CS 4789/5789:

Introduction to Reinforcement Learning

Wen Sun

Course website: https://wensun.github.io/CS4789.html

(Lecture notes & reading materials)

TAs: Wen-Ding Li and Hadi Alzayer

Read the course website!

This course focuses on Reinforcement Learning

(1) Algorithm design, (3) How they work in practice

We care about:

(2) Analysis of algorithm performance (e.g., convergence),

Four main themes we will cover in this course:

- 2. Continuous Control
- 3. Learning in Markov Decision Process
- 4. Imitation Learning (i.e., learning from demonstrations)

1. Markov Decision Process: Dynamic Programming & planning

Logistics

Four assignments (6 late days): HW 0: 10%, HW 1-3: 20% each

Final exam:

Atte 5%

Tentative schedule for HWs are on course website Final will be scheduled in the final week

30%

Attendance:

5% (bonus)

Logistics

Four assignments (6 late days): HW 0: 10%, HW 1-3: 20% each

Final exam:

30%

Attendance:

- 5% (bonus)
- Tentative schedule for HWs are on course website Final will be scheduled in the final week
- **Discussion** on HW problems are **encouraged**; But everyone needs to understand and write her/his own solutions; Sharing answers inside/outside of the class is not allowed. (see course website for more details)

Prerequisites

- Strong grasp on Machine Learning (e.g., CS 4780)
- Linear algebra & probability, programming in Python

Prerequisites

- Strong grasp on Machine Learning (e.g., CS 4780)
- Linear algebra & probability, programming in Python

Traditional Machine Learning such as supervised learning is a small subset of RL!

Reading Materials: Reinforcement Learning: Theory & Algorithms

https://rltheorybook.github.io/

This is an extremely advanced RL book, so we will pick **specific** subsections for you to read

Please let us know if you find any typos or mistakes in the book

Questions?

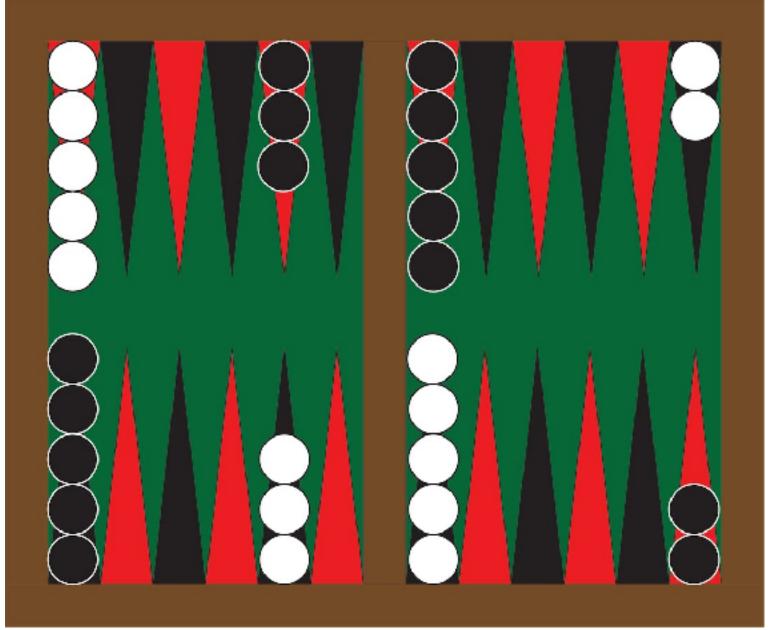
(Please read the course website after class)

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

Big Successful Stories of Reinforcement Learning



TD GAMMON [Tesauro 95]

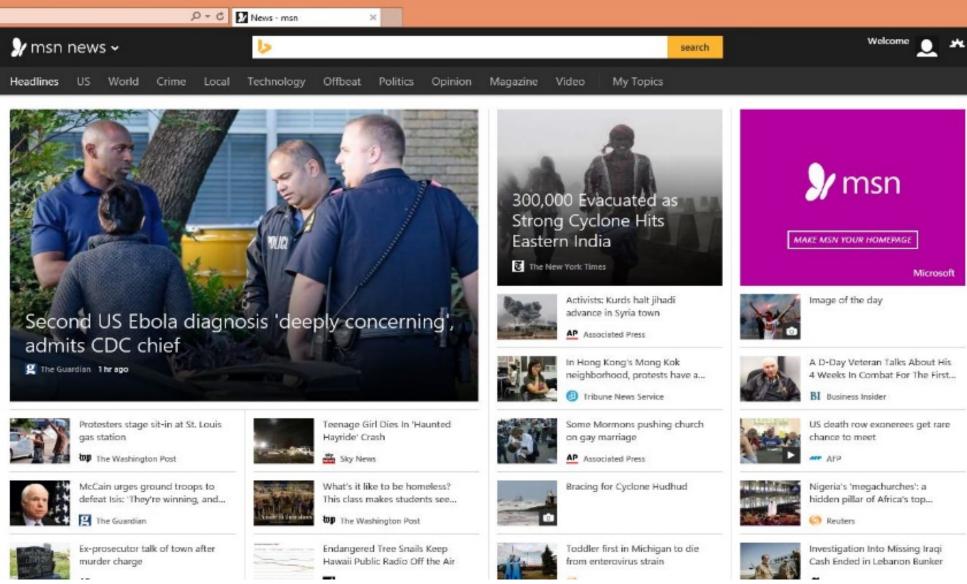
[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

Reinforcement Learning in Real World:

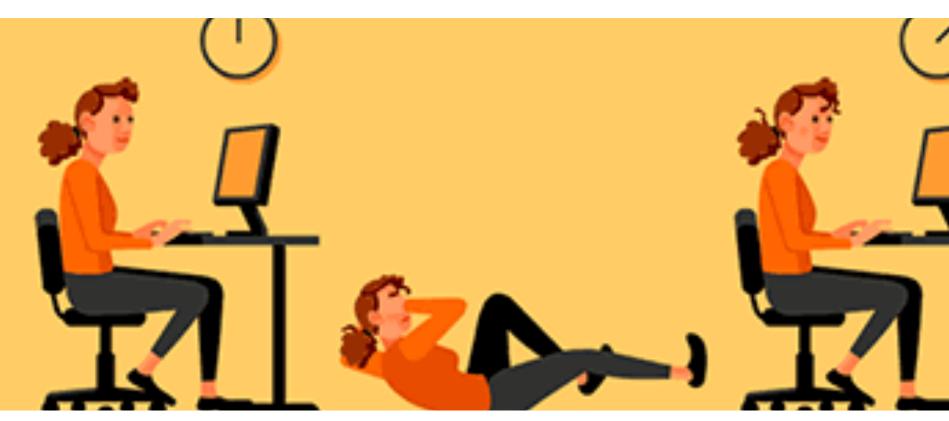
Reinforcement Learning in Real World:

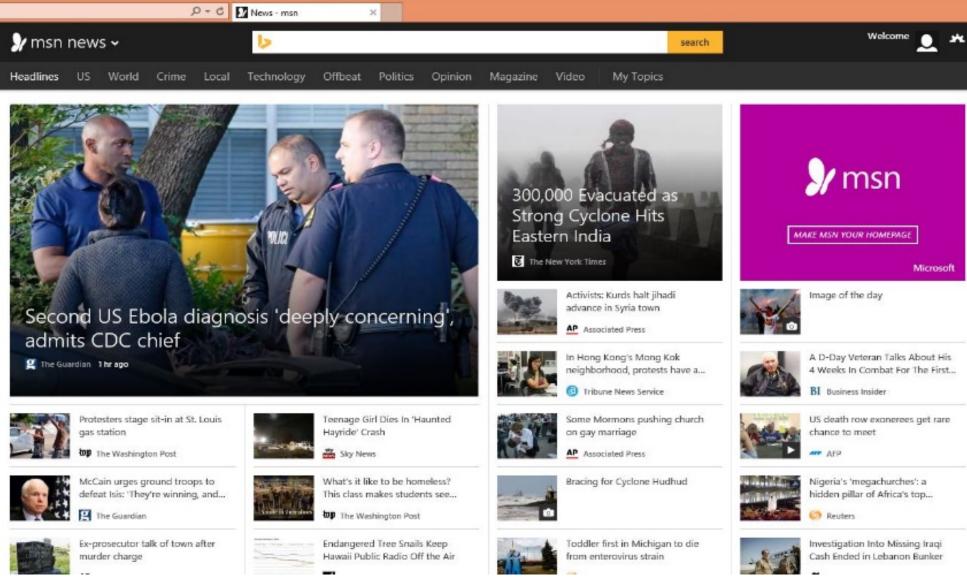




Hawaii Public Radio Off the Air

Reinforcement Learning in Real World:

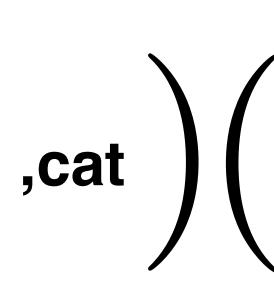


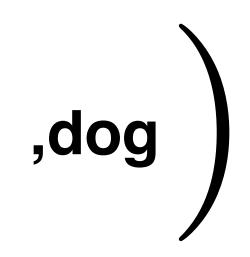


Hawaii Public Radio Off the Air

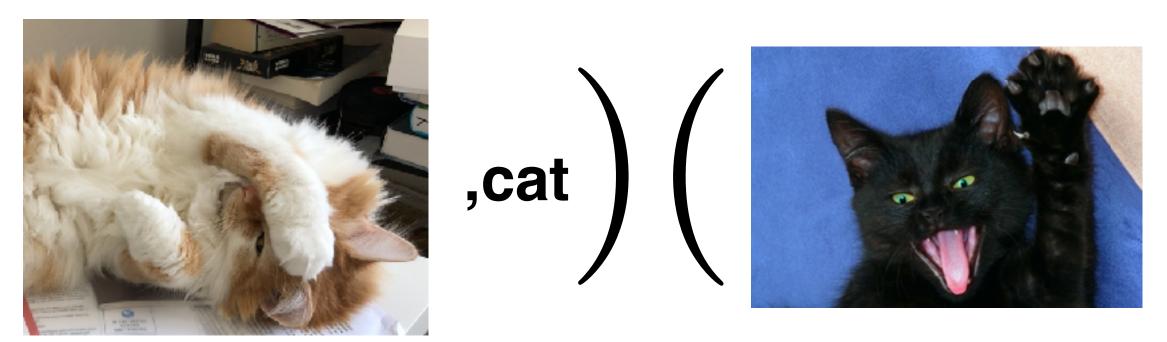
To better understand RL, let's recap Machine Learning 101

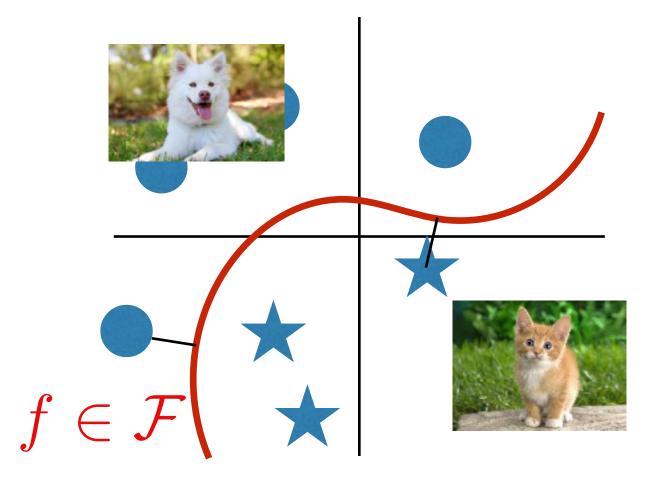
Given i.i.d examples at training:

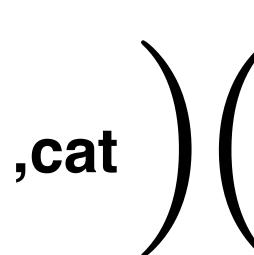


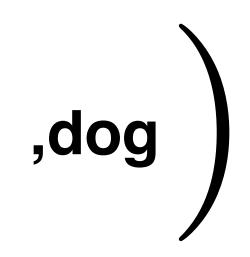


Given i.i.d examples at training:

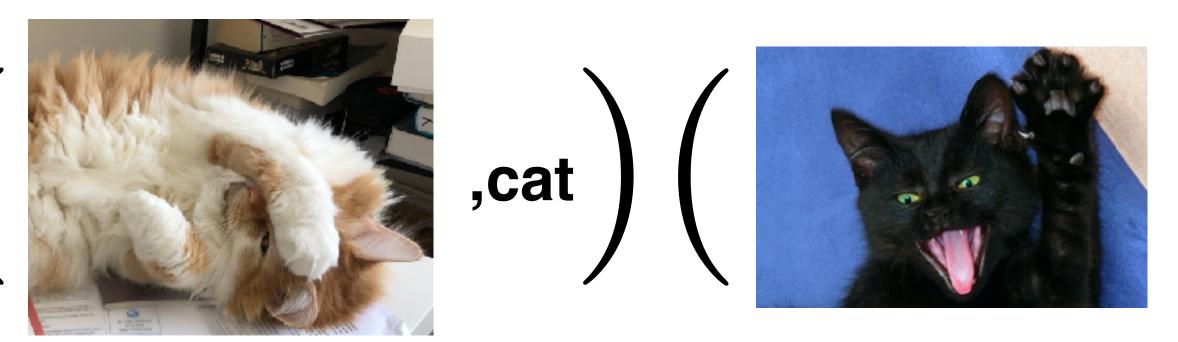


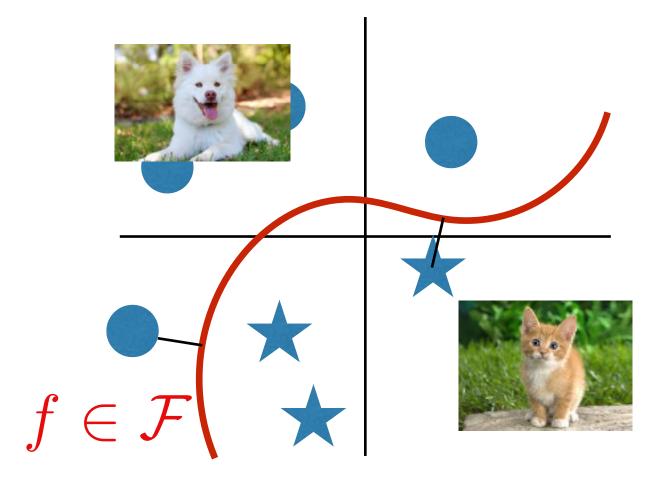




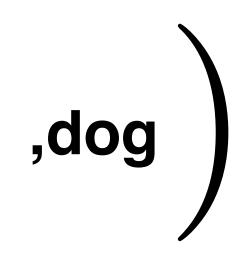


Given i.i.d examples at training:

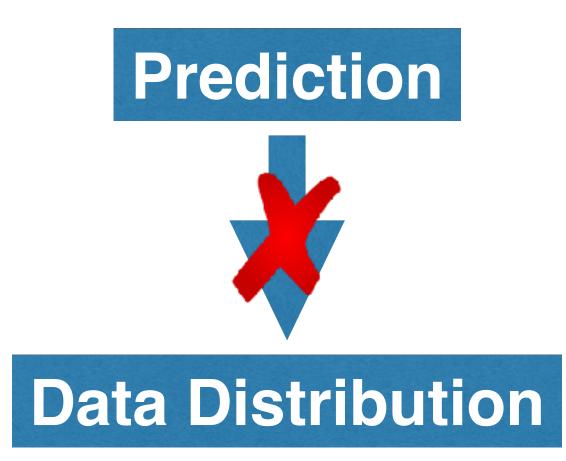




,cat



Passive:



Selected Actions:

RIGHT

Selected Actions:

RIGHT

Selected Actions:

RIGHT

Summary so far:

1. In RL, we often start from zero data

Summary so far:

1. In RL, we often start from zero data

2. In RL, **decisions/predictions have consequences:** Future data is determined by our past historical decisions/predictions

Summary so far:

1. In RL, we often start from zero data

2. In RL, **decisions/predictions have consequences:** Future data is determined by our past historical decisions/predictions

3. To solve the task, we often need to make a long sequence of decisions

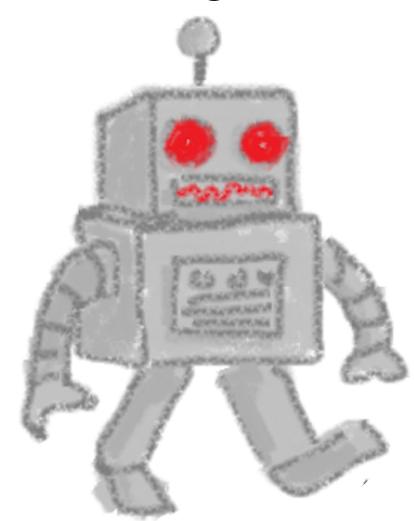
Outlines:

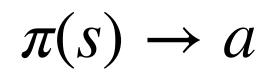
1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

The Mathematical framework: Markov Decision Process

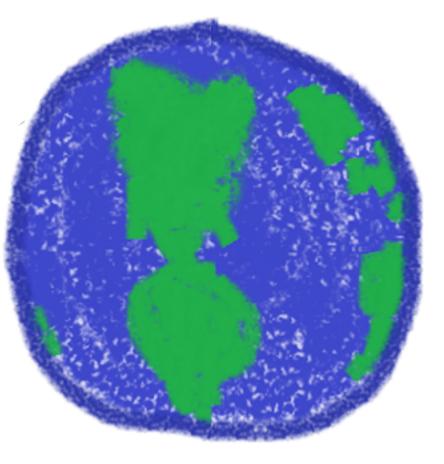
Learning Agent





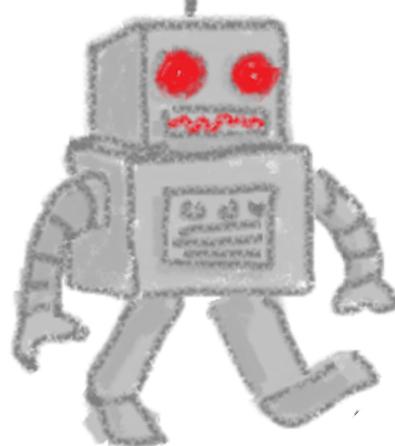
Policy: determine action based on state

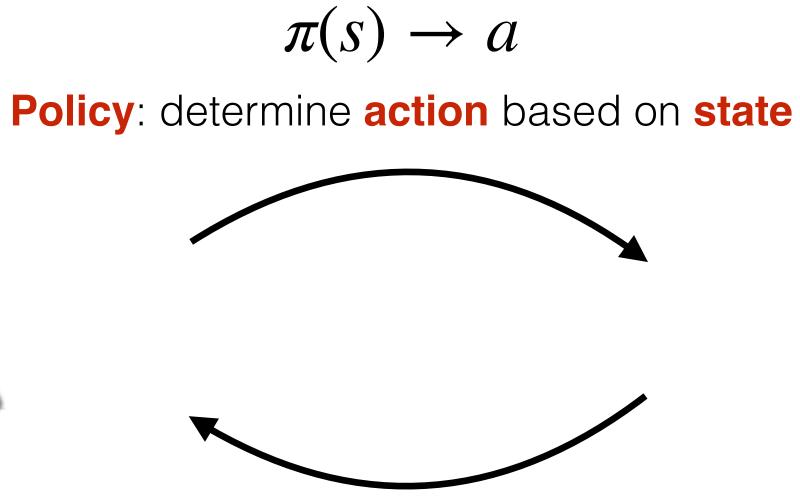
Environment



The Mathematical framework: **Markov Decision Process**

Learning Agent

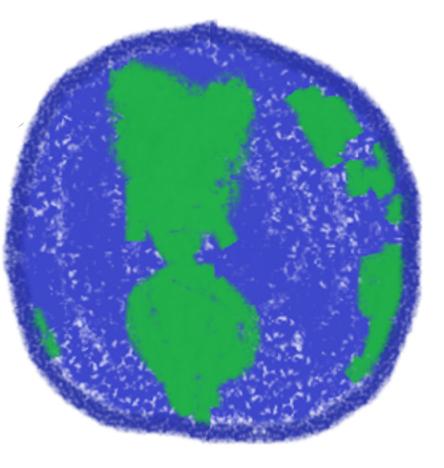




Send **reward** and **next state** from a Markovian transition dynamics

r(s, a), s

Environment

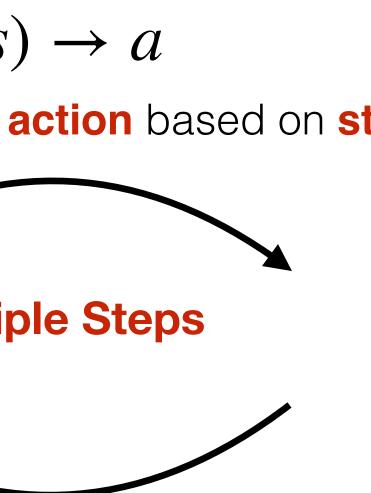


$$\sim P(\cdot | s, a)$$

The Mathematical framework: **Markov Decision Process** Learning Agent $\pi(s) \rightarrow a$ Policy: determine action based on state **Multiple Steps**

Markovian transition dynamics

 $r(s,a), s' \sim P(\cdot \mid s,a)$



Environment

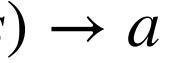
Send **reward** and **next state** from a

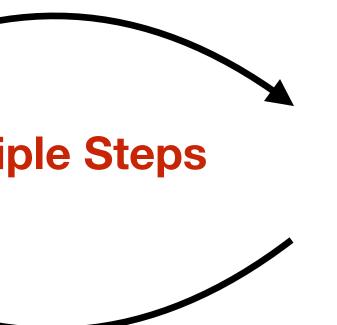
The Mathematical framework: **Markov Decision Process** Learning Agent $\pi(s) \rightarrow a$ Policy: determine action based on state **Multiple Steps**

Send **reward** and **next state** from a Markovian transition dynamics

r(s, a), s

Environment





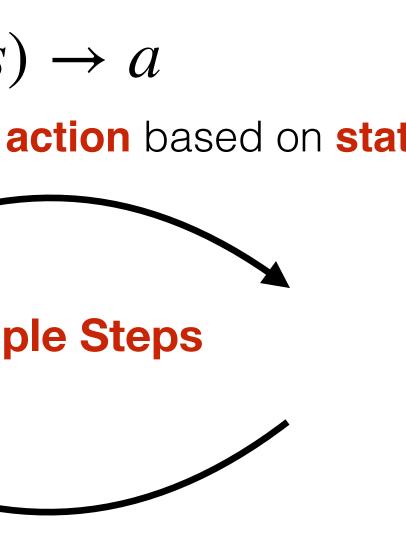
$$\sim P(\cdot | s, a)$$

The Mathematical framework: **Markov Decision Process** Learning Agent $\pi(s) \to a$ **Policy**: determine **action** based on **state Multiple Steps**

Send **reward** and **next state** from a Markovian transition dynamics

r(s, a), s

1.00



$$\sim P(\cdot | s, a)$$

Environment

State *s*: robot configuration (e.g., joint angles) and the ball's position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot | s, a)$: physics + some noise

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot | s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot | s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

<u>Cost</u> c(s, a): torque magnitude + dist to goal

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

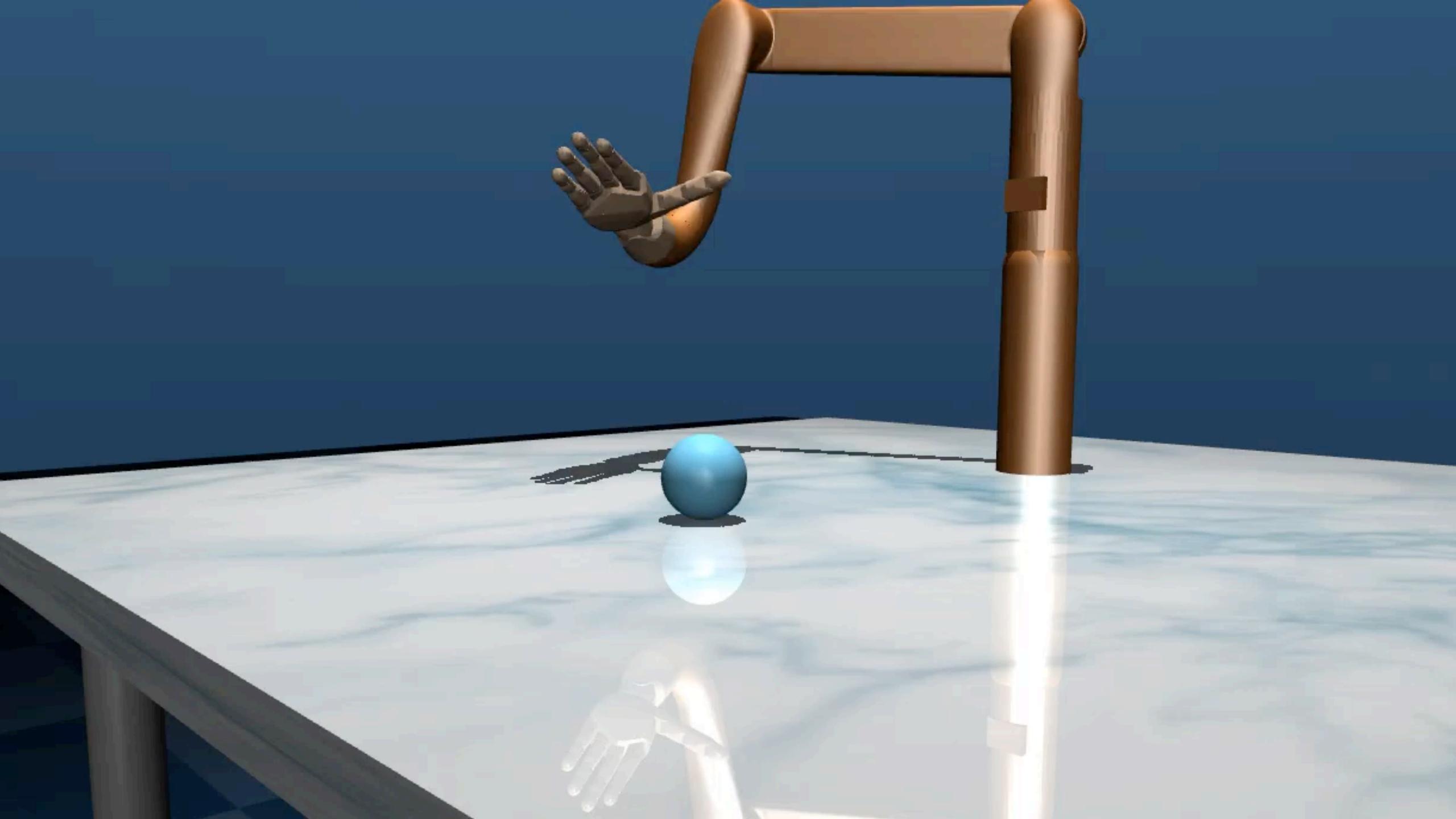
Action *a*: Torque on joints in arm & fingers

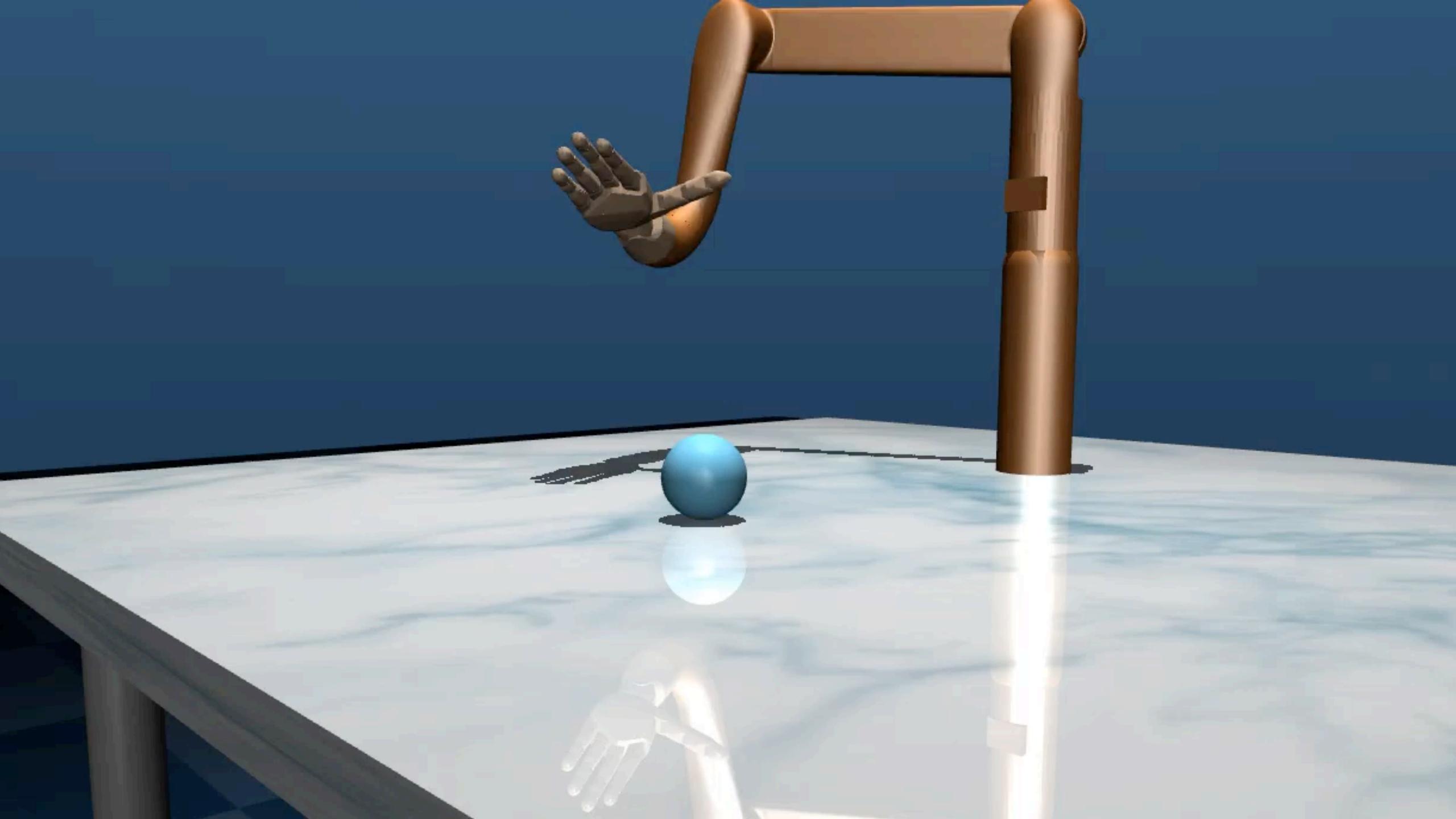
Transition $s' \sim P(\cdot | s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

<u>Cost</u> c(s, a): torque magnitude + dist to goal

 $\pi^{\star} = \arg\min \mathbb{E} \left[c(s_0, a_0) + \gamma c(s_1, a_1) + \gamma^2 c(s_2, a_2) + \gamma^3 c(s_3, a_3) + \dots \right] \left[a_h = \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$





Question:

Assume we have S many states, and A many actions, how many different polices there are?

Question:

Assume we have S many states, and A many actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)

- $\mathscr{M} = \{S, A, P, r, \gamma\}$
- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

- $\mathcal{M} = \{S, A, P, r, \gamma\}$
- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$
 - Policy $\pi: S \mapsto A$

- $\mathcal{M} = \{S, A, P, r, \gamma\}$
- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Quantities that allow us to reason policy's long-term effect:

Policy $\pi: S \mapsto A$

- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Quantities that allow us to reason policy's long-term effect:

Value function $V^{\pi}(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}) \right]$

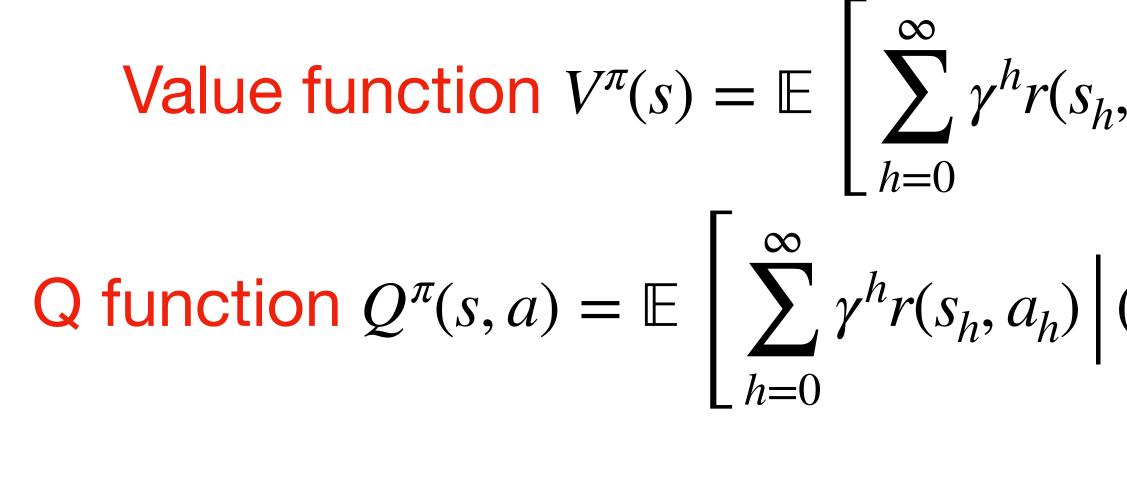
 $\mathcal{M} = \{S, A, P, r, \gamma\}$

Policy $\pi: S \mapsto A$

$$(s_h, a_h) | s_0 = s, a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)$$

- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Quantities that allow us to reason policy's long-term effect:



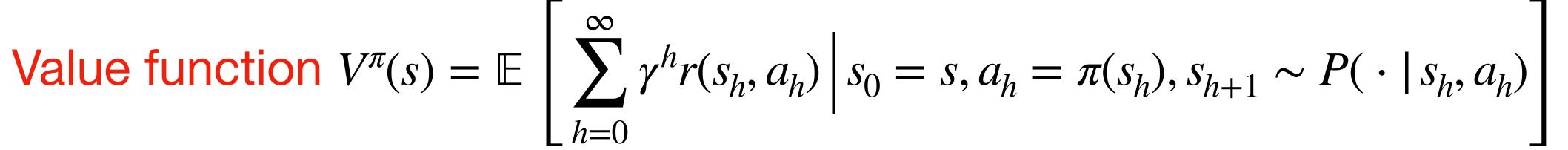
 $\mathcal{M} = \{S, A, P, r, \gamma\}$

Policy $\pi: S \mapsto A$

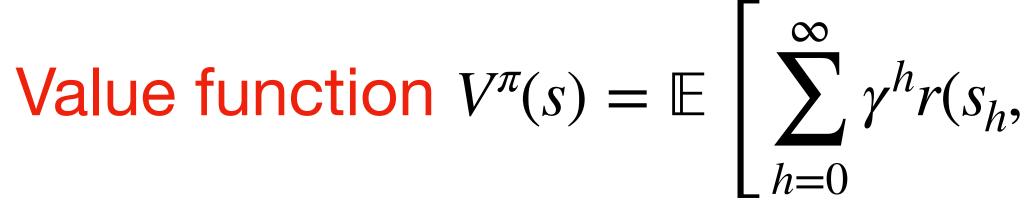
$$| (s_0, a_0) | s_0 = s, a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)$$

$$| (s_0, a_0) = (s, a), a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)$$

Understanding Value function and Q functions



Understanding Value function and Q functions



Q function $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \left| (s_0, a_0) = (s, a), a_h = \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$

$$(s_h, a_h) \left| s_0 = s, a_h = \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right|$$

Bellman Equation for V-function:

 $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} = \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$

Bellman Equation for V-function:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0}\right]$$

 $= s, a_{h} = \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})$

 $V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$

Bellman Equation for Q-function:

Bellman Equation for Q-function:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h},a_{h}) \middle| (s_{0},a_{h}) \middle|$$

 $(a_0) = (s, a), a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)$

Bellman Equation for Q-function:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| (s_{0}, a_{0}) = (s, a), a_{h} = \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h}) \right]$$

 $Q^{\pi}(s,a) = r(s,a)$

$$a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi}(s')$$

Summary:

RL is different from Supervised Learning:

- Our actions have consequences
- Need to make sequence of decisions to complete the task

- Discounted infinite horizon MDP:

 - State, action, policy, transition, reward (or cost), discount factor V function and Q function Key concept: Bellman equation