
Maximum Entropy IRL



DAgger Recap 

New Data

Supervised Learning

New policy

All previous data

Steering 
from 
expert

Aggregate 
Dataset

At iteration t, given πt

Data Aggregation = Follow-the-Regularized-Leader Online Learner
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DAgger Performance Recap:

DAgger finds a policy  such that it matches to  under its own ̂π π⋆ d ̂π
μ

𝔼s∼d ̂π
μ [1{ ̂π (s) ≠ π⋆(s)}] ≤ ϵreg = O(1/ T)

If expert herself can quickly recover from a deviation, i.e.,  is small for all ,|Qπ⋆(s, a) − Vπ⋆(s) | s

Vπ⋆ − Vπt ≤ O ( 1
1 − γ

⋅ ϵreg)
This is a significant improvement over BC in both theory and practice
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1. The principle of Maximum Entropy

2. The Algorithm: Maximum Entropy Inverse RL

2. Constrained Optimization



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Key Assumption on cost:  
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)
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Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Maybe colliding with cars or 
buildings has high cost, but 
walking on sideway or grass 

has low cost 



Notation on Distributions

: probability of visiting  at time step  following ℙπ
h(s, a; μ) (s, a) h π

: average state-action distributiondπ
μ(s, a) =

H−1

∑
h=0

ℙπ
h(s, a; μ)/H

: 

Likelihood of the trajectory  under , i.e., the prob of  generating 

ρπ(τ) := μ0(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…π(aH−1 |sH−1)P(sH |sH−1, aH−1)
τ π π τ
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Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution , the entropy is defined as:
P ∈ Δ(X)

Entropy(P) = − ∑
x

P(x) ⋅ ln P(x)

Higher entropy means more uncertainty, for instance: 

Uniform distribution has the highest entropy, 

i.e., Entropy(U(X)) = − ∑

x

(1/ |X | )ln(1/ |X | ) = ln( |X | )

Deterministic distribution has zero entropy:

i.e., Entropy(δ(x0)) = − 1 ⋅ ln 1 − ∑

x≠x0

0 ln 0 = 0
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Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy: 

Entropy Maximization subject to Moment Matching constraints

max
P∈Δ(X)

entropy(P), s.t., 𝔼x∼P[x] = μ, 𝔼x∼P[xx⊤] = Σ + μμ⊤

Solution:  

(proof: out of scope)

P⋆ = 𝒩(μ, Σ)



Detour: Principle of Maximum Entropy

In summary:

Maximum Entropy Principle says that:


 Among the distributions that satisfy pre-defined constraints (mean & variance), 
let’s pick the one that is the most uncertain 


(uncertainty measured in entropy)
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Constrained Optimization:

Consider the following constrained optimization problem:

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0

How to solve such constrained optimization problem? 

Denote  as the optimal solution here.x⋆
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Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2

f(x) + w1g1(x) + w2g2(x)]
For any  that does not satisfy constraints, i.e.,  or , 


we must have: 
x g1(x) ≠ 0 g2(x) ≠ 0

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = + ∞

For any  that satisfies constraints, i.e.,  and , 

we must have: 

x g1(x) = 0 g2(x) = 0
max
w1,w2

f(x) + w1g1(x) + w2g2(x) = f(x)
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Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2

f(x) + w1g1(x) + w2g2(x)]
In other words, 

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = {+∞ g1(x) ≠ 0 or g2(x) ≠ 0 i.e, infeasible
f(x) g1(x) = g2(x) = 0 i.e., feasible

Thus,  solving the Lagrange formulation is equivalent to the original formulation:


arg min
x [max

w1,w2

f(x) + w1g1(x) + w2g2(x)] = x⋆



Constrained Optimization:

In summary, we have that

arg min
x [max

w1,w2

f(x) + w1g1(x) + w2g2(x)] = x⋆

Where  is the optimal solution of the original constrained program:x⋆

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0



min
x,y

x + y, s.t.,x2 + y2 = 1

Example:
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Constrained Optimization:
We will often be interested in solving the dual version, i.e., 

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)

:=ℓ(x,w)

And one procedure to solve a  is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

xt = arg min
x

f(x) + wt
1g1(x) + wt

2g2(x) (# best response:  arg min
x

ℓ(x, wt))

wt+1
1 = wt

1 + ηg1(xt)

wt+1
2 = wt

2 + ηg2(xt)
(#incremental update: wt+1 = wt + η∇wℓ(xt, w))

Return: x̄ =
T−1

∑
t=0

xt /T Informal theorem: when  are convex, f, g x̄ → x⋆, as T → ∞
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The principle of Maximum Entropy:  
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Maximum Entropy Inverse RL:

The principle of Maximum Entropy:  
Find a policy  that maximizes some entropy while subject to the 

constraint:
π

max
π

𝔼s∼dπ
μ [entropy (π( ⋅ |s))]

s . t, 𝔼s,a∼dπ
μ
ϕ(s, a) = 𝔼s,a∼dπ⋆

μ
ϕ(s, a)

Q: we want to find a policy  such that  


(Note linear cost assumption implies  is as good as )

But there are potentially many such policies…

π 𝔼s,a∼dπ
μ
ϕ(s, a) = 𝔼s,a∼dπ⋆

μ
ϕ(s, a)

π π⋆

This can be estimated 
using expert data:


N

∑
i=1

ϕ(s⋆
i , a⋆

i )/N
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Maximum Entropy Inverse RL:

𝔼s∼dπ
μ [entropy(π( ⋅ |s))] = − 𝔼s∼dπ

μ
𝔼a∼π(⋅|s) ln π(a |s) = − 𝔼s,a∼dπ

μ
ln π(a |s)

arg max
π

𝔼s∼dπ
μ [entropy(π( ⋅ |s))] = arg min

π
𝔼s,a∼dπ

μ
ln π(a |s)

Let’s simplify the objective :max
π

𝔼s∼dπ
μ [entropy(π( ⋅ |s))]



Maximum Entropy Inverse RL:

We arrive at the following constraint optimization problem:

arg min
π

𝔼s,a∼dπ
μ
ln π(a |s)

s . t, 𝔼s,a∼dπ
μ
ϕ(s, a) = 𝔼s,a∼dπ⋆

μ
ϕ(s, a)

Introduce the Lagrange multiplier  (we have d many constraints), 

consider the max-min dual version:

w ∈ ℝd

max
w∈ℝd

min
π

𝔼s,a∼dπ
μ
ln π(a |s) + w⊤ (𝔼s,a∼dπ

μ
ϕ(s, a) − 𝔼s,a∼dπ⋆

μ
ϕ(s, a))



Maximum Entropy Inverse RL:

Introduce the Lagrange multiplier  (we have d many constraints), 

consider the max-min dual version:

w ∈ ℝd

max
w∈ℝd

min
π

𝔼s,a∼dπ
μ
ln π(a |s) + w⊤ (𝔼s,a∼dπ

μ
ϕ(s, a) − 𝔼s,a∼dπ⋆

μ
ϕ(s, a))

Next lecture, 

we will design algorithm (in high level, it is the iterative algorithm framework) 

for this  problemmax − min


