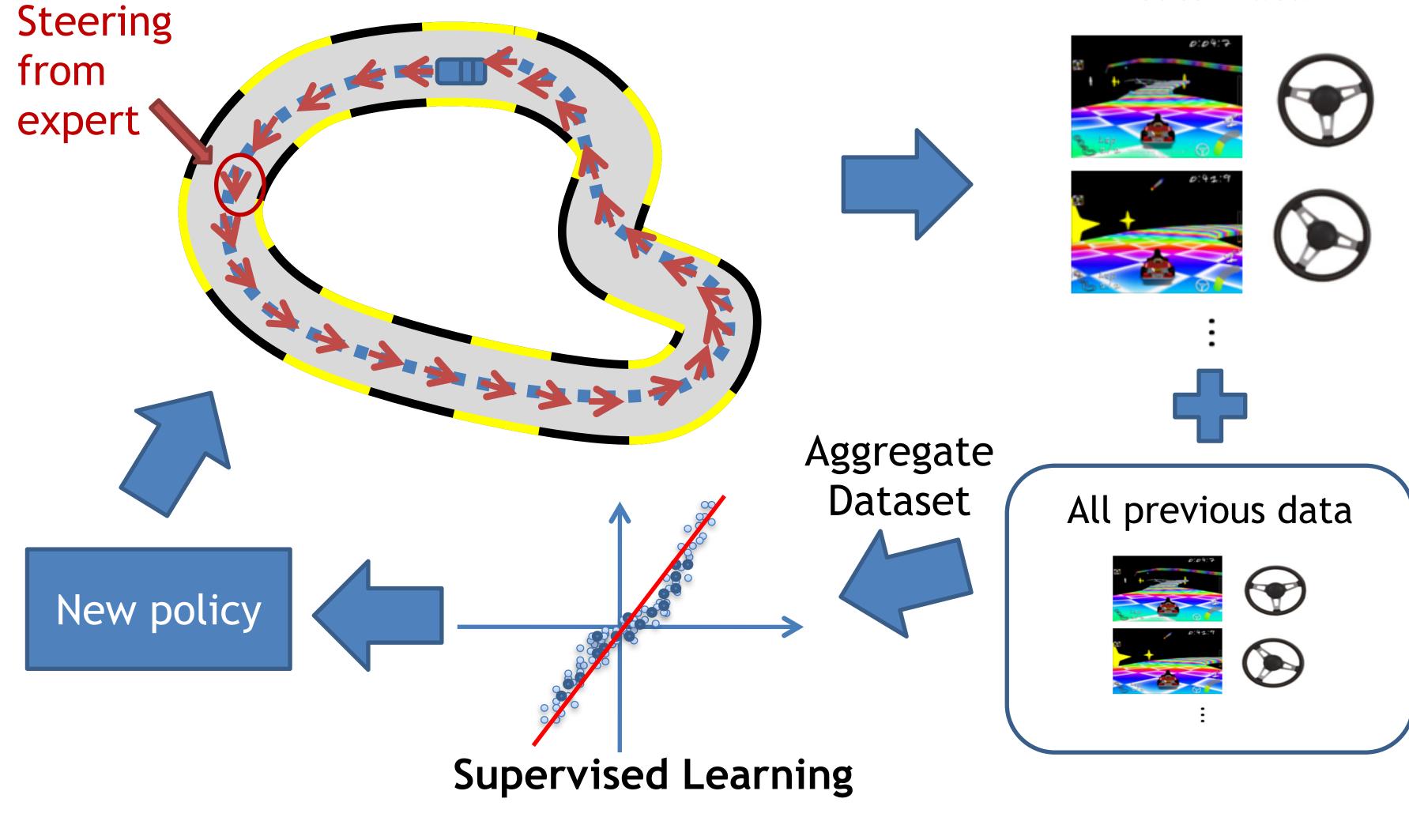
Maximum Entropy IRL

DAgger Recap



Data Aggregation = Follow-the-Regularized-Leader Online Learner

At iteration t, given π^t

New Data

DAgger Performance Recap:

 $\mathbb{E}_{s \sim d^{\widehat{\pi}}_{\mu}} \left[\mathbf{1} \{ \widehat{\pi}(s) \neq \pi \right]$

DAgger finds a policy $\hat{\pi}$ such that it **matches to** π^* **under its own** $d_{\mu}^{\hat{\pi}}$

$$\{\star(s)\} \le \epsilon_{reg} = O(1/\sqrt{T})$$

DAgger Performance Recap:

 $\mathbb{E}_{s \sim d_{u}^{\widehat{\pi}}} \left[\mathbf{1} \{ \widehat{\pi}(s) \neq \pi \right]$

 $V^{\pi^{\star}} - V^{\pi^{t}} <$

DAgger finds a policy $\hat{\pi}$ such that it **matches to** π^* **under its own** $d_{\mu}^{\hat{\pi}}$

$$\star(s)\}] \leq \epsilon_{reg} = O(1/\sqrt{T})$$

If expert herself can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s,a) - V^{\pi^*}(s)|$ is small for all s,

$$O\left(\frac{1}{1-\gamma}\cdot\epsilon_{reg}\right)$$

DAgger Performance Recap:

 $\mathbb{E}_{s \sim d_{\mu}^{\widehat{\pi}}} \left| \mathbf{1} \{ \widehat{\pi}(s) \neq \pi \right|$

This is a significant improvement over BC in both theory and practice

DAgger finds a policy $\hat{\pi}$ such that it **matches to** π^* **under its own** $d_{\mu}^{\hat{\pi}}$

$$\star(s)\}] \leq \epsilon_{reg} = O(1/\sqrt{T})$$

If expert herself can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s,a) - V^{\pi^*}(s)|$ is small for all s,

 $V^{\pi^{\star}} - V^{\pi^{t}} \le O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{reg}\right)$

1. The principle of Maximum Entropy

2. Constrained Optimization

2. The Algorithm: Maximum Entropy Inverse RL

Plan for Today:

Setting

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$

Finite horizon MDP ./

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^{\star} of the cost c(3) transition P is known

Setting

$$\mathscr{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

Finite horizon MDP ./

We have a dataset

Setting

$$\mathscr{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^{\star} of the cost c(3) transition P is known

$$\mathsf{t} \mathscr{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Finite horizon MDP ./

We have a dataset

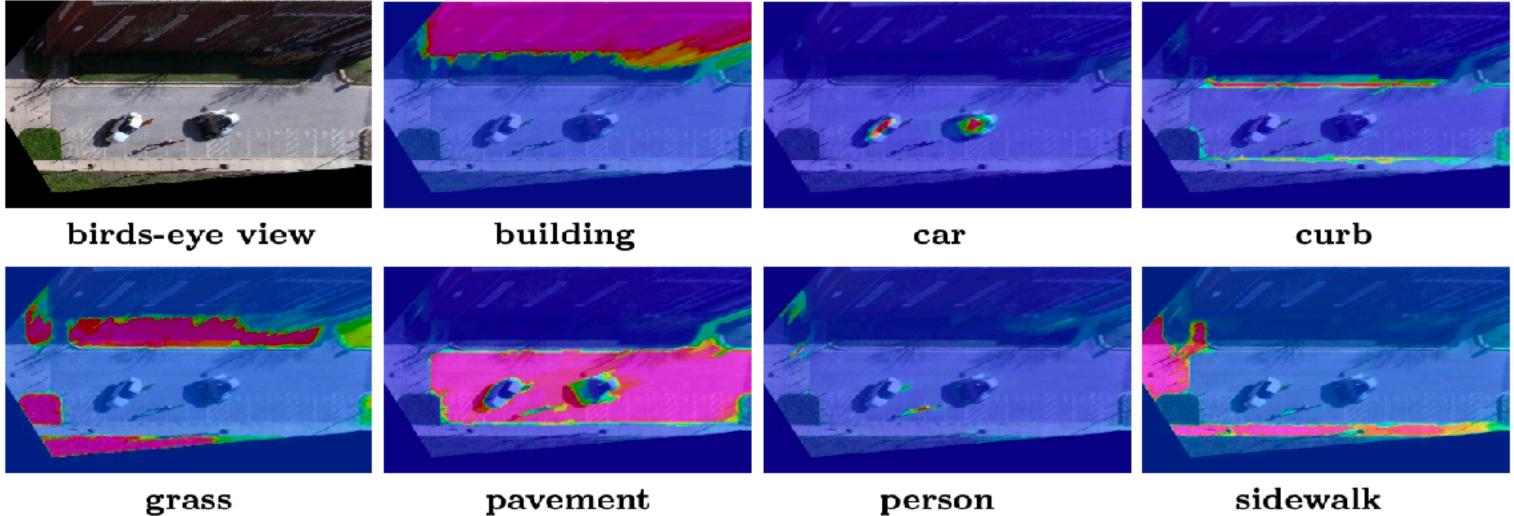
Setting

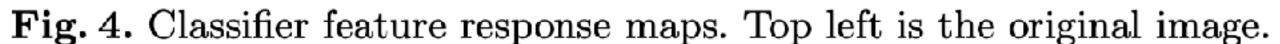
$$\mathscr{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^{\star} of the cost c(3) transition P is known

$$\mathbf{t} \, \mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

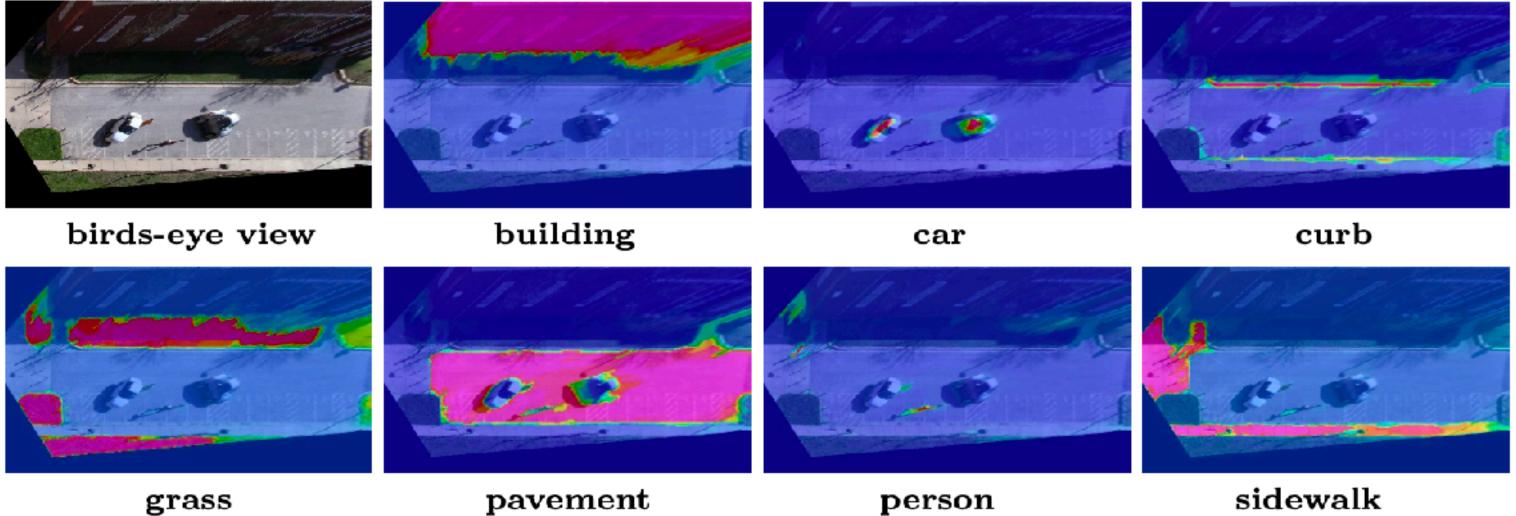
Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear w.r.t feature $\phi(s, a)$





Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

sidewalk



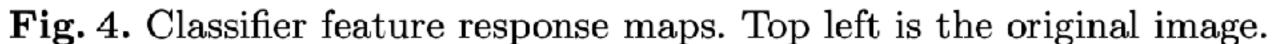
Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

sidewalk

State *s*: pixel or a group of neighboring pixels in image)

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$



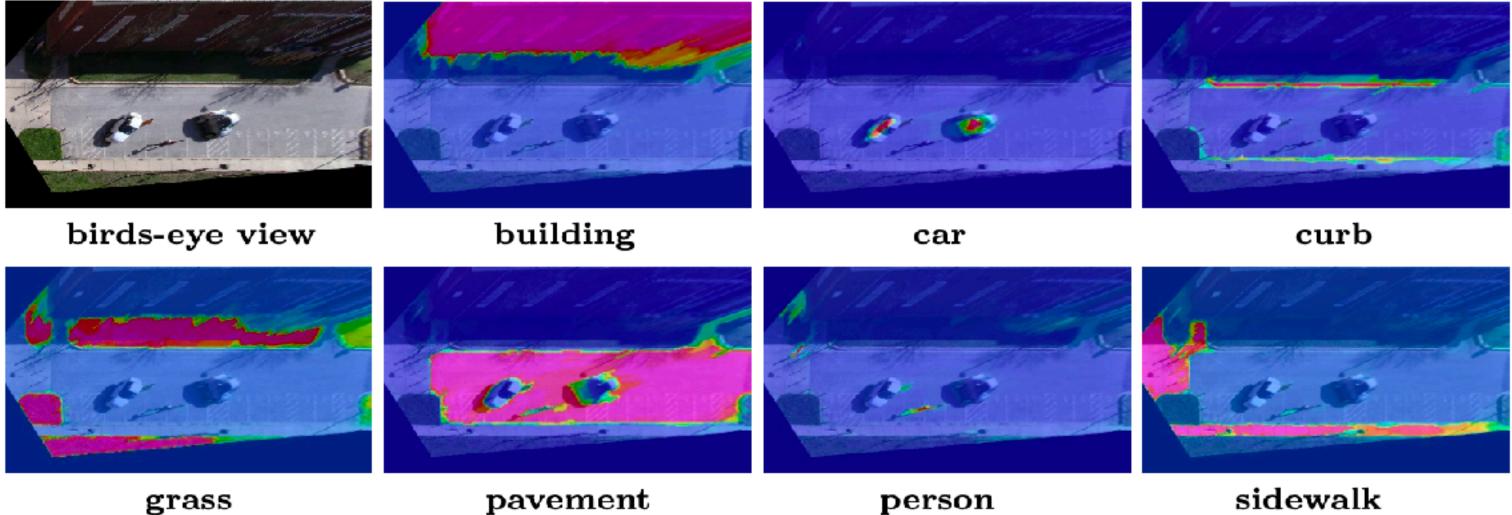


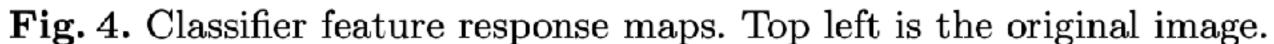
sidewalk

State *s*: pixel or a group of neighboring pixels in image)

 $\mathbb{P}(\text{pixels being building})$ $\mathbb{P}(\text{pixels being grass})$ $\phi(s, a) = |\mathbb{P}(\text{pixels being sidewalk})|$ $\mathbb{P}(\text{pixels being car})$

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$





sidewalk

State s: pixel or a group of neighboring pixels in image)

 $\mathbb{P}(\text{pixels being building})$ $\mathbb{P}(\text{pixels being grass})$ $\phi(s, a) = |\mathbb{P}(\text{pixels being sidewalk})|$ $\mathbb{P}(\text{pixels being car})$

> Maybe colliding with cars or buildings has high cost, but walking on sideway or grass has low cost

Notation on Distributions

$$d^{\pi}_{\mu}(s,a) = \sum_{h=0}^{H-1} \mathbb{P}^{\pi}_{h}(s,a;\mu)/I$$

 $\mathbb{P}_{h}^{\pi}(s, a; \mu)$: probability of visiting (s, a) at time step h following π

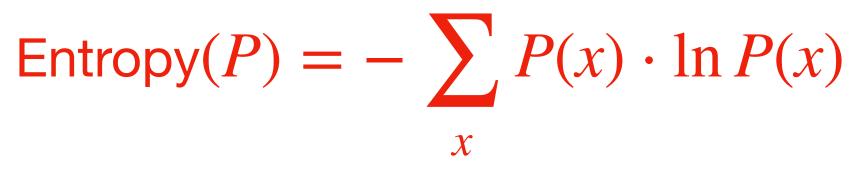
H: average state-action distribution

 $\rho^{\pi}(\tau) := \mu_0(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1) \dots \pi(a_{H-1} | s_{H-1})P(s_H | s_{H-1}, a_{H-1}):$ Likelihood of the trajectory τ under π , i.e., the prob of π generating τ

Definition of the Entropy of a distribution:

Definition of the Entropy of a distribution:

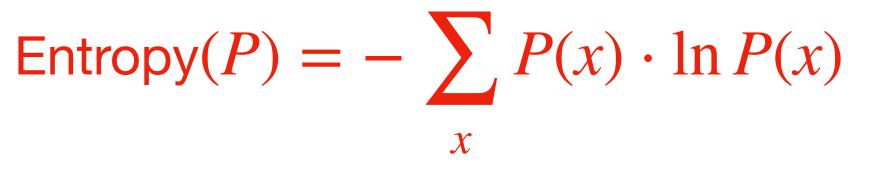
Given a distribution $P \in \Delta(X)$, the entropy is defined as:



Higher entropy means more uncertainty, for instance:

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:



- - ${\mathcal X}$

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

 $Entropy(P) = -\sum P(x) \cdot \ln P(x)$ X

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy, i.e., Entropy(U(X)) = $-\sum_{X \to X} (1/|X|) \ln(1/|X|) = \ln(|X|)$

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

 $Entropy(P) = -\sum P(x) \cdot \ln P(x)$

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy, i.e., Entropy(U(X)) = $-\sum_{X \to X} (1/|X|)\ln(1/|X|) = \ln(|X|)$ ${\mathcal X}$

Deterministic distribution has zero entropy:

i.e., Entropy($\delta(x_0)$) = $-1 \cdot \ln 1 - \sum_{n=0}^{\infty} 0 \ln 0 = 0$ $x \neq x_0$

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

We want to find a distribution whose mean and covariance matrix equal to μ, Σ , but there are infinitely many such distributions...

> Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

 $P \in \Delta(X)$

max entropy(*P*), s.t., $\mathbb{E}_{x \sim P}[x] = \mu$, $\mathbb{E}_{x \sim P}[xx^{\top}] = \Sigma + \mu \mu^{\top}$

We want to find a distribution whose mean and covariance matrix equal to μ, Σ , but there are infinitely many such distributions...

> Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

max entropy(P), s.t., \mathbb{E} $P \in \Delta(X)$

$$\mathbb{E}_{x \sim P}[x] = \mu, \quad \mathbb{E}_{x \sim P}[xx^{\top}] = \Sigma + \mu\mu^{\top}$$

Solution: $P^{\star} = \mathcal{N}(\mu, \Sigma)$ (proof: out of scope)

In summary:

Maximum Entropy Principle says that:

Among the distributions that satisfy pre-defined constraints (mean & variance), let's pick the one that is the most uncertain (uncertainty measured in entropy)

3. The Algorithm: Maximum Entropy Inverse RL

Plan for Today:

min f(x) ${\mathcal X}$ $s \cdot t \cdot g_1(x) = 0, \quad g_2(x) = 0$

Consider the following constrained optimization problem:

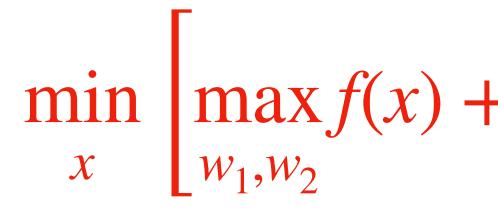
Consider the following constrained optimization problem:

- min f(x) ${\mathcal X}$ $s \cdot t \cdot g_1(x) = 0, \quad g_2(x) = 0$
- Denote x^{\star} as the optimal solution here.

Consider the following constrained optimization problem:

- min f(x) ${\mathcal X}$
- $s \cdot t \cdot g_1(x) = 0, \quad g_2(x) = 0$
- Denote x^{\star} as the optimal solution here.
- How to solve such constrained optimization problem?

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:



$$+ w_1 g_1(x) + w_2 g_2(x)$$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

 W_1, W_2

For any x that does not satisfy constraints, i.e., $g_1(x) \neq 0$ or $g_2(x) \neq 0$, we must have: $\max f(x) + w_1g_1(x) + w_2g_2(x) = +\infty$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

 W_1, W_2

 W_1, W_2

For any x that does not satisfy constraints, i.e., $g_1(x) \neq 0$ or $g_2(x) \neq 0$, we must have: $\max f(x) + w_1g_1(x) + w_2g_2(x) = +\infty$

For any x that satisfies constraints, i.e., $g_1(x) = 0$ and $g_2(x) = 0$, we must have: $\max f(x) + w_1 g_1(x) + w_2 g_2(x) = f(x)$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

In other words,

$$\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = \begin{cases} + \\ f(x) \\ f(x)$$

- ⊢∞ $g_1(x) \neq 0$ or $g_2(x) \neq 0$ i.e, infeasible
- $f(x) \quad g_1(x) = g_2(x) = 0$ i.e., feasible

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

In other words,

$$\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = \begin{cases} + \\ f(x) \\ f(x)$$

- + ∞ $g_1(x) \neq 0$ or $g_2(x) \neq 0$ i.e, infeasible
- $f(x) \quad g_1(x) = g_2(x) = 0$ i.e., feasible

Thus, solving the Lagrange formulation is equivalent to the original formulation: $\arg\min_{x} \left| \max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right| = x^*$

In summary, we have that

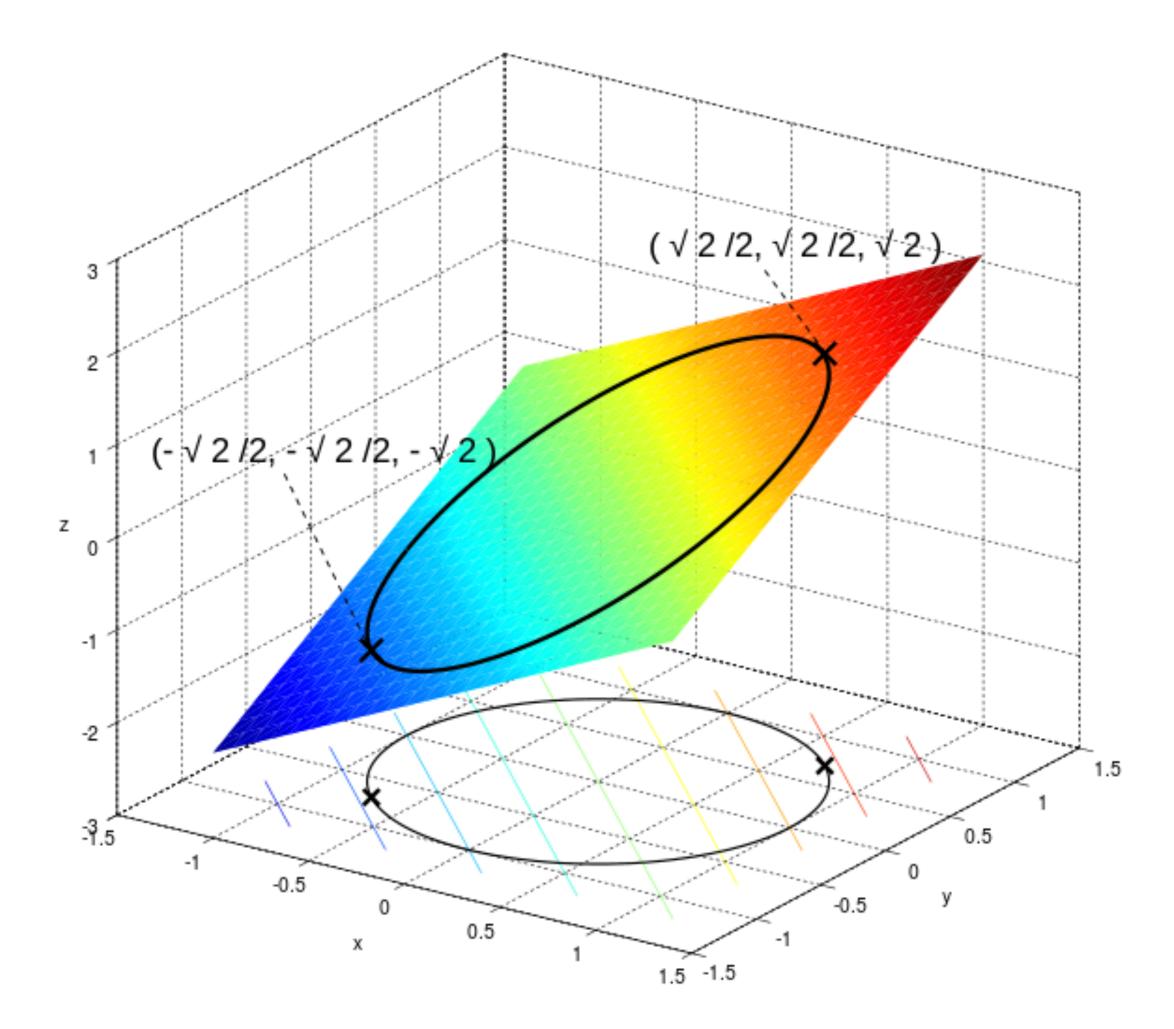
$$\underset{x}{\operatorname{arg\,min}} \lim_{w_1,w_2} w_1, w_2$$

Where x^{\star} is the optimal solution of the original constrained program:

$$\min_{x} f(x)$$

s.t., $g_1(x) = 0, \quad g_2(x) = 0$

$$-w_1g_1(x) + w_2g_2(x) = x^*$$



Example:

 $\min_{x,y} x + y, \text{s.t.}, x^2 + y^2 = 1$

We will often be interested in solving the dual version, i.e.,

 $w_1, w_2 \quad x$

 $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:= \ell(x, w)$

We will often be interested in solving the dual version, i.e.,

$w_1, w_2 \quad x$

And one procedure to solve a max min is the following iterative algorithm:

 $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:= \ell(x, w)$

We will often be interested in solving the dual version, i.e.,

 $w_1, w_2 \quad x$

Initialize Lagrange multiplers w_1^0, w_2^0

 $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:=\ell(x,w)$

And one procedure to solve a max min is the following iterative algorithm:

We will often be interested in solving the dual version, i.e.,

 $w_1, w_2 \quad x$

And one procedure to solve a max min is the following iterative algorithm: **Initialize** Lagrange multiplers w_1^0, w_2^0

For $t = 0 \rightarrow T - 1$

 $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:=\ell(x,w)$

We will often be interested in solving the dual version, i.e., $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$ $w_1, w_2 \quad x$

And one procedure to solve a max min is the following iterative algorithm: **Initialize** Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $x^{t} = \arg\min_{x} f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x) \quad (\text{# best response: } \arg\min_{x} \ell(x, w^{t}))$

 $:= \ell(x, w)$

 $w_1, w_2 \quad x$

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $w_1^{t+1} = w_1^t + \eta g_1(x^t)$ $w_2^{t+1} = w_2^t + \eta g_2(x^t)$

- We will often be interested in solving the dual version, i.e.,
 - $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:= \ell(x, w)$

- And one procedure to solve a max min is the following iterative algorithm:

 - $x^{t} = \arg\min f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x) \quad (\text{# best response: } \arg\min \ell(x, w^{t}))$

(#incremental update: $w^{t+1} = w^t + \eta \nabla_w \ell(x^t, w)$)

 $w_1, w_2 \quad x$

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $w_1^{t+1} = w_1^t + \eta g_1(x^t)$ $w_2^{t+1} = w_2^t + \eta g_2(x^t)$ **Return**: $\bar{x} = \sum_{t=1}^{T-1} \frac{x_t}{T}$ t=0

- We will often be interested in solving the dual version, i.e.,
 - $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:= \ell(x, w)$

- And one procedure to solve a max min is the following iterative algorithm:

 - $x^{t} = \arg\min f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x) \quad (\text{\# best response: } \arg\min \ell(x, w^{t}))$

(#incremental update: $w^{t+1} = w^t + \eta \nabla_w \mathscr{C}(x^t, w)$)

 $w_1, w_2 \quad x$

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $w_1^{t+1} = w_1^t + \eta g_1(x^t)$ $w_2^{t+1} = w_2^t + \eta g_2(x^t)$ **T**–1 **Return**: $\bar{x} = \sum x_t / T$ t=0

- We will often be interested in solving the dual version, i.e.,
 - $\max \min f(x) + w_1 g_1(x) + w_2 g_2(x)$

 $:= \ell(x, w)$

- And one procedure to solve a max min is the following iterative algorithm:

 - $x^{t} = \arg\min f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x) \quad (\text{\# best response: } \arg\min \ell(x, w^{t}))$
 - (#incremental update: $w^{t+1} = w^t + \eta \nabla_w \mathscr{C}(x^t, w)$)

Informal theorem: when f, g are convex, $\bar{x} \to x^*$, as $T \to \infty$

Plan for Today:

3. The Algorithm: Maximum Entropy Inverse RL

(Note linear cost assumption implies π is as good as π^*) But there are potentially many such policies...

Q: we want to find a policy π such that $\mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a)$

Q: we want to find a policy π suc

(Note linear cost assumption implies π is as good as π^*) But there are potentially many such policies...

Find a policy π that maximizes some entropy while subject to the constraint:

ch that
$$\mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a)$$

The principle of Maximum Entropy:

Q: we want to find a policy π suc

(Note linear cost assumption implies π is as good as π^*) But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\text{entropy} \left(\pi(\cdot | s) \right) \right]$$

$$s.t, \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a)$$

ch that
$$\mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a)$$

Q: we want to find a policy π suc

(Note linear cost assumption implies π is as good as π^*) But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$
This can be estimated using expert data:
$$t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$$
$$\sum_{i=1}^{N} \phi(s_{i}^{\star}, a_{i}^{\star})/N$$

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$
This can be estimated using expert data:
$$s \cdot t, \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a)$$
$$\sum_{i=1}^{N} \phi(s_{i}^{\star}, a_{i}^{\star})/N$$

ch that
$$\mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a)$$

Let's simplify the objective $\max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\operatorname{entropy}(\pi(\cdot \mid s)) \right]$:

Let's simplify the objective

$$\mathbb{E}_{s \sim d^{\pi}_{\mu}}\left[\mathsf{entropy}(\pi(\cdot \mid s))\right] = -\mathbb{E}_{s \sim d^{\pi}_{\mu}}\mathbb{E}_{a \sim \pi(\cdot \mid s)}\ln\pi(a \mid s) = -\mathbb{E}_{s,a \sim d^{\pi}_{\mu}}\ln\pi(a \mid s)$$

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\operatorname{entropy}(\pi(\cdot \mid s)) \right]:$$

Let's simplify the objective

$$\mathbb{E}_{s \sim d^{\pi}_{\mu}}\left[\operatorname{entropy}(\pi(\cdot \mid s))\right] = -\mathbb{E}_{s \sim d^{\pi}_{\mu}}\mathbb{E}_{a \sim \pi(\cdot \mid s)}\ln\pi(a \mid s) = -\mathbb{E}_{s,a \sim d^{\pi}_{\mu}}\ln\pi(a \mid s)$$

$$\arg\max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \Big[entropy(\pi($$

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\operatorname{entropy}(\pi(\cdot \mid s)) \right]:$$

$|s\rangle = \arg\min_{\pi} \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \ln \pi(a \mid s)$

We arrive at the following constraint optimization problem:

arg min E π

$$s.t, \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}_{\mu}} \phi(s,a)$$

 $\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \ln \pi(a \mid s) + w$

$$E_{s,a\sim d^{\pi}_{\mu}}\ln\pi(a\,|\,s)$$

Introduce the Lagrange multiplier $w \in \mathbb{R}^d$ (we have d many constraints), consider the max-min dual version:

$$,^{\mathsf{T}}\left(\mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a)-\mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a)\right)$$

 $\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \ln \pi(a \mid s) + w$

Next lecture, we will design algorithm (in high level, it is the iterative algorithm framework) for this max - min problem

Introduce the Lagrange multiplier $w \in \mathbb{R}^d$ (we have d many constraints), consider the max-min dual version:

$$\mathcal{Y}^{\mathsf{T}}\left(\mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a)-\mathbb{E}_{s,a\sim d^{\pi}_{\mu}}\phi(s,a)\right)$$