Maximum Entropy IRL
DAgger Recap

At iteration t, given π^t:

New Data

Aggregate Dataset

All previous data

Supervised Learning

Data Aggregation = Follow-the-Regularized-Leader Online Learner

Steering from expert
DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it matches to π^* under its own $d_{\mu}^{\hat{\pi}}$

$$\mathbb{E}_{s \sim d_{\mu}^{\hat{\pi}}} \left[1 \{ \hat{\pi}(s) \neq \pi^*(s) \} \right] \leq \epsilon_{\text{reg}} = O(1/\sqrt{T})$$
DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it matches to π^* under its own $d_{\hat{\mu}}$

$$\mathbb{E}_{s \sim d_{\hat{\mu}}} \left[\mathbf{1}\{\hat{\pi}(s) \neq \pi^*(s)\} \right] \leq \epsilon_{\text{reg}} = O(1/\sqrt{T})$$

If expert herself can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s, a) - V^{\pi^*}(s)|$ is small for all s,

$$V^{\pi^*} - V^{\pi'} \leq O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{\text{reg}}\right)$$
DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it matches to π^* under its own $d_{\mu}^{\hat{\pi}}$

$$
\mathbb{E}_{s \sim d_{\mu}^{\hat{\pi}}}[1\{\hat{\pi}(s) \neq \pi^*(s)\}] \leq \epsilon_{\text{reg}} = O(1/\sqrt{T})
$$

If expert herself can quickly recover from a deviation, i.e., $|Q_{\pi^*}(s, a) - V_{\pi^*}(s)|$ is small for all s,

$$
V_{\pi^*} - V_{\pi'} \leq O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{\text{reg}}\right)
$$

This is a significant improvement over BC in both theory and practice
Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

2. The Algorithm: Maximum Entropy Inverse RL
Setting

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$
Setting

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$

(1) Ground truth cost $c(s, a)$ is unknown;
(2) assume expert is the optimal policy π^* of the cost c
(3) transition P is known
Setting

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$

(1) Ground truth cost $c(s, a)$ is unknown;
(2) assume expert is the optimal policy π^* of the cost c
(3) transition P is known

We have a dataset $\mathcal{D} = (s_i^*, a_i^*)_{i=1}^M \sim d^{\pi^*}$
Setting

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$

1. Ground truth cost $c(s, a)$ is unknown;
2. Assume expert is the optimal policy π^* of the cost c
3. Transition P is known

We have a dataset $\mathcal{D} = (s_i^*, a_i^*)_{i=1}^M \sim d^{\pi^*}$

Key Assumption on cost:
$c(s, a) = \langle \theta^*, \phi(s, a) \rangle$, linear w.r.t feature $\phi(s, a)$
Running Example: Define feature map

Key Assumption on cost:
\[c(s, a) = \langle \theta^*, \phi(s, a) \rangle, \text{ linear wrt feature } \phi(s, a) \]

Fig. 4. Classifier feature response maps. Top left is the original image.
Running Example: Define feature map

Key Assumption on cost:
\[c(s, a) = \langle \theta^*, \phi(s, a) \rangle, \text{linear wrt feature } \phi(s, a) \]

State \(s \): pixel or a group of neighboring pixels in image)

Fig. 4. Classifier feature response maps. Top left is the original image.
Running Example: Define feature map

Key Assumption on cost:
\[c(s, a) = \langle \theta^*, \phi(s, a) \rangle, \text{linear wrt feature } \phi(s, a) \]

State \(s \): pixel or a group of neighboring pixels in image
\[
\phi(s, a) = \begin{bmatrix}
\mathbb{P}(\text{pixels being building}) \\
\mathbb{P}(\text{pixels being grass}) \\
\mathbb{P}(\text{pixels being sidewalk}) \\
\mathbb{P}(\text{pixels being car}) \\
\vdots
\end{bmatrix}
\]

Fig. 4. Classifier feature response maps. Top left is the original image.
Running Example: Define feature map

Key Assumption on cost:
\[c(s, a) = \langle \theta^*, \phi(s, a) \rangle, \text{ linear wrt feature } \phi(s, a) \]

State \(s \): pixel or a group of neighboring pixels in image

\[
\phi(s, a) = \begin{bmatrix}
\mathbb{P}(\text{pixels being building}) \\
\mathbb{P}(\text{pixels being grass}) \\
\mathbb{P}(\text{pixels being sidewalk}) \\
\mathbb{P}(\text{pixels being car}) \\
\vdots
\end{bmatrix}
\]

Fig. 4. Classifier feature response maps. Top left is the original image.

Maybe colliding with cars or buildings has **high** cost, but walking on sidewalk or grass has **low** cost.
Notation on Distributions

\(\mathbb{P}_h^{\pi}(s, a; \mu) \): probability of visiting \((s, a)\) at time step \(h\) following \(\pi\)

\[
d_{\mu}^{\pi}(s, a) = \sum_{h=0}^{H-1} \mathbb{P}_h^{\pi}(s, a; \mu)/H: \text{average state-action distribution}
\]

\[
\rho^{\pi}(\tau) := \mu_0(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)\ldots\pi(a_{H-1} | s_{H-1})P(s_H | s_{H-1}, a_{H-1})
\]

Likelihood of the trajectory \(\tau\) under \(\pi\), i.e., the prob of \(\pi\) generating \(\tau\)
Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:
Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$\text{Entropy}(P) = - \sum_x P(x) \cdot \ln P(x)$$
Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$\text{Entropy}(P) = - \sum_x P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:
Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$\text{Entropy}(P) = - \sum_x P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy, i.e.,

$$\text{Entropy}(U(X)) = - \sum_x (1/|X|)\ln(1/|X|) = \ln(|X|)$$
Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$\text{Entropy}(P) = -\sum_x P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy, i.e.,

$$\text{Entropy}(U(X)) = -\sum_x \left(\frac{1}{|X|}\right) \ln \left(\frac{1}{|X|}\right) = \ln(|X|)$$

Deterministic distribution has zero entropy:

i.e.,

$$\text{Entropy}(\delta(x_0)) = -1 \cdot \ln 1 - \sum_{x \neq x_0} 0 \ln 0 = 0$$
Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to μ, Σ, but there are infinitely many such distributions...
Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to μ, Σ, but there are infinitely many such distributions…

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints
Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to μ, Σ, but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints

$$\max_{P \in \Delta(X)} \text{entropy}(P), \quad \text{s.t.,} \quad \mathbb{E}_{x \sim P}[x] = \mu, \quad \mathbb{E}_{x \sim P}[xx^\top] = \Sigma + \mu\mu^\top$$
Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to μ, Σ, but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints

$$\max_{P \in \Delta(X)} \text{entropy}(P), \quad \text{s.t.,} \quad \mathbb{E}_{x \sim P}[x] = \mu, \quad \mathbb{E}_{x \sim P}[xx^T] = \Sigma + \mu \mu^T$$

Solution: $P^* = \mathcal{N}(\mu, \Sigma)$
(proof: out of scope)
Detour: Principle of Maximum Entropy

In summary:

Maximum Entropy Principle says that:

Among the distributions that satisfy pre-defined constraints (mean & variance), let’s pick the one that is the most uncertain (uncertainty measured in entropy)
Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL
Constrained Optimization:

Consider the following constrained optimization problem:

$$\min_{x} f(x)$$

$$s.t., g_1(x) = 0, \quad g_2(x) = 0$$
Constrained Optimization:

Consider the following constrained optimization problem:

$$\min_{x} f(x)$$

subject to

$$g_1(x) = 0, \quad g_2(x) = 0$$

Denote x^* as the optimal solution here.
Constrained Optimization:

Consider the following constrained optimization problem:

\[
\min_x f(x)
\quad s.t. \quad g_1(x) = 0, \quad g_2(x) = 0
\]

Denote \(x^* \) as the optimal solution here.

How to solve such constrained optimization problem?
Constrained Optimization:

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} \left(f(x) + w_1 g_1(x) + w_2 g_2(x) \right) \right]$$
Constrained Optimization:

Define two Lagrange multipliers $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_x \left[\max_{w_1, w_2} w_1 g_1(x) + w_2 g_2(x) \right] \left(\max f(x) + w_1 g_1(x) + w_2 g_2(x) \right)$$

For any x that does not satisfy constraints, i.e., $g_1(x) \neq 0$ or $g_2(x) \neq 0$, we must have:

$$\max_{w_1, w_2} w_1 g_1(x) + w_2 g_2(x) = +\infty$$
Constrained Optimization:

Define two Lagrange multiplier \(w_1, w_2 \in \mathbb{R} \), we consider the following Lagrange formulation:

\[
\min_x \begin{bmatrix} \max f(x) + w_1 g_1(x) + w_2 g_2(x) \end{bmatrix}
\]

For any \(x \) that does not satisfy constraints, i.e., \(g_1(x) \neq 0 \) or \(g_2(x) \neq 0 \), we must have: \(\max f(x) + w_1 g_1(x) + w_2 g_2(x) = +\infty \) \(w_1, w_2 \)

For any \(x \) that satisfies constraints, i.e., \(g_1(x) = 0 \) and \(g_2(x) = 0 \), we must have: \(\max f(x) + w_1 g_1(x) + w_2 g_2(x) = f(x) \) \(w_1, w_2 \)
Constrained Optimization:

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_x \left[\max_{w_1, w_2} w_1 g_1(x) + w_2 g_2(x) \right]$$

In other words,

$$\max_{w_1, w_2} w_1 g_1(x) + w_2 g_2(x) = \begin{cases} +\infty & g_1(x) \neq 0 \text{ or } g_2(x) \neq 0 \text{ i.e., infeasible} \\ f(x) & g_1(x) = g_2(x) = 0 \text{ i.e., feasible} \end{cases}$$
Constrained Optimization:

Define two Lagrange multipliers $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} \left(f(x) + w_1 g_1(x) + w_2 g_2(x) \right) \right]$$

In other words,

$$\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = \begin{cases} +\infty & g_1(x) \neq 0 \text{ or } g_2(x) \neq 0 \text{ i.e., infeasible} \\ f(x) & g_1(x) = g_2(x) = 0 \text{ i.e., feasible} \end{cases}$$

Thus, solving the Lagrange formulation is equivalent to the original formulation:

$$\arg \min_{x} \left[\max_{w_1, w_2} \left(f(x) + w_1 g_1(x) + w_2 g_2(x) \right) \right] = x^*$$
Constrained Optimization:

In summary, we have that

$$\arg\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right] = x^{\star}$$

Where x^{\star} is the optimal solution of the original constrained program:

$$\min_{x} f(x)$$

subject to $g_1(x) = 0, \quad g_2(x) = 0$
Example:

\[
\min_{x, y} x + y, \text{ s.t., } x^2 + y^2 = 1
\]
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

\[
\max_{w_1, w_2} \min_x \left[f(x) + w_1 g_1(x) + w_2 g_2(x) \right] := \ell(x, w)
\]
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x)$$

$$:= \ell(x, w)$$

And one procedure to solve a $\max \min$ is the following iterative algorithm:
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x) = \ell(x, w)$$

And one procedure to solve a max min is the following iterative algorithm:

Initialize Lagrange multipliers w_1^0, w_2^0
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x) = \ell(x, w)$$

And one procedure to solve a max min is the following iterative algorithm:

Initialize Lagrange multipliers w_1^0, w_2^0
For $t = 0 \rightarrow T - 1$
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x)$$

$$= \ell(x, w)$$

And one procedure to solve a max min is the following iterative algorithm:

Initialize Lagrange multipliers w_1^0, w_2^0

For $t = 0 \rightarrow T - 1$

$$x^t = \arg \min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x)$$

(#) best response: $\arg \min_x \ell(x, w^t)$
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

\[
\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x) \quad := \ell(x, w)
\]

And one procedure to solve a \(\max \min \) is the following iterative algorithm:

Initialize Lagrange multipliers \(w_1^0, w_2^0 \)

For \(t = 0 \to T - 1 \)

\[
x^t = \arg \min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x) \quad (# \text{best response: } \arg \min_x \ell(x, w^t))
\]

\[
w_1^{t+1} = w_1^t + \eta g_1(x^t) \quad (# \text{incremental update: } w_1^{t+1} = w_1^t + \eta \nabla_w \ell(x^t, w))
\]

\[
w_2^{t+1} = w_2^t + \eta g_2(x^t)
\]
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x)$$

:= \ell(x, w)

And one procedure to solve a max min is the following iterative algorithm:

Initialize Lagrange multipliers w_1^0, w_2^0

For $t = 0 \rightarrow T - 1$

$$x^t = \arg \min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x) \quad (# \text{ best response: } \arg \min_x \ell(x, w^t))$$

$$w_1^{t+1} = w_1^t + \eta g_1(x^t) \quad (# \text{ incremental update: } w_1^{t+1} = w_1^t + \eta \nabla_w \ell(x^t, w))$$

$$w_2^{t+1} = w_2^t + \eta g_2(x^t)$$

Return: $\bar{x} = \sum_{t=0}^{T-1} x_t / T$
Constrained Optimization:

We will often be interested in solving the dual version, i.e.,

$$\begin{align*}
\max_{w_1, w_2} \min_x f(x) + w_1 g_1(x) + w_2 g_2(x) := & \ell(x, w) \\
\end{align*}$$

And one procedure to solve a $\max \min$ is the following iterative algorithm:

Initialize Lagrange multipliers w_1^0, w_2^0

For $t = 0 \rightarrow T - 1$

$$x^t = \arg\min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x) \quad (# \text{ best response: } \arg\min_x \ell(x, w^t))$$

$$w_1^{t+1} = w_1^t + \eta g_1(x^t) \quad (#\text{incremental update: } w^{t+1} = w^t + \eta \nabla_w \ell(x^t, w))$$

$$w_2^{t+1} = w_2^t + \eta g_2(x^t)$$

Return: $\bar{x} = \sum_{t=0}^{T-1} x_t / T$
Informal theorem: when f, g are convex, $\bar{x} \to x^\star$, as $T \to \infty$
Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL
Maximum Entropy Inverse RL:
Maximum Entropy Inverse RL:

Q: we want to find a policy \(\pi \) such that \(\mathbb{E}_{s,a \sim d^\pi} \phi(s, a) = \mathbb{E}_{s,a \sim d^\pi \star} \phi(s, a) \)

(Note **linear cost assumption** implies \(\pi \) is as good as \(\pi^\star \))

But there are potentially many such policies...
Maximum Entropy Inverse RL:

Q: we want to find a policy π such that $\mathbb{E}_{s,a \sim d_\pi} \phi(s, a) = \mathbb{E}_{s,a \sim d_\pi^*} \phi(s, a)$

(Note linear cost assumption implies π is as good as π^*)
But there are potentially many such policies...

The principle of Maximum Entropy:
Find a policy π that maximizes some entropy while subject to the constraint:
Maximum Entropy Inverse RL:

Q: we want to find a policy π such that $\mathbb{E}_{s,a \sim d^\pi_\mu} \phi(s, a) = \mathbb{E}_{s,a \sim d^\pi_\mu^*} \phi(s, a)$

(Note **linear cost assumption** implies π is as good as π^*) But there are potentially many such policies...

The principle of Maximum Entropy:
Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d^\pi_\mu} \left[\text{entropy } (\pi(\cdot | s)) \right]$$

subject to

$$s \cdot t, \mathbb{E}_{s,a \sim d^\pi_\mu} \phi(s, a) = \mathbb{E}_{s,a \sim d^\pi_\mu^*} \phi(s, a)$$
Maximum Entropy Inverse RL:

Q: we want to find a policy π such that $\mathbb{E}_{s,a \sim d_\mu^\pi} \phi(s, a) = \mathbb{E}_{s,a \sim d_\mu^\pi^*} \phi(s, a)$

(Note **linear cost assumption** implies π is as good as π^*)

But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d_\mu^\pi} \left[\text{entropy} \left(\pi(\cdot | s) \right) \right]$$

subject to $\mathbb{E}_{s,a \sim d_\mu^\pi} \phi(s, a) = \mathbb{E}_{s,a \sim d_\mu^\pi^*} \phi(s, a)$

This can be estimated using expert data:

$$\sum_{i=1}^N \phi(s_i^*, a_i^*) / N$$
Maximum Entropy Inverse RL:

Let’s simplify the objective $\max_{\pi} \mathbb{E}_{s \sim d^\pi} \left[\text{entropy}(\pi(\cdot|s)) \right]$:
Maximum Entropy Inverse RL:

Let’s simplify the objective $\max_\pi \mathbb{E}_{s \sim d_\mu^\pi} \left[\text{entropy}(\pi(\cdot|s)) \right]$:

$$\mathbb{E}_{s \sim d_\mu^\pi} \left[\text{entropy}(\pi(\cdot|s)) \right] = - \mathbb{E}_{s \sim d_\mu^\pi} \mathbb{E}_{a \sim \pi(\cdot|s)} \ln \pi(a|s) = - \mathbb{E}_{s,a \sim d_\mu^\pi} \ln \pi(a|s)$$
Maximum Entropy Inverse RL:

Let’s simplify the objective \(\max_{\pi} \mathbb{E}_{s \sim d_\mu^{\pi}} \left[\text{entropy}(\pi(\cdot|s)) \right] \):

\[
\mathbb{E}_{s \sim d_\mu^{\pi}} \left[\text{entropy}(\pi(\cdot|s)) \right] = - \mathbb{E}_{s \sim d_\mu^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \ln \pi(a|s) = - \mathbb{E}_{s,a \sim d_\mu^{\pi}} \ln \pi(a|s)
\]

\[
\arg\max_{\pi} \mathbb{E}_{s \sim d_\mu^{\pi}} \left[\text{entropy}(\pi(\cdot|s)) \right] = \arg\min_{\pi} \mathbb{E}_{s,a \sim d_\mu^{\pi}} \ln \pi(a|s)
\]
Maximum Entropy Inverse RL:

We arrive at the following constraint optimization problem:

\[
\arg\min_{\pi} \mathbb{E}_{s,a \sim d_\mu^\pi} \ln \pi(a | s)
\]

\[
s.t., \mathbb{E}_{s,a \sim d_\mu^\pi} \phi(s, a) = \mathbb{E}_{s,a \sim d_\mu^{\pi^*}} \phi(s, a)
\]

Introduce the Lagrange multiplier \(w \in \mathbb{R}^d \) (we have \(d \) many constraints), consider the max-min dual version:

\[
\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s,a \sim d_\mu^\pi} \ln \pi(a | s) + w^\top \left(\mathbb{E}_{s,a \sim d_\mu^\pi} \phi(s, a) - \mathbb{E}_{s,a \sim d_\mu^{\pi^*}} \phi(s, a) \right)
\]
Maximum Entropy Inverse RL:

Introduce the Lagrange multiplier $w \in \mathbb{R}^d$ (we have d many constraints), consider the max-min dual version:

$$\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s,a \sim \pi} \ln \pi(a \mid s) + w^T \left(\mathbb{E}_{s,a \sim \pi} \phi(s, a) - \mathbb{E}_{s,a \sim \pi^\star} \phi(s, a) \right)$$

Next lecture,
we will design algorithm (in high level, it is the iterative algorithm framework)
for this max – min problem