Maximum Entropy IRL



DAgger Recap

At iteration t, given 7’
5 i New Data

Steering
from

Supervised Learning

Data Aggregation = Follow-the-Regularized-Leader Online Learner
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DAgger Performance Recap:

DAgger finds a policy 7 such that it matches to 7* under its own df

=i [I{7(5) # 7%(9)}] < €, = OULT)

If expert herself can quickly recover from a deviation, i.e., | Q”*(s, a) — V”*(S) | is small for all s,

x , |
|4 SO( -6,,%,)
I —y

This is a significant improvement over BC in both theory and practice




Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

2. The Algorithm: Maximum Entropy Inverse RL
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Setting
Finite horizon MDP /# = {S,A,H,c, P, u, n*}

(1) Ground truth cost c(s, a) is unknown;

(2) assume expert is the optimal policy z7* of the cost ¢
(3) transition P is known

We have a dataset & = (s*, a*), ~ dr

Key Assumption on cost:
c(s,a) = (0%, P(s, a)), linear w.r.t feature ¢ (s, a)
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neighboring pixels in image)
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Key Assumption on cost:
c(s,a) = (0%, ¢(s, a)), linear wrt feature ¢ (s, a)

State s: pixel or a group of
neighboring pixels in image)

P(pixels being building)
P(pixels being grass)
P(s,a) = P(pixels being sidewalk)
P(pixels being car)

building car

grass pavement person sidewalk

Fig. 4. Classifier feature response maps. Top left is the original image.



Running Example: Define feature map

Key Assumption on cost:
c(s,a) = (0%, ¢(s, a)), linear wrt feature ¢ (s, a)

State s: pixel or a group of
neighboring pixels in image)

P(pixels being building)
P(pixels being grass)
P(s,a) = P(pixels being sidewalk)
P(pixels being car)

building car

grass pavement person sidewalk

Maybe colliding with cars or

buildings has high cost, but

walking on sideway or grass
has low cost

Fig. 4. Classifier feature response maps. Top left is the original image.



Notation on Distributions

P7(s, a; u): probability of visiting (s, a) at time step A following 7

H-1
d;f(s, a) = Z P7(s, a; u)/ H: average state-action distribution
h=0

P (1) 1= puy(so)m(ay | so)P(sq | so, ag)m(ay | sy)...x(agy_i | Sg_ )Py | Sy_1, Ar_1):
Likelihood of the trajectory 7 under x, i.e., the prob of & generating
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Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution P € A(X), the entropy is defined as:

Entropy(P) = — Z P(x) - In P(x)

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy,

i.e., Entropy(U(X)) = — Z (1/|XDIn(1/|X|) = In(| X]|)

Deterministic distribution has zero entropy:
.e., Entropy(5(xp)) = — 1 -In1— ) 0In0 =0

XFX
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Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to u, 2,
but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints

max entropy(P), s.t., E _plxl=u, E _plxx"1=Z+puu'
PeA(X)

Solution: P* = N (u, X)
(proof: out of scope)



Detour: Principle of Maximum Entropy

In summary:

Maximum Entropy Principle says that:

Among the distributions that satisfy pre-defined constraints (mean & variance),
let’s pick the one that is the most uncertain
(uncertainty measured in entropy)



Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL
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Constrained Optimization:

Consider the following constrained optimization problem:
min f(x)
X
s.t.,81(x)=0, gx)=0
Denote x* as the optimal solution here.

How to solve such constrained optimization problem?
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Constrained Optimization:

Define two Lagrange multiplier w,, w, € R, we consider the following Lagrange formulation:

min [max f(x) + w;g;(x) + w,8,(x)
X Wi, W,

For any x that does not satisfy constraints, i.e., g;(x) # 0 or g,(x) # 0,

we must have: max f(x) + w,g,(x) + w,2,(x) = + oo
W1,W>

For any x that satisfies constraints, i.e., g,(x) = 0 and g,(x) = 0,
we must have: max f(x) + w,g,(x) + w,2,(x) = f(x)

Wi .Ws



Constrained Optimization:
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Constrained Optimization:

Define two Lagrange multiplier w,, w, € R, we consider the following Lagrange formulation:

min [maxf () +w;8;(x) + Wzgz(x)]

X Wi,W,

In other words,

{+oo g,(x) # 0 or g,(x) # 0 i.e, infeasible

max f(x) + w;g;(x) + wg,(x) = f(x) g, =g (x)=0i.e., feasible

Wi,Wo

Thus, solving the Lagrange formulation is equivalent to the original formulation:

arg min [max fx) + wyg(x) + wyg,(x)| = x*

X Wi,W,



Constrained Optimization:

In summary, we have that

arg min |max f(x) + w;g,(x) + w,g,(x)| = x*
X Wi, W,

Where x* is the optimal solution of the original constrained program:
min f(x)
X

s.t.,2:x)=0, gx)=0
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We will often be interested in solving the dual version, i.e.,
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Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

max min f(x) + w;g;(x) + w,g8,(x)
Wi ,Wy X

) - 7

= (vx,w)

And one procedure to solve a max min is the following iterative algorithm:

T - 0 .,,0
Initialize Lagrange multiplers w ', w,

Fort=0—->T-1

x! = arg min f(x) + w{ g2(x) + Wégz(X) (# best response: arg min £(x, w'))
X X

Wi = w1y ()

(#incremental update: w'™!' = w' +nV_Z(x!, w))

1
WL = )

T-1
Return: X = Z x,/T
=0



Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

max min f(x) + w;g;(x) + wg,()
Wl ,W2 X

) - 7

= (Vx,w)

And one procedure to solve a max min is the following iterative algorithm:

T - 0 .,,0
Initialize Lagrange multiplers w ', w,

Fort=0—->T-1

x! = arg min f(x) + w{ g2(x) + Wégz(X) (# best response: arg min £(x, w'))
X X

Wi = w1y ()

(#incremental update: w'™!' = w' +nV_Z(x!, w))

1
WL = )

T—1
Return: x = Z x,/T  Informal theorem: when f, g are convex, X = x*,as T — o0
=0



Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL
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Maximum Entropy Inverse RL.:

Q: we want to find a policy 7 such that -S,aNdﬁgb(s, a) = _s,aNd;;*ﬁb(S» a)
*
)

(Note linear cost assumption implies 7 is as good as 7
But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy & that maximizes some entropy while subject to the
constraint:



Q: we want to find a policy 7 such that

Maximum Entropy Inverse RL.:

_S,aNd/7f¢(S9 Cl) — _s,a~dﬁ*¢(s9 CZ)

(Note linear cost assumption implies 7 is as good as 7*)
But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy & that maximizes some entropy while subject to the
constraint:

max

JU

S .1,

_S,a~d5¢(sa Cl) —

= g [entropy (71'( - \S))]

S,a~d5*¢(sa Cl)



Maximum Entropy Inverse RL.:

Q: we want to find a policy w such that &, ,_.¢p(s,a) = &, ,_~@(s,a)
el ot

(Note linear cost assumption implies 7 is as good as 7*)
But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy & that maximizes some entropy while subject to the
constraint:

This can be estimated
using expert data:

| 5)

max £ gx [entropy (71'( :

s.1,[E S,aNdﬁ¢(s, a)



Maximum Entropy Inverse RL.:

Let’s simplify the objective max I- s~ [entropy(ﬂ( .| S))]:
T




Let’s simplify the objective max

—s~d7 [entropy(n( ' ‘S))] = —

s~d7

Maximum Entropy Inverse RL.:

JU

_CZNJZ'(°|S) ln 71'(61 ‘ S) —_—

= g [entropy(ﬂ( :

5))]:

s,arvd;f

In z(a | s)



Maximum Entropy Inverse RL.:

Let’s simplify the objective max It s~ [entropy(ﬂ( .

—s~d7 [entropy(n( ' ‘S))] = —

arg max [Eg g [entropy(ﬂ( - \S))] = arg min [t

JT

s~d7

JU

5))]:

In z(a | s)

_CZNJZ'(°|S) hl ﬂ(d ‘ S) —_

s.a~d”
- 1

S,arvd;}

In z(a | s)



Maximum Entropy Inverse RL.:

We arrive at the following constraint optimization problem:

arg min In z(a | s)

JU

SﬂN@f

s.t,[E S,aNdﬁ¢(s, a) = E s,ang*ﬁb(Sa a)

Introduce the Lagrange multiplier w & R4 (we have d many constraints),

max min

weR4

JU

Sﬂ~4§

consider the max-min dual version:

Inz(a|s)+w' ( —S,a,\,dﬁgb(s, a) —

"S,aNd/g;*¢(S : Cl))



Maximum Entropy Inverse RL.:

Introduce the Lagrange multiplier w & R4 (we have d many constraints),
consider the max-min dual version:

max min
weR?Y 7

= sa~ar 1N (A |s) +w' ( sa~diP(S, @) = "s,ang*qﬁ(Sa a))

Next lecture,
we will design algorithm (in high level, it is the iterative algorithm framework)

for this max — min problem



