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Introduction to Reinforcement
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TAS:
Wen-Ding Li and Hadi Alzayer

Course website:
https://wensun.qgithub.io/CS4789.html

(Lecture notes & reading materials)

Read the course website!


https://wensun.github.io/CS4789.html

This course focuses on Reinforcement Learning

We care about:

(1) Algorithm design,
(2) Analysis of algorithm performance (e.g., convergence),
(3) How they work in practice
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Four main themes we will cover In this course:

Markov Decision Process: Dynamic Programming & planning
Continuous Control
Learning in Markov Decision Process

Imitation Learning (i.e., learning from demonstrations)



Logistics

Four assignments (6 late days):
HW 0: 10%, HW 1-3: 20% each

Final exam:
30%

Attendance;
5% (bonus)

Tentative schedule for HWs are on course website
Final will be scheduled in the final week
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Four assignments (6 late days):
HW 0: 10%, HW 1-3: 20% each

Final exam:
30%

Attendance;
5% (bonus)

Tentative schedule for HWs are on course website
Final will be scheduled in the final week

Discussion on HW problems are encouraged;
But everyone needs to understand and write her/his own solutions;
Sharing answers inside/outside of the class is not allowed.
(see course website for more details)
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Prerequisites

Strong grasp on Machine Learning (e.g., CS 4780)

Linear algebra & probability, programming in Python

Traditional Machine Learning such as
supervised learning is a small subset of RL!



Reading Materials:
Reinforcement Learning: Theory & Algorithms

https://rltheorybook.qgithub.io/

This Is an extremely advanced RL book, so we will pick specific
subsections for you to read

Please let us know if you find any typos or mistakes in the book


https://rltheorybook.github.io/

Questions?

(Please read the course website after class)



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions



Big Successful Stories of Reinforcement Learning
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To better understand RL,
let’s recap Machine Learning 101
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Recap: Supervised Learning

Given i.i.d examples at training:

Passive:

Data Distribution
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Summary so far:

1. In RL, we often start from zero data

2. In RL, decisions/predictions have consequences:
Future data is determined by our past historical decisions/predictions

3. To solve the task, we often need to make a long sequence of decisions



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions
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The Mathematical framework:
Markov Decision Process

Learning
Agent

Environment

’ n(s) = a

: Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)
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Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State s: robot configuration (e.g., joint angles)
and the ball’s position

Action a: Torgue on joints in arm & fingers

Transition s ~ P( - | s, a): physics + some noise

policy 7(s): a function mapping from robot
state to action (i.e., torque)

- — Cost c(s, a): torque magnitude + dist to goal

7% = argminE |c(sy, ay) + ye(sy, a;) + yzc(s2, a,) + y3c(s3, az) + ..... |\a, = 7(sy), .1 ~ P(C-|s,a)

JT









Question:

Assume we have S many states, and A many
actions, how many different polices there are?



Question:

Assume we have S many states, and A many
actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)
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Infinite horizon Discounted Setting

M= {S,A,P,r,v}
P:SXA- AW), r:S5xA-|[0,1], ye€]0,1)

Policy z:S+— A

Quantities that allow us to reason policy’s long-term effect:

Value function V*(s) = E lz Y'r(s,, a,) | s = s, a, = n(s,), Spe1 ~ PC+ | s, Clh)]
h=0

Q function Q*(s,a) = E lz yhr(sh, a,) | (g, ag) = (s, a), a, = 7(sy), S,.1 ~ P(- |5, Clh)]
h=0



Understanding Value function and Q functions

Value function V*(s) =
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Understanding Value function and Q functions

Value function V*(s) = E lz yhr(sh, a,) |so = 8, a, = 1(sy,), 41 ~ P(- |5y, ah)]
h=0

Q function Q%(s,a) = E lz yhr(sh, a,) | (g, ag) = (s, a), a, = 7(sy), .1 ~ P(- |5, Clh)]
h=0
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Bellman Equation for V-function:

Vi(s) = [ Z yhr(sh, a,) | so=s,a, = n(sy), s, ~ P(-|s,,ap)
h=0

Vi(s) = r(s, n(s)) +y _S’Np(.\s,a)vﬂ(sl)
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Bellman Equation for Q-function:

o0

O”"(s,a) = Z yhr(sh, a,) | (89, ag) = (s, a), a,, = 7n(sy), S,.1 ~ P(-|sy, ap)
h=0

Q"(s,a) = r(s,a) + Yk pis.0)V"(5)




Summary:

* RL is different from Supervised Learning:
* Our actions have consegquences
* Need to make sequence of decisions to complete the task

* Discounted infinite horizon MDP:
o State, action, policy, transition, reward (or cost), discount factor
* V function and Q function
 Key concept: Bellman equation



