the PG formulation using REINFORCE:

∇θJ(πθ) = Eτ∼ρθ

[
H−1∑
h=0

∇ lnπθ(ah|sh) ·R(τ)

]
,

where R(τ) =
∑H−1

h=0 rh with rh = r(sh, ah).
However, the Markov property tells us that conditioned on sh, modifying action ah is only

going to affect the future (the past is the past, and is independent of ah and future conditioned sh).
So let us prove the following, which actually matches to the intuition above:

Q: Prove the following equality:

∇θJ(πθ) = Eτ∼ρθ

[
H−1∑
h=0

∇θ ln πθ(ah|sh) ·

(
H−1∑
t=h

rt − b

)]
, (1)

where b ∈ R+ is some constant.
Hint, first prove the following:

Eτ∼ρθ [∇θ ln πθ(ah|sh)rt] = 0

for any h, t with t < h. Here you might want to remind yourself how did we prove that a baseline
does not affect the gradient. Also here you can use the fact that Ex,y[f(x)] = Ex[f(x)] which
allows you to ignore the further part of the trajectory that starts at time step h + 1. The property
about conditional expectation might be helpful too: Ex,y[f(x, y)] = Ey[Ex[f(x, y)|y]].

Remark Namely, we replace the sum over the entire trajectory by the sum of rewards starting
from time step h (with an additional constant b as the baseline). This in practice will help on
variance reduction since now for each term h, the randomness is always coming from the partial
further trajectory (hence less randomness) rather than the entire trajectory.

3 Off-policy Policy Gradient [10 points]
In this section, we are going to study the off-policy PG formulation. We consider the following
Finite horizon Markov Decision Process M = {S,A, H, r, P, µ0} where µ0 is the initial state
distribution, i.e., s0 ∼ µ0. We are interested in computing the policy gradient of a policy π : S 7→
∆(A) (i.e., π is a stochastic policy mapping from state to distribution over actions, a ∼ π(·|s)).

2

3.1 Background and Setting
In the lecture, we talked about how to estimate the policy gradient of π using samples/trajectories
sampled from π itself, which is called on-policy estimate. There are situations where we want to
perform off-policy estimate, i.e., can we use trajectories/samples from a different policy πb : S 7→
∆(A) to estimate the policy gradient of π? Off-policy setting is useful when we have large pre-
collected offline data and we do not want to execute π in the real system due to some safety concern
(think about medical application: we may have large logged data from previous patients, and we
do not want to directly collect new samples by deploying some policy π, e.g., a new treatment, on
new patients due to safety reason. We hope to estimate the outcome of the new policy using logged
offline data).

Denote τ 1, . . . τN asN trajectories generated by the behavior policy πb, i.e., τ i = {sih, aih, πb(aih|sih), rih}H−1h=0 ,
where si0 ∼ µ0, aih ∼ πb(·|sih), sih+1 ∼ P (·|sih, aih), rih = r(sih, a

i
h). These N trajectories is our of-

fline dataset. We are going to assume that πb is diverse enough to capture π, i.e.,

∀s, a, π(a|s)
πb(a|s)

< C, where C ∈ R+.

3.2 Unbiased Estimator of Off-policy PG
Below we show that how we can use the offline dataset to compute an unbiased estimate of the
gradient of π, without collecting any samples/trajectories from π itself. For notation simplicity, we
drop the parameterization on π, and simply denote∇ lnπ(a|s) as the gradient of the log-likelihood
of π with respect to its internal parameters (i.e., we use∇ ln π(a|s) in short of∇θ ln πθ(a|s)).

Q: Prove that the following estimator is an unbiased estimate of the original PG of π:

1

N

N∑
i=1

(
H−1∏
h=0

π(aih|sih)
πb(aih|sih)

)
H−1∑
h=0

∇ ln π(aih|sih)
(
R(τ i)

)
, (2)

where R(τ i) =
∑H−1

h=0 r
i
h, i.e., the total reward of trajectory τ i (In other words, you just need to

derive the formulation with the right expectation corresponding to off-policy).
With the above unbiased estimator, we can simply run stochastic gradient ascent algorithm to

optimize policy in a completely offline manner, without ever interacting with the system to get
online samples. Of course you can apply the variance reduction tricks here as well.

4 Natural Policy Gradient (Programming) [50 points]
In this section, we will walk through Natural Policy Gradient (NPG) and also implement it for
CarPole Simulation. You can find the starter code on https://github.com/cs4789-s21/
PA2

3

https://github.com/cs4789-s21/PA2
https://github.com/cs4789-s21/PA2

4.1 Background and Setting
We will consider the default CartPole simulator in OpenAI gym where we have two discrete actions
A = {0, 1} (here 0 and 1 are the index of actions, and physically, 0 means applying a left push
to the cart, and 1 means applying a right push to the cart. You just need to compute a stochastic
policy which samples 0 or 1, and feed it to the step function which will do the rest of the job
for you). Before defining the policy parameterization, let us first featuerize our state-action pair.
Specifically, we will use random fourier feature (RFF) φ(s, a) ∈ Rd, where d is the dimension of
RFF feature. RFF is a randomized algorithm that takes the concatenation of (s, a) as input, outputs
a vector φ(s, a) ∈ Rd, such that it approximates the RBF kernel, i.e., for any (s, a), (s′, a′) pair, we
have:

lim
d→∞
〈φ(s, a), φ(s′, a′)〉 = k ([s, a], [s′, a′]) ,

where k is the RBF kernel on the concatenation of state-action (we denote [s, a] as the vector
[s>, a]>). In summary, RFF feature approximates RBF kernel, but allows us to operate in the primal
space rather than the dual space where we need to compute and invert the Gram matrix (recall
Kernel trick and Kernel methods from the ML introduction course) which is very computationally
expensive and does not scale well to large datasets.

We parameterization our policy as follows:

πθ(a|s) ∝ exp
(
θ>φ(s, a)

)
,

where the parameters θ ∈ Rd. Our goal is of course to find the best θ such that the resulting πθ
achieves large expected total reward.

4.2 Gradient of Policy’s Log-likelhood
Q Given (s, a), first write down the expression ∇θ ln πθ(a|s) below. Now go to utils.py to
implement the computation of∇θ lnπθ(a|s) with compute log softmax grad. You can also
implement compute softmax and compute action distribution first to use them to
calculate the gradient.

4.3 Fisher Information Matrix and Policy Gradient
We consider finite horizon MDP. Let us now computer the fisher information matrix. Let us con-
sider a policy πθ. Recall the definition of Fisher information matrix:

Fθ = Es,a∼dπθµ0
[
∇θ lnπθ(a|s) (∇θ ln πθ(a|s))>

]
∈ Rd×d.

We approximateFθ using trajectories sampled from πθ. We first sampleN trajectories τ 1, . . . , τN

from πθ, where τ i = {sih, aih, rih}H−1h=0 with si0 ∼ µ0. We approximate Fθ using all (s, a) pairs:

F̂θ =
1

N

N∑
i=1

[
1

H

H−1∑
h=0

∇θ ln πθ(a
i
h|sih)∇θ lnπθ(a

i
h|sih)>

]
+ λI,

where λ ∈ R+ is the regularization for forcing positive definiteness.

4

Remark Note the way we estimate the fisher information. Instead of doing the roll-in procedure
we discussed in the class to get s, a ∼ dπθµ0 (this is the correct way to ensure the samples are i.i.d),
we simply sample N trajectories, and then average over all state-action (sh, ah) pairs from all N
trajectories. This way, we lose the i.i.d property (these state-action pairs are dependent), but we
gain sample efficiency by using all data.

Q First, go to train.py and implement the sample function to sample trajectories using the
current policy. Then go to file utils.py and implement F̂θ in compute fisher matrix.
Note that in OpenAI Gym cartpole, there is a termination criteria when the par or the cart is too far
away from the goal (i.e., during execution, if the termination criteria is met or it hits the last time
step H , the simulator will return done = True in step function. During generating a trajectory, it is
possible that we will just terminate the trajectory early since we might meet the termination criteria
before getting to the last time step H). Hence, we will see that when we collect trajectories, each
trajectory might have different lengths. Thus, for estimating Fθ, we need to properly average over
the trajectory length.

Q Denote V θ as the objective function V θ = E
[∑H−1

h=0 r(sh, ah)|s0 ∼ µ0, ah ∼ πθ(·|sh)
]
. Simi-

larly, let us implement the policy gradient (Eq. 1), i.e.,

∇̂V θ =
1

N

N∑
i=1

[
1

H

H−1∑
h=0

∇θ lnπθ(a
i
h|sih)

[
H−1∑
t=h

rit − b

]]
,

where b is a constant baseline b =
∑N

i=1R(τ i)/N , i.e., the average total reward over a trajectory.
Again be mindful that each trajectory might have different lengths due to early termination. Go to
utils.py to implement this PG estimator in compute value gradient.

4.4 Implement the step size

With F̂θ and ∇̂θV
θ, recall that NPG has the following form:

θ′ := θ + ηF̂−1θ ∇̂V
θ.

We need to specify the step size η here. Recall the trust region interpretation of NPG. We perform
incremental update such that the KL divergence between the trajectory distributions of the two suc-
cessive policies are not that big. Recall that the KL divergence KL(ρπθ |ρπθ′) can be approximate
by Fisher information matrix as follows (ignoring constant factors):

KL(ρπθ |ρπθ′) ≈ (θ − θ′)> Fθ(θ − θ′).

As we explained in the lecture, instead of setting learning rate as the hyper-parameter, we set the
trust region (which has a more transparent interpretation) size as a hyper parameter, i.e., we set δ
such that:

KL(ρπθ |ρπθ′) ≈ (θ − θ′)> F̂θ(θ − θ′) ≤ δ.

5

Since θ′ − θ = ηF̂−1θ ∇̂V θ, we have:

η2(∇̂V θ)>F̂−1θ ∇̂V
θ ≤ δ.

Solving for η we get η ≤
√

δ

(∇̂V θ)>F̂−1
θ ∇̂V θ

. We will just set η =
√

δ

(∇̂V θ)>F̂−1
θ ∇̂V θ

, i.e., be ag-

gressive on setting learning rate while subject to the trust region constraint. To ensure numerical
stability when the denominator is close to zero, we add ε = 1e − 6 to the denominator so the
expression we will use is

η =

√
δ

(∇̂V θ)>F̂−1θ ∇̂V θ + ε
(3)

Q Now go to utils.py and implement these step size computation in compute eta.

4.5 Putting Everything Together
Now we can start putting all pieces together. Go to train.py to implement the main framework
in train. We will iterate the NPG process to T = 20 iterations, report the performance of each
πθt for t = 0 to 19, and plot the performance curve.
Hint: your algorithm should achieve average reward of over 190 in about 15 steps if implemented
correctly.

6

	Instructions
	The Magic of Importance Weighting [10 points]
	Simplify REINFORCE Formulation [30 points]
	Off-policy Policy Gradient [10 points]
	Background and Setting
	Unbiased Estimator of Off-policy PG

	Natural Policy Gradient (Programming) [50 points]
	Background and Setting
	Gradient of Policy's Log-likelhood
	Fisher Information Matrix and Policy Gradient
	Implement the step size
	Putting Everything Together

