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Read the course website!
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This course focuses on Reinforcement Learning

We care about: 

(1) Algorithm design, 

(2) Analysis of algorithm performance (e.g., convergence), 

(3) How they work in practice



Four main themes we will cover in this course: 

1. Markov Decision Process: Dynamic Programming & planning 


2. Continuous Control


3. Learning in Markov Decision Process


4. Imitation Learning (i.e., learning from demonstrations)



Logistics
Four assignments (6 late days): 
HW 0: 10%, HW 1-3: 20% each


Final exam: 
30%


Attendance:

5% (bonus)

Tentative schedule for HWs are on course website
Final will be scheduled in the final week
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Discussion on HW problems are encouraged; 

But everyone needs to understand and write her/his own solutions; 


Sharing answers inside/outside of the class is not allowed. 

(see course website for more details)
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Prerequisites

Strong grasp on Machine Learning (e.g., CS 4780)

Traditional Machine Learning such as 
supervised learning is a small subset of RL!

Linear algebra & probability, programming in Python



Reading Materials: 
Reinforcement Learning: Theory & Algorithms

 https://rltheorybook.github.io/

This is an extremely advanced RL book, so we will pick specific 
subsections for you to read

Please let us know if you find any typos or mistakes in the book

https://rltheorybook.github.io/


Questions? 

(Please read the course website after class)



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions



Big Successful Stories of Reinforcement Learning

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAI Five, 18]
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To better understand RL,  
let’s recap Machine Learning 101
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Summary so far:

2. In RL, decisions/predictions have consequences: 
Future data is determined by our past historical decisions/predictions

1. In RL, we often start from zero data

3. To solve the task, we often need to make a long sequence of decisions



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions
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Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot 
state to action (i.e., torque)

π(s)

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′ ∼ P( ⋅ |s, a)

π⋆ = arg min
π

𝔼 [c(s0, a0) + γc(s1, a1) + γ2c(s2, a2) + γ3c(s3, a3) + … . . ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
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Question:  

Assume we have S many states, and A many 
actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)
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Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Q function Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]

Quantities that allow us to reason policy’s long-term effect:
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Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]

Bellman Equation for V-function:

Vπ(s) = r(s, π(s)) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )



Bellman Equation for Q-function:



Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]

Bellman Equation for Q-function:



Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )

Bellman Equation for Q-function:



Summary:

• RL is different from Supervised Learning: 
• Our actions have consequences

• Need to make sequence of decisions to complete the task

• Discounted infinite horizon MDP: 
• State, action, policy, transition, reward (or cost), discount factor

• V function and Q function 
• Key concept: Bellman equation


