
CS 4789/5789:

Introduction to Reinforcement
Learning 

Wen Sun

TAs:
Wen-Ding Li and Hadi Alzayer

Course website:
https://wensun.github.io/CS4789.html

(Lecture notes & reading materials)

Read the course website!

https://wensun.github.io/CS4789.html

This course focuses on Reinforcement Learning

We care about:

(1) Algorithm design,

(2) Analysis of algorithm performance (e.g., convergence),

(3) How they work in practice

Four main themes we will cover in this course:

1. Markov Decision Process: Dynamic Programming & planning

2. Continuous Control

3. Learning in Markov Decision Process

4. Imitation Learning (i.e., learning from demonstrations)

Logistics
Four assignments (6 late days):
HW 0: 10%, HW 1-3: 20% each

Final exam:
30%

Attendance:

5% (bonus)

Tentative schedule for HWs are on course website
Final will be scheduled in the final week

Logistics
Four assignments (6 late days):
HW 0: 10%, HW 1-3: 20% each

Final exam:
30%

Attendance:

5% (bonus)

Tentative schedule for HWs are on course website
Final will be scheduled in the final week

Discussion on HW problems are encouraged;

But everyone needs to understand and write her/his own solutions;

Sharing answers inside/outside of the class is not allowed.

(see course website for more details)

Prerequisites

Strong grasp on Machine Learning (e.g., CS 4780)

Linear algebra & probability, programming in Python

Prerequisites

Strong grasp on Machine Learning (e.g., CS 4780)

Traditional Machine Learning such as
supervised learning is a small subset of RL!

Linear algebra & probability, programming in Python

Reading Materials: 
Reinforcement Learning: Theory & Algorithms

 https://rltheorybook.github.io/

This is an extremely advanced RL book, so we will pick specific
subsections for you to read

Please let us know if you find any typos or mistakes in the book

https://rltheorybook.github.io/

Questions?

(Please read the course website after class)

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

Big Successful Stories of Reinforcement Learning

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAI Five, 18]

Reinforcement Learning in Real World:

Reinforcement Learning in Real World:

Reinforcement Learning in Real World:

To better understand RL,
let’s recap Machine Learning 101

13

Recap: Supervised Learning

13

Recap: Supervised Learning

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

13

f 2 F

Recap: Supervised Learning

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

13

f 2 F

Passive:

Prediction

Data Distribution

Recap: Supervised Learning

,cat ,cat ,dog()()

Given i.i.d examples at training:

()

14 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution

14 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution

14 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution

Summary so far:

1. In RL, we often start from zero data

Summary so far:

2. In RL, decisions/predictions have consequences:
Future data is determined by our past historical decisions/predictions

1. In RL, we often start from zero data

Summary so far:

2. In RL, decisions/predictions have consequences:
Future data is determined by our past historical decisions/predictions

1. In RL, we often start from zero data

3. To solve the task, we often need to make a long sequence of decisions

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

The Mathematical framework:

Markov Decision Process

Policy: determine action based on state

Learning
Agent Environment

π(s) → a

The Mathematical framework:

Markov Decision Process

Policy: determine action based on state

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′￼ ∼ P(⋅ |s, a)

Learning
Agent Environment

π(s) → a

The Mathematical framework:

Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′￼ ∼ P(⋅ |s, a)

Learning
Agent Environment

π(s) → a

The Mathematical framework:

Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′￼ ∼ P(⋅ |s, a)

Learning
Agent Environment

π(s) → a

The Mathematical framework:

Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′￼ ∼ P(⋅ |s, a)

Learning
Agent Environment

π(s) → a

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Transition : physics + some noises′￼ ∼ P(⋅ |s, a)

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot
state to action (i.e., torque)

π(s)

Transition : physics + some noises′￼ ∼ P(⋅ |s, a)

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot
state to action (i.e., torque)

π(s)

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′￼ ∼ P(⋅ |s, a)

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot
state to action (i.e., torque)

π(s)

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′￼ ∼ P(⋅ |s, a)

π⋆ = arg min
π

𝔼 [c(s0, a0) + γc(s1, a1) + γ2c(s2, a2) + γ3c(s3, a3) + … . . ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Question:

Assume we have S many states, and A many
actions, how many different polices there are?

Question:

Assume we have S many states, and A many
actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Quantities that allow us to reason policy’s long-term effect:

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Quantities that allow us to reason policy’s long-term effect:

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Q function Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Quantities that allow us to reason policy’s long-term effect:

Understanding Value function and Q functions

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Understanding Value function and Q functions

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Q function Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Bellman Equation for V-function:

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Bellman Equation for V-function:

Vπ(s) = r(s, π(s)) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)

Bellman Equation for Q-function:

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]

Bellman Equation for Q-function:

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah = π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Qπ(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)

Bellman Equation for Q-function:

Summary:

• RL is different from Supervised Learning:
• Our actions have consequences

• Need to make sequence of decisions to complete the task

• Discounted infinite horizon MDP:
• State, action, policy, transition, reward (or cost), discount factor

• V function and Q function
• Key concept: Bellman equation

