
Homework 3: Review on MDP, RL, and Imitation
Learning

CS 4789/5789: Introduction to Reinforcement Learning

(Due May 11 11:59 ET)

0 Instructions
For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework. Please add your remarks in a
“Question 0”.

1 Review on Markov Decision Processes
Consider two infinite horizon MDPs as follows M = {S,A, γ, r, P, µ} and M̂ =

{
S,A, γ, r, P̂ , µ

}
,

where µ is the initial state distribution. Both MDPs share the same information except the transi-
tion, and let us assume that:

max
s,a
‖P (·|s, a)− P̂ (·|s, a)‖1 ≤ ε.

Given a policy π : S 7→ ∆(A), let us denote Pπh(s;µ) as the probability of π hitting s at time
step h starting with µ under M, and P̂πh(s;µ) as the probability of π hitting s at time step h starting
with µ under M̂. Note that both have the same initial state distribution µ.

In this question, we will quantify the difference between P̂πh and Pπh. This question is extremely
important as it translates the error in models to the differences between the resulting state distribu-
tions.

Recall that for any s ∈ S, we define:

Pπh(s;µ)

=
∑

s0∈S,a0∈A,...,sh−1∈S,ah−1∈A

µ(s0)π(a0|s0)P (s1|s0, a0) . . . P (sh−1|sh−2, ah−2)π(ah−1|sh−1)P (s|sh−1, ah−1),

i.e., the probability of π hitting s at time step h by following π starting from µ.

Q1: Use the Markov property, prove the following equality:

∀h ≥ 1, s′ ∈ S :
∑
s∈S

Pπh−1(s;µ)
∑
a∈A

π(a|s)P (s′|s, a) = Pπh(s′;µ).
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Q2: Let us simply focus on h = 1. Note that at h = 0, both MDPs have the same µ. Prove the
following: ∥∥∥P̂π1 (·;µ)− Pπ1 (·;µ)

∥∥∥
1
≤ ε

where `1 norm here means that
∥∥∥P̂π1 (·;µ)− Pπ1 (·;µ)

∥∥∥
1

:=
∑

s∈S

∣∣∣P̂π1 (s;µ)− Pπ1 (s;µ)
∣∣∣
1
. Here you

may want to use the following inequality that we used quite a few times during the semester:

|Ex∼Pf(x)− Ex∼Pg(x)| ≤ Ex∼P |f(x)− g(x)| .

Q3: Now we move on to any h ≥ 1. Prove the following by using induction:∥∥∥P̂πh(·;µ)− Pπh(·;µ)
∥∥∥

1
≤ hε.

Remark As we see now, there is an error amplification, i.e., while the two models disagree with
each other by ε per time step, the error will accumulate and result a h amplification at time step h
when we executing π under the two models for h many steps.

Q4: Finally, we are ready to bound ‖dπµ− d̂πµ‖1 where d̂πµ is the average state distribution defined
with respect to model M̂. Prove the following:∥∥∥dπµ − d̂πµ∥∥∥

1
≤ γ

1− γ
ε.

Again we are experiencing an 1/(1− γ) error amplification.
Hint: how to calculate

∑∞
h=1 α

hh where α ∈ (0, 1)? (Checkout Arithmetico–geometric se-
quences)

2 Global Optimality in Policy Optimization
In this section, let us study the global optimality of policy optimization. We will do that via
the Conservative Policy Iteration algorithm. Again define the infinite horizon MDP as follows
M = {S,A, γ, r, P, µ}, where µ is the initial state distribution. Given a policy class Π, denote the
global optimal policy π? from the policy class Π as follows:

π? = arg max
π∈Π

E

[
H−1∑
h=0

γhr(sh, ah)|ah ∼ π(·|sh), s0 ∼ µ

]
,

i.e., π? maximizes the expected total reward with µ with µ as the initial state distribution. For
notation simplicity, we will denote V π

µ as the expected total reward of policy π starting from the
initial distribution µ, i.e., V π

µ = Es0∼µV π(s0). Also recall the average state distribution:

dπµ(s) = (1− γ)
∞∑
h=0

γhPπh(s;µ),
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where Pπh(s;µ) is the probability of hitting state s at time step h when following π and starting
from a state distribution µ as the initial state distribution.

Recall the conservative policy iteration algorithm. At iteration t, given πt, CPI first finds the
greedy policy π′ = arg maxπ∈Π Es∼dπtµ A

πt(s, a), and then updates policy as πt+1(·|s) = (1 −
α)πt(·|s) + απ′(·|s) (recall that π′ is deterministic here, but deterministic policy is just a special
stochastic policy); CPI terminates if Es∼dπtµ A

πt(s, π′(s)) ≤ ε ∈ R+, where ε is the pre-defined
error threshold. Just likely gradient descent algorithm, CPI in general only guarantees a local
optimal solution, and cannot guarantee global optimality.

Thus, to ensure CPI finds a globally optimal solution, we need some additional information
and assumption. Specifically, we will assume that we have access to an exploratory distribution
ν ∈ ∆(S), and we can reset based on ν instead of µ. Let us run CPI using ν as the new initial
distribution (forget about µ for now):

1. π′ = maxπ∈Π Es∼dπtν [Aπ
t
(s, π′(s))],

2. Terminate if Es∼dπtν [Aπ
t
(s, π′(s))] ≤ ε,

3. Otherwise πt+1(·|s) = (1− α)πt(·|s) + απ′(·|s).

Note that the state distribution now is defined as dπν rather than dπµ. I.e., our algorithm now leverages
the given additional distribution ν. The question we want to ask is that under what condition of ν,
the above modified CPI algorithm can find a globally optimal policy for the original MDP?

Assume the following conditions holds:

max
s,a

dπ
?

µ (s)

ν(s)
≤ C <∞, ∀t : max

π∈Π
Es∼dπtν [Aπ

t

(s, π(s))] = Es∼dπtν [max
a∈A

Aπ
t

(s, a)]

The first condition says that ν happens to cover dπ?µ , and the second condition is the condition on
Π and says that for all t, we happen to have arg maxaA

πt(s, a) ∈ Π.
Before we dive into the questions, keep in mind that µ is the original given initial state dis-

tribution of the MDP, and we want to optimize maxπ∈Π V
π
µ with respect to the given initial state

distribution µ. However, we are given with some additional distribution ν from where we can sam-
ple state and reset to that state. We modify CPI to use ν to help us find the global optimal solution
arg maxπ∈Π V

π
µ .

Q1: Let us prove the following: if the above modified CPI algorithm terminates at iteration t, we
must have that:

ε ≥

(
min
s∈S

dπ
t

ν (s)

dπ?µ (s)

)
Es∼dπ?µ max

a∈A
Aπ

t

(s, a).

Q2: show the following: for any πt and any s ∈ S, we must have:

dπ
t

ν (s)

dπ?µ (s)
≥ (1− γ)

ν(s)

dπ?µ (s)
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Q3: Finally, conclude by proving that under the original initial distribution µ, we have:

V π?

µ − V πt

µ ≤
Cε

(1− γ)2
.

Remark At this stage, we see that as long as the additional distribution ν covers the optimal
policy, i.e., C is finite, then CPI with the help from ν indeed finds a policy that is nearly global-
optimal under the original objective function defined with respect to the given initial distribution µ.
While finite C sounds like a bit strong assumption, there is not that much one could do in general
unfortunately.

3 Compatible Function Approximation in Actor-Critic Frame-
work

Recall that during the policy gradient lecture, we briefly touched the Actor-critic framework where
we fit a function approximator to approximate the Q values. Let’s formalize the idea here.

Imagine that we have πθ : S 7→ ∆(A) at hand, and we want to compute the policy gradient
with respect to θ. Instead of using roll-out to get unbiased estimate of Qπθ(s, a), we will try to
learn Qπθ(s, a). Specifically, we will use another parameterized function Qw(s, a) where w ∈ Rd

(this Qw is called critic, and πθ is called actor. Here we’ll assume that Qw(s, a) is differentiable
with respect to w.) to approximate Qπθ , and we do that by minimizing the following least square
objective:

ŵ := arg min
w

Es,a∼dπθµ (Qw(s, a)−Qπθ(s, a))2

We then use Qŵ as the approximator of Qπθ to form the policy gradient:

∇̂θJθ :=
1

1− γ
Es,a∼dπθµ ∇θ ln πθ(a|s)Qŵ(s, a).

In general, ∇̂θJθ 6= ∇θJ(θ) as Qŵ is just a learned approximator (and it is learned under dπθµ as the
training distribution).

Q1: Recall ŵ is the minimizer of the least square loss function. Prove that for ŵ, we must have:

Es,a∼dπθµ (Qŵ(s, a)−Qπθ(s, a))∇wQŵ(s, a) = 0,

where again∇wQŵ(s, a) is in short of∇wQw(s, a)|w=ŵ.

Q2: Qw and πθ are called compatible if:

∀s, a,∇wQŵ(s, a) = ∇θ lnπθ(a|s).

Prove that under the compatible assumption, we have:

∇̂θJ(θ) = ∇θJ(θ).
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Q3: Consider a specific parameteriation: Qw(s, a) = w>∇θ lnπθ(a|s). Clearly, this is a com-
patible setting, i.e.,∇Qw(s, a) = ∇θ lnπθ(a|s) always. (a) Write out the closed-form of ŵ:

ŵ = arg min
w

Es,a∼dπθµ
(
w>∇θ lnπθ(a|s)−Qπθ(s, a)

)2
,

where we assume that Es,a∼dπθµ
[
∇θ ln πθ(a|s)(∇θ lnπθ(a|s))>

]
is a full rank matrix. (b) Show

that ∇̂θJθ is indeed equal to the true policy gradient by substituting the ŵ in the formulation
∇̂θJθ = 1

1−γEs,a∼dπθµ ∇θ ln πθ(a|s)Qŵ(s, a) with what you got from (a).

4 The Min-Max Imitation Learning Framework
Let us study a min-max optimization framework for Imitation Learning. Again define the infinite
horizon MDP as follows M = {S,A, γ, r, P, µ}, where µ is the initial state distribution, and r :
S×A 7→ [0, 1].

We will consider two function approximator classes: policy class Π, and discriminator class F
where π ∈ Π is a policy, and f ∈ F is a discriminator such that f : S×A 7→ R.

Denote πe : S 7→ ∆(A) as our expert policy.
The min-max formulation of IL concerns the following optimization procedure:

min
π∈Π

[
max
f∈F

[
Es,a∼dπµf(s, a)− Es,a∼dπeµ f(s, a)

]]
.

Intuitively, this means that we want to find a policy π, such that the all discriminators f ∈ F cannot
distinguish dπµ and dπeµ . Note that here dπµ ∈ ∆(S × A) is the average state-action distribution
induced by π.

Q1: First consider a fixed π ∈ Π. Let us first get a sense of how maxf∈F

[
Es,a∼dπµf(s, a)− Es,a∼dπeµ f(s, a)

]
can be understood as a distribution divergence. To do that, let us assume that F = {f : S × A 7→
[−1, 1]}, i.e., F contains all possible functions that maps from (s, a) to a scalar between [−1, 1].
Prove the following:∥∥dπµ(·, ·)− dπeµ (·, ·)

∥∥
1

= max
f∈F

[
Es,a∼dπµf(s, a)− Es,a∼dπeµ f(s, a)

]
Remark: so here we see that if our discriminator class F is rich enough to contain all possible
functions that map from s, a to scalar in [−1, 1], maxf∈F

[
Es,a∼dπµf(s, a)− Es,a∼dπeµ f(s, a)

]
is

just the usual `1 of the difference between two distributions (which is equal to the Total variation
distance up to a constant 2).
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Q2: Assume that we approximately solve the min-max formulation, and we get a policy π̂ such
that:

max
f∈F

[
Es,a∼dπ̂µf(s, a)− Es,a∼dπeµ f(s, a)

]
≤ δ ∈ R+,

where δ may be some small number due to possible statistical and optimization error. Let us prove
the following: assume that r ∈ F, and F is symmetric, i.e., if f ∈ F, then −f ∈ F as well, we
must have: ∣∣V π̂

µ − V πe

µ

∣∣ ≤ δ

1− γ
.

Remark: this shows that as long as the discriminator class F is rich enough to contain r, and
being symmetric, the min-max formulation can learn a policy that performs almost as good as the
expert.
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